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Abstract. We consider an optimization problem in a given region Q where
an agent has to decide the price p(x) of a product for every x ∈ Q. The
customers know the pricing pattern p and may shop at any place y, paying
the cost p(y) and additionally a transportation cost c(x, y) for a given trans-
portation cost function c. We will study two models: the first one where
the agent operates everywhere on Q and a second one where the agent op-
erates only in a subregion. For both models we discuss the mathematical
framework and we obtain an existence result for a pricing strategy which
maximizes the total profit of the agent. We also present some particular
cases where more detailed computations can be made, as the case of con-
cave costs, the case of quadratic cost, and the onedimensional case. Finally
we discuss possible extensions and developments, as for instance the case of
Nash equilibria when more agents operate on the same market.

1. Introduction

In the present paper we consider a model where in a prescribed region Q
of the Euclidean space Rd an agent (a central government or a commercial
company) has the possibility to decide the price of a certain product; this price
p(x) may vary at each point x ∈ Q and the customers density f(x) is assumed
to be completely known.

We assume that all the customers buy the same quantity of the product; on
the counterpart, a customer living at the point x ∈ Q knows the pricing function
p everywhere and may decide to buy the product where he lives, then paying
a cost p(x), or in another place y, then paying the cost p(y) and additionally a
transportation cost c(x, y) for a given transportation cost function c.

The individual strategy of each customer is then to solve the minimization
problem

(1.1) min
y∈Q

{
c(x, y) + p(y)

}
.

Of particular importance to our problem is the (set-valued) map Tp : Q → Q
which associates to every customer living at the point x all the locations where
it is optimal to purchase the good. Given the price pattern p, Tp is then defined
by

(1.2) Tp(x) := argmin y∈Q

{
c(x, y) + p(y)

}
, ∀x ∈ Q.
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Without any other constraint, due to the fact that the customers have to
buy the product (for instance gasoline, food, a medical product or cigarettes),
the pricing strategy for the agent in order to maximize the total income would
simply be increasing everywhere the function p more and more. To avoid this
trivial strategy we assume that on the region Q some kind of regulations are
present, and we study the optimization problems the agent has to solve in
order to maximize its total profit. We will study two models according to two
different price constraints. We also assume that the supply is unconstrained
at any location of the region Q, which means that whatever the total demand
for the product is at a given location, it can be supplied by the agent to the
customers.

1.1. The agent operates everywhere. The simplest situation we consider is
when the price p(x) is constrained to remain below a fixed bound p0(x) every-
where on Q, due for instance to some regulatory policy. The only assumption
we make is that p0 is a proper nonnegative function, intending that in the region
where p0 = +∞ no restrictions on p(x) are imposed. The goal of the agent is
to maximize its total income that, with the notation introduced in (1.1) and
(1.2), can be written as

(1.3) F (p, T ) :=
∫

Q
p(Tx) df(x)

under the constraint (state equation) that Tx ∈ Tp(x) i.e. that T is compatible
with the customer’s individual minimization problem (1.1). One may therefore
see the previous program as a nonstandard optimal control problem where p
is the control and T the state variable. Let us mention that problems with
a similar structure naturally arise in the so-called principal-agent problem in
Economics (see for instance Rochet and Choné [5] and the references therein).

1.2. The agent operates in a subregion. We consider a second model of
pricing strategy: we suppose that in Q there is a given subregion Q0 where
the price p(x) is fixed as a function p0(x) that the agent cannot control. This
is for instance the case of another country if the agent represents a central
government, or of a region where for some social reasons that the agent cannot
modify, the prices of the product are fixed.

Whenever Tp(x) ⊂ Q0, then the agent makes no benefit from customers living
at x. In fact the total profit of the agent is given by

(1.4) Π(p, T ) :=
∫

T−1(Q\Q0)
p(Tx) df(x).

under the constraint (state equation) that Tx ∈ Tp(x). Note that in formula
(1.4) giving the total profit, the integration is now performed only on the set
of customers that do shop in the region controlled by the agent and not in
the fixed-price region Q0. The problem we are interested in reads again as the
maximization of the functional Π(p, T ) among the admissible choices of state
and control variables.
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For both models above we discuss the mathematical framework which enables
us to obtain an existence result for an optimal pricing strategy and we present
some particular cases where more detailed computations can be made, as the
case of concave costs, the case of a quadratic cost, and the onedimensional case.

The last section contains some discussions about possible extensions and
developments, as for instance the case of Nash equilibria when more agents
operate on the same market.

2. Problem formulation in the first case

In what follows, Q will be some compact metric space (the economic region),
and p0 : Q → [0,+∞] a nonnegative proper function, i.e. we assume that p0 is
not +∞ everywhere on Q. We are also given a transportation cost function c
assumed to be continuous and nonnegative on Q×Q and such that c(x, x) = 0
for all x ∈ Q. Finally, f is a nonnegative Radon measure on Q that models the
distribution of customers in Q.

The unknown of the problem is the pricing pattern p that varies in the class

A :=
{
p : Q → R : p ≤ p0 on Q, p l.s.c. on Q

}
.

Once a price p has been chosen by the agent, consumers living at any point
x ∈ Q purchase the good so as to minimize their total expenditure which is
given by price plus commuting cost. This leads to the following definitions:

(2.1)
{

vp(x) := miny∈Q

{
c(x, y) + p(y)

}
,

Tp(x) :=
{
y ∈ Q : c(x, y) + p(y) = vp(x)

}
.

