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Abstract

We develop an elementary and self-contained differential approach,
in an L∞ setting, for well-posedness (existence, uniqueness and smooth
dependence with respect to the data) for the multi-marginal Schrödinger
system which arises in the entropic regularization of optimal transport
problems.
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1 Introduction

Multi-marginal optimal transport problems arise in various applied settings
such as economics, quantum chemistry, Wasserstein barycenters... Contrary
to the well-developed two-marginals theory (see the textbooks of Villani [16,
15] and Santambrogio [13]), the structure of solutions of such problems is far
from being well-understood in general (for instance Di Marino, Gerolin and
Nenna [7] have found fractal solutions to a simple multi-marginal problem),
for an overview, see Pass [12] and the references therein. This explains the
need for good numerical/approximation methods among which the entropic
approximation (which has its roots in the seminal paper of Schrödinger [14])
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method plays a distinguished role both for its simplicity and its efficiency, see
Cuturi [6], Benamou et al. [1]. Roughly speaking, as its name indicates, the
entropic approximation strategy consists in approximating the initial optimal
transport problem by the minimization of a relative entropy with respect to
the Gibbs kernel associated to the transport cost. Rigorous Γ-convergence
results as well as dynamic formulations for the quadratic transport cost were
studied in particular by Léonard, see [10], [11] and the references therein.

At least formally, joint measures that minimize a relative entropy subject
to marginal constraints have a very simple structure, their density is the ref-
erence kernel multiplied by the tensor product of potentials (which we will
call Schrödinger potentials) which are constrained by the prescribed marginal
conditions. However, the existence and regularity of Schrödinger potentials
cannot easily be taken for granted as a direct consequence of Lagrange duality
because of constraints qualification issues (see Borwein, Lewis and Nussbaum
[3] and Léonard [9]). The problem at stake is a system of nonlinear integral
equations where the data are the kernel and the marginals and the unknowns
are the Schrödinger potentials. In the two-marginals case, there is a very ele-
gant contraction argument for the Hilbert projective metric which shows the
well-posedness of this system, see in particular [3]. This contraction argu-
ment is constructive and gives linear-convergence of the Sinkhorn algorithm
which consists in solving alternatively the two integral equations of the sys-
tem. It is not obvious to us though whether this approach can be extended
to the multi-marginal case (for which existence results exist but, apart from
the case of finitely supported measures, rely on rather involved and abstract
arguments, see for instance Borwein and Lewis [2]). Our goal is to give an
elementary differential proof of the well-posedness of the Schrödinger system
in an L∞ setting.

This short paper is organized as follows. Section 2 is devoted to the
presentation of the multi-marginal Schrödinger system and its variational
interpretation. Section 3 deals with local invertibility whereas section 4 is
devoted to global invertibility and well-posedness. Section 5 gives some fur-
ther properties of the Schrödinger map.
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2 Preliminaries

2.1 Data and assumptions

We are given an integer N ≥ 2, N probability spaces (Xi,Fi,mi), i =
1, . . . , N and set

X :=
N∏
i=1

Xi,F :=
N⊗
i=1

Fi, m :=
N⊗
i=1

mi. (2.1)

Given i ∈ {1, . . . , N}, we will denote by X−i :=
∏N

j 6=iXj, m−i :=
⊗N

j 6=imj

and will always identify X to Xi×X−i i.e. will denote x = (x1, . . . , xN) ∈ X
as x = (xi, x−i).

We shall denote by L∞++(Xi,Fi,mi) (respectively L∞++(X,F ,m)) the in-
terior of the positive cone of L∞(Xi,Fi,mi) (respectively L∞(X,F ,m)) and
consider a kernel K ∈ L∞++(X,F ,m) as well as densities µi ∈ L∞++(Xi,Fi,mi)
with the same total mass:∫

Xi

µidmi =

∫
Xj

µjdmj, i, j ∈ {1, . . . , N}. (2.2)

Note that elements of L∞++(Xi,Fi,mi) are bounded away from 0 so our frame-
work considers only marginals which are equivalent (i.e. have the same neg-
ligible sets) with the reference measures mi.