By our l.s.c. and compactness assumptions, Tp(x) is a nonempty compact subset
of Q (but Tp is not single-valued in general); moreover the graph of Tp is compact
as the argmin of some l.s.c. function on Q × Q. Note that Tp(x) is the set of
locations where consumers living at x rationally choose to purchase the good.
It is possible however that, for some customers, the optimal total cost vp(x) is
reached at more than one point y ∈ Q; in this case we assume the tie-breaking
rule that the consumers living at x choose to go to a transportation-minimizing
(or equivalently price-maximizing) location y ∈ Tp(x):

y ∈ argmin Tp(x)c(x, ·) = argmax Tp(x)p(·)

(notice that every y ∈ Tp(x) yields the same minimal total expenditure to the
customer living at x).

With the previous notation, the optimal pricing problem amounts to

(2.2) max
{

F (p) : p ∈ A
}

where F is the functional

(2.3) F (p) =
∫

Q

(
max

y∈Tp(x)
p(y)

)
df(x).

By the definition of Tp and vp, one has vp(x) = c(x, y) + p(y) for all y ∈ Tp(x),
hence the profit functional can be rewritten as:

F (p) =
∫

Q

(
vp(x)− min

y∈Tp(x)
c(x, y)

)
df(x).
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In order to obtain the existence of a solution to the optimization problem
(2.2) we reformulate the problem by using the variable v = vp instead of p; the
advantage is that v is searched among c-concave functions, while p does not
have special properties, and this will enable us to obtain the extra compactness
necessary to prove the existence result.

Definition 2.1. A function v : Q → R is called c-concave if there exists a
function u : Q → R (that without loss of generality can be assumed upper
semicontinuous) such that

(2.4) v(x) = inf
{
c(x, y)− u(y) : y ∈ Q

}
.

For every c-concave function v the c-transform vc is defined by

vc(y) = inf
{
c(x, y)− v(x) : x ∈ Q

}
and the c-superdifferential ∂cv(x) is given by

∂cv(x) =
{
y ∈ Q : v(x) + vc(y) = c(x, y)

}
.

The previous definition expresses that c-concave functions are functions that
can be written as pointwise infima of functions of the form x 7→ c(x, y) −
u(y) for some u : Q → R. The analogy with concave functions (as infima of
affine functions) and the parallel between the c-transform and the more familiar
Legendre-Fenchel transform then should be clear to the reader. In a similar way,
the notion of c-superdifferential generalizes the notion of superdifferential for a
concave function, and one can actually characterize c-superdifferentials in terms
of the so-called c-cyclical monotonicity property that is analogous to the usual
cyclical monotonicity. Let us remark as a first example that if c is a distance,
then c-concave functions are exactly 1-Lipschitz functions, and in this case one
can take u = −v in (2.4). The case of strictly convex costs, and in particular
the quadratic cost, will be treated in subsection 3.2.

Lemma 2.2. Every c-concave function is uniformly continuous and its conti-
nuity modulus is bounded by the continuity modulus of the cost function c on
Q×Q.

Proof. Take a c-concave function v and two points x1, x2 ∈ Q. By the definition
of c-concavity, for a suitable upper semicontinuous function u we have

v(x2) = min
{
c(x2, y)− u(y) : y ∈ Q

}
= c(x2, y2)− u(y2)

where y2 is a suitable point in Q. Then we have

v(x1) ≤ c(x1, y2)− u(y2) = v(x2) + c(x1, y2)− c(x2, y2).

Interchanging the role of x1 and x2 we deduce

|v(x1)− v(x2)| ≤ |c(x1, y2)− c(x2, y2)|

which concludes the proof. �
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Lemma 2.3. If (vn) is a sequence of c-concave functions converging uniformly
to v, then vc

n converge uniformly to vc and v is c-concave. As a consequence,
for every x ∈ Q we have

min
y∈∂cv(x)

c(x, y) ≤ lim inf
n

(
min

y∈∂cvn(x)
c(x, y)

)
.

Proof. Since vc
n are c-concave, by Lemma 2.2 it is enough to show that vc

n

converge to vc pointwise on Q. Fix y ∈ Q and let xn ∈ Q be such that

vc
n(y) = c(xn, y)− vn(xn).

Since Q is compact, a subsequence of (xn) converges to some x ∈ Q, so that

lim inf
n

vc
n(y) = c(x, y)− v(x) ≥ vc(y).

Vice versa, if x ∈ Q is such that vc(y) = c(x, y) − v(x), we have vc
n(y) ≤

c(x, y)− vn(x), so that

lim sup
n

vc
n(y) ≤ c(x, y)− v(x) = vc(y).

The fact that v is c-concave follows in an analogous way.
For the last assertion, fixed x ∈ Q take yn ∈ ∂cvn(x) such that c(x, ·) reaches

on ∂cvn(x) its minimal value c(x, yn). By definition of ∂cvn we have

vn(x) + vc
n(yn) = c(x, yn)

and we may assume that yn → y in Q. By the first part of the lemma we may
pass to the limit and deduce that

v(x) + vc(y) = c(x, y)

which gives y ∈ ∂cv(x) and

min
∂cv(x)

c(x, ·) ≤ c(x, y) = lim inf
n

c(x, yn) = lim inf
n

(
min

∂cvn(x)
c(x, ·)

)
as required. �

We reformulate now problem (2.2) by considering the functional

(2.5) I(v) =
∫

Q

[
v(x)− min

y∈∂cv(x)
c(x, y)

]
df(x)

on the admissible class

B =
{
v c-concave, 0 ≤ v(x) ≤ v0(x)

}
where

v0(x) = inf
{
c(x, y) + p0(y) : y ∈ Q

}
.

By Lemma 2.2 the class B is compact for the uniform convergence, and by
Lemma 2.3 the optimization problem

(2.6) max
{
I(v) : v ∈ B

}
admits a solution vopt.

We can now come back to the initial problem (2.2) and deduce that it admits
an optimal solution popt. Indeed, if v ∈ B, then p := −vc ∈ A (since for any
function u we have (uc)c ≥ u) and I(v) = F (p). Moreover, it is easy to check
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that Tp(x) ⊂ ∂cvp(x) for every p ∈ A. Thus, popt := −vc
opt actually solves (2.2)

since for every p ∈ A one has

F (p) ≤
∫

Q

[
vp(x)− min

y∈∂cvp(x)
c(x, y)

]
df(x) = I(vp) ≤ I(vopt) = F (popt).

3. Examples

So far, we have been in a rather abstract framework and it is time now to
look at some special cases where the problem takes a more tractable form.

3.1. The case cost equal to distance. We consider here the particular case
when the cost function c(x, y) is given by a distance d(x, y) on Q; we shall see
that in this situation the solution popt above can be recovered in an explicit
way. We denote by Lip1,d(Q) the class of all Lipschitz functions in Q for the
distance d whose Lipschitz constant does not exceed 1.

Theorem 3.1. In the case c(x, y) = d(x, y) the optimal solution is given by

popt(x) = max
{
p(x) : p ∈ Lip1,d(Q), p ≤ p0

}
.

Proof. We first notice that in this case the class of c-concave functions coincides
with the class Lip1,d(Q). Moreover, as we have seen in the reduction from
problem (2.2) to problem (2.6), we may limit ourselves to consider only functions
which are of the form −vc where v is c-concave. In our case this allows us to
limit the class of admissible p to Lip1,d(Q).

Due to the tie-breaking rule it is easy to see that for p ∈ Lip1,d(Q) it is
Tp(x) = x, which gives to the cost functional F the simpler form

F (p) =
∫

Q
p(x) df(x).

Maximizing the previous expression in the class of functions in Lip1,d(Q) which
are bounded by p0 provides the solution

popt(x) = max
{
p(x) : p ∈ Lip1,d(Q), p ≤ p0

}
as required. �

Remark 3.2. We notice that in the case c(x, y) = d(x, y) above the optimal
pricing pattern popt does not depend on the distribution f of customers. Note
also the explicit formula for the optimal price:

popt(x) = inf{p0(y) + d(x, y) : y ∈ Q} ∀x ∈ Q.

Remark 3.3. When Q is a subset of the Euclidean space RN , then Theorem 3.1
in particular applies to the concave case where d(x, y) = |x−y|α with α ∈ (0, 1]
since such costs are in fact metrics.
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3.2. The case of a strictly convex cost. We consider now the case Q := Ω
where Ω is some open bounded subset of the Euclidean space RN and c(x, y) =
h(x− y) where h is a nonnegative smooth and strictly convex function. In this
framework, a c-concave function v can be represented as:

(3.1) v(x) := min{h(x− y)− vc(y), y ∈ Q}, ∀x ∈ Q.

By the smoothness of h, the compactness of Q and Lemma 2.2 ensure that
v is Lipschitz continuous on Q hence Lebesgue a.e. differentiable on Ω by
Rademacher’s theorem. For every point x ∈ Ω of differentiability of v and
every y ∈ ∂cv(x), it is easy to check that from (3.1) one has:

∇v(x) := ∇h(x− y)

and since h is strictly convex this can be rewritten as:

(3.2) y = x−∇h∗(∇v(x))

where h∗ stands for the Legendre transform of h. This proves that for every
c-concave function v, ∂cv is in fact single-valued on a set of full Lebesgue mea-
sure. Now further assuming that f is absolutely continuous with respect to the
Lebesgue measure on Ω, we can rewrite the profit functional in a more familiar
form:

I(v) =
∫

Ω
[v − h(∇h∗(∇v))] df =

∫
Ω

[v + h∗(∇v)−∇v · ∇h∗(∇v)] df.

If we further restrict our attention to the quadratic case, namely c(x, y) :=
|x− y|2/2 and Ω is convex, it is easy to see that v is c-concave on Ω if and only
if the function w defined by

w(x) :=
1
2
|x|2 − v(x), ∀x ∈ Ω

is convex and satisfies

∇w(x) ∈ Q for a.e. x ∈ Ω.

Of course the constraint v ≤ v0 translates into w ≥ w0 with w0(x) := |x|2/2−
v0(x). Putting everything together, we then see that v solves (2.6) if and only
if v(x) = |x|2/2− w(x) and w solves the following:

(3.3) inf
w∈C

K(w) where K(w) :=
∫

Ω

[
1
2
|∇w|2 − x · ∇w + w

]
df

and

C := {w : Ω → R, w convex, w ≥ w0, ∇w ∈ Q a.e.}.