Our aim is to show the well-posedness of the multi-marginal Schrödinger
system: find potentials ϕi in L∞(Xi,Fi,mi) (called Schrödinger potentials)
such that for every i and mi-almost every xi ∈ Xi one has:

µi(xi) = eϕi(xi)

∫
X−i

K(xi, x−i)e
∑

j 6=i ϕj(xj)dm−i(x−i). (2.3)

Clearly if ϕ = (ϕ1, . . . , ϕN) solves (2.3) so does every family of potentials of
the form (ϕ1+λ1, . . . , ϕN+λN) where the λi’s are constants with zero-sum, it
is therefore natural to add as normalization conditions to (2.3) the additional
N − 1 linear equations:∫

Xi

ϕidmi = 0, i = 1, . . . , N − 1. (2.4)

2.2 Variational interpretation

It is worth here recalling the origin of the Schrödinger system in terms of mini-
mization problems with multi-marginal constraints. Given µ = (µ1, · · · , µN) ∈
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∏N
i=1 L

∞
++(Xi,Fi,mi) satisfying (2.2), consider the entropy minimization prob-

lem
inf

q∈Π(µ)
H(q|Km) (2.5)

where Π(µ) is the set of measures on X having marginals (µ1m1, . . . , µNmN)
(the nonemptyness of this set being guaranteed by (2.2)), Km denotes the
measure (equivalent to m) having density K with respect to m and H denotes
the relative entropy:

H(q|Km) :=

{∫
X

(
log
(

1
K

dq
dm

)
− 1
)

dq if q � m

+∞ otherwise.

A motivation for (2.5) is the following, when K = e−
c
ε is the Gibbs kernel

associated to some cost function c and ε > 0 is a small (temperature) param-
eter, then (2.5) is an approximation of the multi-marginal optimal transport
problem which consists in finding a measure in Π(µ) making the average of
the cost c minimal (see [10], [11], [5]).

At least formally, (2.5) is dual to the concave unconstrained maximization
problem

sup
ϕ=(ϕ1,...,ϕN )

N∑
i=1

∫
Xi

ϕiµidmi −
∫
X

K(x)e
∑N

j=1 ϕj(xj)dm(x) (2.6)

and if ϕ ∈
∏N

i=1 L
∞(Xi,Fi,mi) solves (2.6) (the point is that the existence

of such a maximizer cannot be taken for granted) it is a critical point of
the (differentiable) functional in (2.6) which exactly leads to the Schrödinger
system (2.3). Moreover interpreting such a ϕ as a family of Lagrange multi-
pliers associated to the marginal constraints in (2.5) leads to the guess that
the solution q of (2.5) should be of the form q = γm with a density kernel γ
of the form

γ(x1, . . . , xN) = K(x1, . . . , xN)e
∑N

j=1 ϕj(xj) (2.7)

and the requirement that q ∈ Π(µ) also leads to (2.3). Of course, by concav-
ity, if ϕ is a bounded solution of (2.3) it is a maximizer of (2.6) and q = γm
given by (2.7) solves (2.5).

3 Local invertibility

Let us define

E :=

{
ϕ := (ϕ1, . . . , ϕN) ∈

N∏
i=1

L∞(Xi,Fi,mi) :

∫
Xi

ϕidmi = 0, i = 1, . . . , N − 1

}
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which, equipped with the L∞ norm, is a Banach space. For ϕ = (ϕ1, . . . , ϕN) ∈∏N
i=1 L

∞(Xi,Fi,mi) define T (ϕ) = (T1(ϕ), . . . , TN(ϕ)) ∈
∏N

i=1 L
∞(Xi,Fi,mi)

by

Ti(ϕ)(xi) :=

∫
X−i

K(xi, x−i)e
∑N

j=1 ϕj(xj)dm−i(x−i). (3.1)

Note that T (E) = T (
∏N

i=1 L
∞(Xi,Fi,mi)) ⊂ F++ where

F++ := F ∩
N∏
i=1

L∞++(Xi,Fi,mi), (3.2)

and

F :=

{
µ ∈

N∏
i=1

L∞(Xi,Fi,mi) :

∫
X1

µ1dm1 = . . . =

∫
XN

µNdmN

}
. (3.3)

With these definitions the Schrödinger system simply writes µ = T (ϕ).

It will also be convenient to define the map T̃ = (T̃1, . . . , T̃N) by T̃i(ϕ) :=
log(Ti(ϕ)) for ϕ = (ϕ1, . . . , ϕN) ∈

∏N
i=1 L

∞(Xi,Fi,mi) i.e.