Problems of the calculus of variations subject to a convexity constraint with a
very similar structure as (3.3) arise in the monopoly pricing model of Rochet
and Choné ([5]). Note also that by strict convexity, (3.3) possesses a unique
solution.
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3.3. The quadratic case in dimension one. We now consider problem (3.3)
in the special unidimensional case where Ω = (0, 1), df = dx and w0 ≡ 0 (which
corresponds to the price bound p0(x) = x − x2/2). The problem amounts to
maximize K(w) among convex, nondecreasing and 1-Lipschitz functions w. It
is obvious that one necessarily has w(0) = 0 at the optimum, which setting
q := w′ and integrating by parts enables us to write

K(w) =
∫ 1

0

[
1
2
q(x)2 + (1− 2x)q(x)

]
dx

and the previous integral has to be minimized among nondecreasing functions
q(x) taking values in [0, 1]. By a straightforward computation, the infimum is
attained for qopt(x) = (2x − 1)+, so that integrating we find wopt and then by
vopt(x) := x2/2− wopt(x). Summarizing, we have obtained

vopt(x) =
{

x2/2 if x ∈ [0, 1/2]
−x2/2 + x− 1/4 if x ∈ [1/2, 1].

Finally, the optimal price is obtained by the formula popt = −vc
opt(x) which

simply yields here popt(x) = x/2− x2/4 = p0(x)/2.

4. Problem formulation in the second case

In what follows, Q will be some compact metric space (the economic region),
Q0 is some open subset of Q (the subregion where prices are fixed) and p0 is a
nonnegative l.s.c. function defined on Q0 (p0 is the fixed price system in Q0).
We are also given a transportation cost function c assumed to be continuous
and nonnegative on Q×Q and such that c(x, x) = 0 for all x ∈ Q. Finally, f is
a nonnegative Radon measure on Q of positive mass that models the repartition
of customers in Q. We set Q1 := Q \ Q0, this (compact) subregion being the
one where prices have to be determined by the agent.

The unknown of the problem is the pricing pattern p in the following class:

A := {p : Q → R, p = p0 on Q0, p l.s.c. on Q}.
Once a price p has been fixed by the agent, consumers living at x purchase the
good so as to minimize their total expenditure i.e. price plus commuting cost,
which leads to define, analogously to what done in Section 2,

(4.1)
{

vp(x) := miny∈Q

{
c(x, y) + p(y)

}
,

Tp(x) :=
{
y ∈ Q : c(x, y) + p(y) = vp(x)

}
.

By our l.s.c. and compactness assumptions Tp(x) is a nonempty compact subset
of Q and moreover the graph of Tp is compact as the argmin of some l.s.c.
function on Q × Q. Note that Tp(x) is the set of locations where consumers
living at x rationally choose to purchase the good. If Tp(x) ⊂ Q0 then all the
profit generated by the consumers of x goes to the runner of region Q0. We
thus define:

(4.2)
{

Ω0(p) :=
{
x ∈ Q : Tp(x) ⊂ Q0

}
,

Ω1(p) :=
{
x ∈ Q : Tp(x) ∩Q1 6= ∅

}
.

When x ∈ Ω0(p), the agent makes no profit on consumers of x; when x ∈
Ω1(p), we assume as tie-breaking rule that the consumers living at x go to
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a transportation-minimizing (or equivalently to a price-maximizing) location
y ∈ Tp(x):

y ∈ argmin Tp(x)∩Q1
c(x, ·) = argmax Tp(x)∩Q1

p(·)
(notice that every y ∈ Tp(x) yields the same minimal expenditure to x).

With the previous notations, we see that the optimal pricing problem amounts
to the maximization problem

(4.3) max
{
Π(p) : p ∈ A

}
where

Π(p) :=
∫

Ω1(p)

(
max

y∈Tp(x)∩Q1

p(y)
)

df(x).

By the definition of Tp and vp, one has vp(x) = c(x, y) + p(y) for all y ∈ Tp(x),
hence the profit functional can be rewritten as:

Π(p) =
∫

Ω1(p)

(
vp(x)− min

y∈Tp(x)∩Q1

c(x, y)
)

df(x).

Defining for all x ∈ Ω1(p){
Hp(x) := maxy∈Tp(x)∩Q1

p(y),
Gp(x) := miny∈Tp(x)∩Q1

c(x, y)

we may then rewrite in a more synthetical way the profit as

Π(p) =
∫

Ω1(p)
Hp(x) df(x) =

∫
Ω1(p)

(vp(x)−Gp(x)) df(x).

Remark 4.1. So far, we have not assumed that p has to be nonnegative, in fact
this constraint is unnecessary since it will directly follow from the maximization
problem (4.3). Indeed if p ∈ A then p+ := max(p, 0) is also in A and Π(p+) ≥
Π(p). If Hp ≤ 0 on Ω1(p), this claim is obvious. We may then assume that
{Hp ≥ 0} ∩ Ω1(p) 6= ∅. Let x ∈ Ω1(p) be such that Hp(x) ≥ 0 and let y ∈
Tp(x)∩Q1 be such that Hp(x) = p(y) = p+(y); we have vp(x) = c(x, y)+p(y) =
c(x, y)+ p+(y) ≥ vp+(x) and since vp ≤ vp+ this yields vp+(x) = c(x, y)+ p+(y)
which implies x ∈ Ω1(p+), y ∈ Tp+(x) and Hp+(x) ≥ Hp(x). We then have

Π(p) ≤
∫

Ω1(p)∩{Hp≥0}
Hp(x) df(x) ≤

∫
Ω1(p+)

Hp+(x) df(x) = Π(p+).

5. The existence result

5.1. Generalized concavity. To prove the existence of a maximizer in (4.3),
we reformulate the problem in terms of vp rather than on the price p which a
priori does not have special properties. To do that, it is convenient to use some
notions of generalized concavity that are natural in our context (as well as in
the Monge-Kantorovich theory). Before introducing formal definitions let us
remark that for p ∈ A, one can rewrite vp (defined by (4.1)) as:

vp(x) = v0(x) ∧ wp(x)
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(where a ∧ b denotes the minimum of the two real numbers a and b) with

(5.1)
{

v0(x) := infy∈Q0

{
c(x, y) + p0(y)

}
,

wp(x) := infy∈Q1

{
c(x, y) + p(y)

}
.

From the previous formula we see that wp can be represented as the pointwise
infimum of a family of functions x 7→ c(x, y)+p(y) where the parameter y takes
its values in Q1. This suggests the following definition.

Definition 5.1. A function w : Q → R is called (Q1, c)-concave if there exists
a function u : Q1 → R bounded from above such that

(5.2) w(x) = inf
y∈Q1

{c(x, y)− u(y)}, ∀x ∈ Q.

If w is (Q1, c)-concave there exists a kind of minimal representation (as for
the usual Legendre-Fenchel transform) of w in the form (5.2). Indeed, using
the c-transform (see Definition 2.1)

wc(y) := inf
x∈Q

{c(x, y)− w(x)} ∀y ∈ Q1,

one has

(5.3) w(x) = inf
y∈Q1

{c(x, y)− wc(y)} ∀x ∈ Q.

Indeed, on the one hand, the definition of wc yields w(x) + wc(y) ≤ c(x, y) for
every (x, y) ∈ Q×Q1, hence:

w(x) ≤ inf
y∈Q1

{c(x, y)− wc(y)}.

On the other hand, using the representation (5.2) yields u ≤ wc on Q1 hence

w(x) = inf
y∈Q1

{c(x, y)− u(y)} ≥ inf
y∈Q1

{c(x, y)− wc(y)}.

Analogously to what was done in Section 2, for every (Q1, c)-concave function
w, the (Q1, c)-superdifferential of w at x ∈ Q (denoted ∂1,cw(x)) is defined by

∂1,cw(x) := {y ∈ Q1 : w(x) + wc(y) = c(x, y)}.
Since Q and Q1 are compact and (Q1, c)-concave functions and their c-transforms
are continuous, it is easy to see that for every (Q1, c)-concave function w
and every x ∈ Q, ∂1,cw(x) is a nonempty compact subset of Q1 and that
{(x, y) ∈ Q×Q1 : y ∈ ∂1,cw(x)} is compact.

5.2. Reformulation. The aim of this subsection is to reformulate the maxi-
mization problem (4.3) in terms of w = wp only. Let p ∈ A be nonnegative
(which is not restrictive in view of Remark 4.1) and write

vp := v0 ∧ w

with w = wp and v0 defined by (5.1). Then, let us define

(5.4) ũ(y) := inf
x∈Q

{c(x, y)− w(x)} ∀y ∈ Q1;

as already noticed, since w = wp is (Q1, c)-concave we have

w(x) := inf
y∈Q1

{c(x, y)− ũ(y)} ∀x ∈ Q.
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Now let us define

p̃(y) :=
{

p0(y) if y ∈ Q0

−ũ(y) if y ∈ Q1.

By construction wep = wp hence vep = vp. The next proposition expresses that
the profit is improved when one replaces p by p̃. This allows us to restrict the
analysis to prices that are (up to a minus sign) a c-transform on the free region
Q1 and will enable us to express the problem in terms of w only. More precisely,
we have the following.

Proposition 5.2. Let p ∈ A, p ≥ 0 and let p̃ and w be defined as above. Then
one has

vep = vp, p̃ ≤ p on Q1, p̃ ≥ 0 on Q,(5.5)
Tp(x) ∩Q1 ⊂ Tep(x) ∩Q1, ∀x ∈ Ω1(p),(5.6)

Ω1(p) ⊂ Ω1(p̃) = {w ≤ v0},(5.7)
Tep(x) ∩Q1 = ∂1,cw(x), ∀x ∈ Ω1(p̃),(5.8)

which imply

(5.9) Π(p̃) ≥ Π(p)

and

(5.10) Π(p̃) =
∫
{w≤v0}

(
w(x)− min

y∈∂1,cw(x)
c(x, y)

)
df(x).

Proof. We already know that vep = vp. Using Subsection 5.1 we know that
u := −p ≤ ũ = −p̃ on Q1. Since p ≥ 0 and w ≥ 0 we have

ũ(y) = inf
x∈Q

{c(x, y)− w(x)} ≤ inf
x∈Q

{c(x, y)} = 0

which proves p̃ ≥ 0 and (5.5).
Now, fix x ∈ Ω1(p) and y ∈ Tp(x)∩Q1; then vp(x) = vep(x) = c(x, y)+p(y) ≥

w(x) which, since p(y) ≥ p̃(y), implies that

w(x) = vp(x) ≥ c(x, y) + p̃(y) ≥ vep(x)

so that y ∈ Tep(x) which proves (5.6). The previous argument also proves that
Ω1(p) ⊂ Ω1(p̃). The fact that Ω1(p̃) = {w ≤ v0} and (5.8) are obvious. Thanks
to the fact that p̃ ≥ 0, the integrand in Π(p̃) is nonnegative and thanks to (5.6)
we obtain Gep ≤ Gp on Ω1(p). By (5.7) we then have:

Π(p̃) ≥
∫

Ω1(p)
(vep −Gep)df ≥

∫
Ω1(p)

(vp −Gp)df = Π(p).