T̃i(ϕ)(xi) := ϕi(xi) + log
(∫

X−i

K(xi, x−i)e
∑

j 6=i ϕj(xj)dm−i(x−i)
)
. (3.4)

Let us then observe that both T̃ and T are of class C∞, more precisely
for ϕ and h in

∏N
i=1 L

∞(Xi,Fi,mi), we have

T̃ ′i (ϕ)(h)(xi) = hi(xi) +

∫
X−i

K(xi, x−i)e
∑

k 6=i ϕk(xk)
∑

j 6=i hj(xj)dm−i(x−i)∫
X−i

K(xi, x−i)e
∑

j 6=i ϕj(xj)dm−i(x−i)

and
T ′i (ϕ)(h)(xi) = eT̃i(ϕ)(xi)T̃ ′i (ϕ)(h)(xi). (3.5)

Let us fix ϕ := (ϕ1, . . . , ϕN) ∈ E, observe that T̃ ′(ϕ) extends (and

we still denote by T̃ ′(ϕ) this extension) to a bounded linear self map of∏N
i=1 L

2(Xi,Fi,mi) which is of the form

T̃ ′(ϕ) := id +L (3.6)

with L a compact1 linear self map of
∏N

i=1 L
2(Xi,Fi,mi). We then have the

following:

1Indeed, Li(h) =
∑

j 6=i Lij(hj) and Lij is an integral Hilbert-Schmidt operator.
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Proposition 3.1. Let ϕ ∈ E then T ′(ϕ) is an isomorphism between E and
F . In particular, T is a local C∞ diffeomorphism between E and F , and
T (E) is open in F++.

Proof. In view of (3.5), the desired invertibility claim amounts to show that

T̃ ′(ϕ) is an isomorphism between E and Fϕ the linear subspace of codimen-

sion N−1 consisting of θ = (θ1, . . . , θN) ∈
∏N

i=1 L
∞(Xi,Fi,mi) which satisfy∫

X1

eT̃1(ϕ)θ1dm1 = . . . =

∫
XN

eT̃N (ϕ)θNdmN . (3.7)

Let us also denote by Fϕ,2 the set of all θ = (θ1, . . . , θN) ∈
∏N

i=1 L
2(Xi,Fi,mi)

which satisfy (3.7).

As noted above, one can write T̃ ′(ϕ) = id +L on
∏N

i=1 L
2(Xi,Fi,mi) with

L compact. Let us define the probability measure Qϕ on X given by

Qϕ(dx) =
K(x)e

∑N
j=1 ϕj(xj)m(dx)∫

X
K(x)e

∑N
j=1 ϕj(xj)dm(x)

. (3.8)

For i = 1, . . . , N , let us now disintegrate Qϕ with respect to its i-th marginal
Qi
ϕ:

Qϕ(dxi, dx−i) = Q−iϕ (dx−i|xi)⊗Qi
ϕ(dxi) (3.9)

where Q−iϕ (dx−i|xi) is the conditional probability of x−i given xi according to
Qϕ. The compact operator L can then conveniently be expressed in terms of
the corresponding conditional expectations operators. Indeed, setting L(h) =
(L1(h), . . . , LN(h)), we obviously have

Li(h)(xi) =

∫
X−i

(∑
j 6=i

hj(xj)
)
Q−iϕ (dx−i|xi) for mi-a.e. xi ∈ Xi.

Let h ∈
∏N

i=1 L
2(Xi,Fi,mi) be such that T̃ ′(ϕ)(h) = 0 (equivalently T ′(ϕ)(h) =

0) i.e. for every i and mi-a.e. xi ∈ Xi, there holds

hi(xi) = −
∫
X−i

(∑
j 6=i

hj(xj)
)
Q−iϕ (dx−i|xi)

multiplying by hi(xi) and then integrating with respect to Qi
ϕ gives∫

Xi

h2
i (xi)dQ

i
ϕ(xi) = −

∑
j, j 6=i

∫
X

hi(xi)hj(xj)dQϕ(x)
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summing over i thus yields∫
X

( N∑
i=1

hi(xi)
)2

dQϕ(x) =
N∑
i=1

∫
Xi

h2
i (xi)dQ

i
ϕ(xi) +

∑
i,j, j 6=i

∫
X

hi(xi)hj(xj)dQϕ(x)

= 0.