Finally, thanks to (5.7) and (5.8), Π(p̃) can be rewritten as a function of w only
as in (5.10). �

Proposition 5.2 thus enables us to reformulate the initial problem (4.3) as:

(5.11) sup
w∈W

J(w) =
∫
{w≤v0}

(
w(x)− min

y∈∂1,cw(x)
c(x, y)

)
df(x)
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where W is the set of all (Q1, c)-concave functions. More precisely, if w solves
(5.11) then p̃ defined by

p̃(y) :=
{

p0(y) if y ∈ Q0

−ũ(y) if y ∈ Q1.

solves (4.3).
Notice that if w ∈ W then one has for every (x1, x2) ∈ Q×Q

(5.12) |w(x1)− w(x2)| ≤ max
y∈Q1

|c(x1, y)− c(x2, y)|,

which proves that W is an equicontinuous family.

5.3. Existence. With the reformulation (5.11) (and the equicontinuity esti-
mate (5.12)) at hand, we easily deduce the following existence result.

Theorem 5.3. Problem (5.11) admits at least one solution (hence so does
problem (4.3)).

Proof. Let (wn)n be some maximizing sequence of (5.11); without loss of gener-
ality we may assume that the integrand in the definition of J(wn) is nonnegative
(see Remark 4.1) and that minQ(wn − v0) ≤ 0. By (5.12) we deduce that (wn)
is uniformly bounded and equicontinuous. Thanks to Ascoli-Arzela’s theorem,
passing to a subsequence if necessary we may assume that wn converges uni-
formly to some w which is easily seen to be (Q1, c)-concave too. To prove that
w solves (5.11), we first use Fatou’s lemma:

lim supJ(wn) ≤
∫

Q
lim supχ{wn≤v0}

(
wn(x)− min

y∈∂1,cwn(x)
c(x, y)

)
df(x).

It is therefore enough to prove that for every x ∈ Q

(5.13)
lim supχ{wn≤v0}(wn(x)−miny∈∂1,cwn(x) c(x, y))

≤ χ{w≤v0}(w(x)−miny∈∂1,cw(x) c(x, y)).

If w(x) > v0(x) the right-hand side vanishes and, since wn → w uniformly, we
have wn(x) > v0(x) for n large enough, so that the left-hand side vanishes too.
Assume now that w(x) ≤ v0(x), and let yn ∈ ∂1,cwn(x) be such that

c(x, yn) = min
y∈∂1,cwn(x)

c(x, y);

passing to a subsequence if necessary we may assume that yn converges to some
y ∈ ∂1,cw(x), hence (5.13) holds. �

6. Examples

6.1. The eikonal case. In this subsection, we investigate the particular case
where Q = Ω, the closure of a bounded open convex subset of Rd and the cost
is the euclidean distance c(x, y) = |x − y|. As before we assume that Q0 is
an open subset of Q and Q1 = Q \ Q0. As already noticed, in this case, the
c-concave functions are simply the 1-Lipschitz ones. As for the (Q1, c)-concave
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ones, it is easy to see that w is (Q1, c)-concave if and only if it is 1-Lipschitz on
Q and

(6.1) w(x) = min
y∈Q1

{|x− y|+ w(y)}, ∀x ∈ Q.

Now, let x ∈ Q0 be a point of differentiability of w and let y ∈ Q1 (so that
x 6= y) be such that w(x) = |x− y|+ w(y) (i.e. y ∈ ∂1,cw(x)), then one has

(6.2) ∇w(x) =
x− y

|x− y|
and there exists λ > 0 such that x− λ∇w(x) ∈ Q1

so that

(6.3) |∇w(x)| = 1 and ∇w(x) ∈ R+(x−Q1).

By Rademacher’s Theorem, (6.3) holds a.e. on Q0. In particular w is an a.e.
solution of the eikonal equation |∇w| = 1 on Q0. Let x ∈ Q0 be a point of
differentiability of w, y ∈ ∂1,cw(x) and λ = |x − y|, then with the fact that
w is 1-Lipschitz, it is easy to check that w(x) − w(x − t∇w(x)) = t, for every
t ∈ [0, λ] (i.e. w grows at the maximal rate 1 on the segment [x− λ∇w(x), x]).
In particular, choosing t ∈ [0, λ] such that x− t∇w(x) ∈ ∂Q0 yields:

w(x) ≥ min
y∈∂Q0

{|x− y|+ w(y)}.

By density, this inequality actually holds for all x ∈ Q0, and the converse
inequality follows immediately from (6.1).We thus have proved that if w is
(Q1, c)-concave then

(6.4) w(x) = min
y∈∂Q0

{|x− y|+ w(y)}, ∀x ∈ Q0.

It is well-known (see [1]) that (6.4) implies that w is a viscosity solution of the
eikonal equation on Q0. Now, conversely, assume that w is 1-Lipschitz on Q
and a viscosity solution of the eikonal equation on Q0 and define

(6.5) u(x) = min
y∈Q1

{|x− y|+ w(y)}, ∀x ∈ Q.

then u = w on Q1 (in particular on ∂Q0) and by the same argument as above
u is a viscosity solution of the eikonal equation on Q0. A standard comparison
argument (e.g. Theorem 2.7 in [1]) yields u = w on Q0 so that w is (Q1, c)-
concave. This proves that the set of (Q1, c) concave functions is:

(6.6) W = {w : Q → R, w 1-Lipschitz on Q and |∇w| = 1 on Q0}

where the eikonal equation has to be understood in the viscosity sense. Let us
also remark that the condition ∇w(x) ∈ R+(x−Q1) a.e. in Q0 is in fact hidden
in the definition of a viscosity solution (equivalently in formula (6.4)).

Getting back to our optimization problem (5.11), it is natural to introduce
for every x ∈ Q and ν ∈ Sd−1 (the unit sphere of Rd) the quantity:

(6.7) λ(x, ν) := inf{λ ≥ 0 : x− λν ∈ Q1}.

For w ∈ W, we then have for a.e. x ∈ Q

min
y∈∂1,cw(x)

|x− y| = λ(x,∇w(x))
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Assuming that f is absolutely continuous with respect to the Lebesgue measure
on Ω and defining v0 by (5.1), for w ∈ W, the profit functional J is then given
by:

J(w) :=
∫
{w≤v0}

(
w(x)− λ(x,∇w(x))

)
df(x)

which has to be maximized over W defined by (6.6). Now, our aim is to trans-
form the previous problem in terms of the values of w on ∂Q0 only. Of course,
because of (6.4), the behavior of w on Q0 is fully determined by its trace on
∂Q0. In order to treat the behavior on Q1, we need the following result.

Lemma 6.1. Let w ∈ W and define

u(x) := min
y∈Q1

{|x− y|+ u(y) ∧ v0(y)}, ∀x ∈ Q,

then u ∈ W and J(u) ≥ J(w).

Proof. Obviously u ∈ W and u = u ∧ v0 on Q1 hence the integrand in the
definition of J is larger on Q1 for u than for w (recall that v0 ≥ 0). If x ∈ Q0

is such that w(x) > v0(x), then the same conclusion holds. Now, if x ∈ Q0 is
such that w(x) ≤ v0(x), then we write u(x) = u(y) + |x− y| with y ∈ ∂1,cu(x),
if w(y) ≤ v0(y) then u(x) = w(y) + |x − y| ≥ w(x) and if w(y) ≥ v0(y) then
u(x) = v0(y)+ |x−y| ≥ v0(x) ≥ w(x). Since u ≤ w, in both cases we then have
u(x) = w(x) which proves that Q0 ∩ {w ≤ v0} ⊂ Q0 ∩ {u = w}. In particular,
u − λ(x,∇u) = w − λ(x,∇w) a.e. on Q0 ∩ {w ≤ v0} which proves the desired
result. �

Let w ∈ W and let φ be the trace of w on ∂Q0, thanks to the previous Lemma
we may assume that w ≤ v0 on Q1 so that:

J(w) =
∫

Q1

w df +
∫

Q0∩{w≤v0}

(
w(x)− λ(x,∇w(x))

)
df(x).

Because of (6.4), the second term only depends on φ, and the first one is mono-
tone in w hence for a given φ (1-Lipschitz and smaller than v0) it is maximized
by the largest 1-Lipschitz function on Q1 which has φ as trace on Q0 and is
below v0 i.e. simply

w(x) = min
y∈∂Q0

{|x− y|+ φ(y)}, ∀x ∈ Q1.

Since the previous formula also holds for x ∈ Q0 by (6.4), we define for every
1-Lipschitz function φ on ∂Q0 such that φ ≤ v0 the state equation

(6.8) wφ(x) := min
y∈∂Q0

{|x− y|+ φ(y)}, ∀x ∈ Q.

The profit maximization (5.11) can thus be reformulated as the following non-
standard optimal control problem where the control is the price φ on the inter-
face ∂Q0:

(6.9) sup
φ∈Φ

J(wφ) =
∫

Q1

wφ df +
∫

Q0∩{wφ≤v0}

(
wφ(x)− λ(x,∇wφ(x))

)
df(x)

where the class of admissible boundary controls Φ consists of all 1-Lipschitz
functions φ on ∂Q0 such that φ ≤ v0 and the state equation is (6.8).
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For example if Q is the unit ball of Rd and Q1 its boundary, then the maxi-
mization problem (5.11) becomes maximizing:

J(w) :=
∫
{w≤v0}

(
w(x)− x · ∇w(x)−

√
(x · ∇w(x))2 + |x|2 − 1

)
df(x)

in the set of viscosity solutions of the eikonal equation |∇w| = 1 on the unit ball.
Note that this is a highly nonconvex variational problem, which as previously
may be reformulated as maximizing J(wφ) among 1-Lipschitz functions φ on
∂Q0 such that φ ≤ v0.

6.2. The one-dimensional case. In the one dimensional case, the eikonal
equation has a very simple structure which makes problem (6.9) much simpler.
In particular, if ∂Q0 is finite then the maximization of (6.9) reduces to a finite
dimensional problem, since the control in this case is simply given by the values
of w on the finite set ∂Q0. For instance let us take Q = [0, 1], Q0 = (α, β) with
0 ≤ α < β ≤ 1. For simplicity let us also assume that p0 is constant on Q0

and that f is a probability that does not charge points. Then the solutions of
(6.9) only depend on the two scalars p1 := w(α) and p2 := w(β) subject to the
constraints:

(6.10) p1 ≤ p0, p2 ≤ p0, |p2 − p1| ≤ β − α.

For such a control (p1, p2) the function w(p1,p2) has the following W-like shape:

Shape of w and v_0
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The function λ(x, ν) is in this case

λ(x, ν) =

 x− α if x ∈]α, β[ and ν = 1,
β − x if x ∈]α, β[ and ν = −1,
0 otherwise,
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and the corresponding profit can be explicitly computed as a function of (p1, p2):∫ α

0
(p1 + α− s) df(s) +

∫ (s0∧s1)(p1,p2)

α
p1 df(s)

+
∫ β

(s0∨s2)(p1,p2)
p2 df(s) +

∫ 1

β
(p2 + s− β) df(s)

where 
s1(p1, p2) = p0 − p1 + α,
s2(p1, p2) = p2 − p0 + β,
s0(p1, p2) = 1

2(p2 − p1 + β + α).
Defining F the cumulative function of f (i.e. F (t) = f([0, t])), solving (6.9)
then amounts to maximize:

p1F ((s0 ∧ s1)(p1, p2)) + p2

(
1− F ((s0 ∨ s2)(p1, p2))

)
subject to the constraints (6.10). For example, if α = 0, β = 1 (i.e. the price
p(x) has to be chosen only at the boundary of Q) and f is uniform, then there
is a unique optimal strategy given by p1 = p2 = p0

2 ∨ (p0 − 1
2).

7. Concluding remarks and related problems

In this section we propose some further developments of the optimization
problems above that could be investigated. It is not our goal to enter into the
details, which could possibly be treated in a future paper.

The model problems considered in the previous sections could also be used
to describe a two (or more) players game, where each player operates only on
its own region and considers the prices on the other regions as fixed. More
precisely, assume that Q = A ∪ B where A and B are two compact sets with
no interior point in common (although this is not essential for what follows).
On A and B two agents (for instance the central governments of two different
countries) operate and initially two price functions p0(x) and q0(x) are present
on A and B respectively.

At a first step the agent that operates on A modifies its price on A considering
q0 fixed on B and maximizes its income choosing an optimal price function p1;
then the agent that operates on B plays its move considering p1 fixed on A and
maximizing its income through the choice of an optimal price function q1. The
game continues in this way then providing price functions pn and qn defined on
A and B respectively.

An interesting issue would be the study of the convergence of the sequences
(pn) and (qn) to price strategies p and q that the two agents do not have the
interest to modify any more.

A related alternative is to consider the competitive problem between the
agents operating on A and B as a two-persons game (see for instance [2] or [4]),
which is not zero-sum, where the strategy of each player is the pricing function
on the region he controls. One has to be cautious in precisely defining the payoff
functions when some customers are indifferent between being the good in A or
in B. In such a case, one can for instance impose, as tie-breaking rule, that each
customer shops in his own region, and for simplicity we assume f(A ∩B) = 0.
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For respective price strategies p (prices on A) and q (prices on B), define for
all x ∈ Q

vp(x) := inf
y∈A

{c(x, y) + p(y)},

wq(x) := inf
z∈B

{c(x, z) + q(z)},

Tp(x) := {y ∈ A : vp(x) = c(x, y) + p(y)},
Sq(x) := {z ∈ B : wq(x) = c(x, z) + q(z)}.

Under our tie-breaking rule, the payoff functions for the two players are then
given by

ΠA(p, q) :=
∫
{vp<wq}

(
max

y∈Tp(x)
p(y)

)
df(x) +

∫
{vp=wq}∩A

(
max

y∈Tp(x)
p(y)

)
df(x)

ΠB(p, q) :=
∫
{wq<vp}

(
max

z∈Sq(x)
q(z)

)
df(x) +

∫
{vp=wq}∩B

(
max

z∈Sq(x)
q(z)

)
df(x).

Defining admissible strategies as pairs of nonnegative and l.s.c. functions on A
and B (possibly also satisfying additional constraints), an interesting issue is
then to find Nash equilibria (see for instance [2] or [4]) for the payoffs (ΠA,ΠB),
that is a pair of admissible strategies p∗ and q∗ such that

ΠA(p∗, q∗) ≥ ΠA(p, q∗), ΠB(p∗, q∗) ≥ ΠB(p∗, q), ∀ admissible strategies p and q.

This is a priori a complicated problem because Kakutani’s fixed-point Theorem
does not apply here because of the tie-breaking rule which induces disconti-
nuities. Of course, one can extend the framework to more than two-players,
introduce mixed-strategies... The analysis of spatial competition is an impor-
tant issue in economics since Hotelling’s celebrated model [3] and one may relate
the equilibrium problem described above to this line of research. The study of
the general Nash problem is left for future research, but we give an elementary
example where the solution is very simple and intuitive.

Example 7.1. Let Q = [0, 1], A = [0, 1/2], B = [1/2, 1], α ∈ (0, 1) and c(x, y) =
|x−y|. As explained in Section 6.1, given the strategy of the second (respectively
first) player, the first (resp. second) one optimally choses a pricing function of
the form a + 1/2 − x (resp. b + x − 1/2) for x ∈ A (resp. for x ∈ B). At a
Nash equilibrium one must have a = b (if a > b then A makes zero profit as
well as B makes zero profit if a < b). Finally, the common value a = b has to
be 0, since if for instance a > 0 then B can charge a slightly lower price a−ε at
the border point 1/2 then getting the whole demand and increasing his profit
for ε small enough. In this simple case there is then a unique Nash equilibrium
p(x) = 1/2−x and q(x) = x− 1/2, no matter what the population distribution
is. The equilibrium price is plotted in the next figure.
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