Since Qϕ is equivalent to m, we deduce that
∑N

i=1 hi(xi) = 0 m-a.e. that is

h is constant and its components sum to 0. Hence ker(T̃ ′(ϕ)) has dimension

N − 1 and ker(T̃ ′(ϕ)) ∩ E = {0} i.e. T̃ ′(ϕ) is one to one on E.

Since L is a compact operator of L2 and ker(id +L) has dimension N −1,
it follows from the Fredholm alternative Theorem (see chapter VI of [4]) that
R(id +L) has codimension N − 1. Differentiating the relation∫

Xi

eT̃i(ϕ)dmi =

∫
Xj

eT̃j(ϕ)dmj, i, j ∈ {1, . . . , N − 1}

gives∫
Xi

eT̃i(ϕ)T̃ ′i (ϕ)(h)dmi =

∫
Xj

eT̃j(ϕ)T̃ ′j(ϕ)(h)dmj, i, j ∈ {1, . . . , N − 1}

i.e. T̃ ′(ϕ)(h) ∈ Fϕ for every h ∈
∏N

i=1 L
∞(Xi,Fi,mi). Likewise, we also

have T̃ ′(ϕ)(h) ∈ Fϕ,2, for every h ∈
∏N

i=1 L
2(Xi,Fi,mi). Since Fϕ,2 has

codimension N − 1, we get

R(id +L) = T̃ ′(ϕ)
( N∏
i=1

L2(Xi,Fi,mi)
)

= Fϕ,2. (3.10)

In particular, for every θ ∈ Fϕ there exists h ∈
∏N

i=1 L
2(Xi,Fi,mi) such that

θ = h+L(h) since obviously Lmaps
∏N

i=1 L
2(Xi,Fi,mi) into

∏N
i=1 L

∞(Xi,Fi,mi)

we have h ∈
∏N

i=1 L
∞(Xi,Fi,mi). Finally, since T̃ ′(ϕ)(h) = T̃ ′(ϕ)(h̃) when-

ever h− h̃ is a vector of constants summing to zero, we may also assume that
h ∈ E. This shows that T̃ ′(ϕ)(E) = Fϕ or equivalenty T ′(ϕ)(E) = F .

We have shown that T ′(ϕ) is an isomorphism between the Banach spaces
E and F , the local invertibility claim thus directly follows from the inverse
function Theorem.
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4 Global invertibility and well-posedness

To pass from local to global invertibiliy of T , we invoke classical arguments
à la Caccioppoli-Hadamard (see for instance [8]). First of all, it is easy to
see that T is one to one on E:

Proposition 4.1. The map T is injective on E.

Proof. If ϕ and ψ are in E and T (ϕ) = T (ψ) := µ, then both ϕ and ψ are
solutions of the maximization problem (2.6), since the functional in (2.6) is
the sum of a linear term and a term that is strictly concave in the direct
sum of the potentials we should have

∑N
i=1 ϕi(xi) =

∑N
i=1 ψi(xi) which by

the normalization conditions in the definition of E implies that ϕ = ψ.

Next we observe that:

Lemma 4.2. T (E) is closed in F++.

Proof. Let (ϕn)n ∈ EN be such that µn := T (ϕn) converges in L∞ to some
µ ∈ F++. Let ψn = (ϕn1 + λn1 , . . . , ϕ

n
N + λnN) where the λni ’s are constant

which sum to zero and chosen in such a way that∫
Xi

eψ
n
i dmi = 1, i = 1, . . . , N − 1, (4.1)

this ensures that µn = T (ψn) i.e. for every i and mi- a.e. xi ∈ Xi

log(µni (xi)) = ψni (xi) + log
(∫

X−i

K(xi, x−i)q
n
−i(x−i)dm−i(x−i)

)
(4.2)

where
qn−i(x−i) := e

∑
j 6=i ψ

n
j (xj).

Since (µnN)n is uniformly bounded and bounded away from 0 and so is K,
we deduce that (eψ

n
N )n is bounded and bounded away from 0 in L∞ i.e.

(ψnN)n is bounded in L∞(XN ,FN ,mN). From this L∞ bound on (ψnN)n,
the fact that K ∈ L∞++(X,F ,m) and the uniform bounds from above and
from below on µni , we deduce that ψni is bounded in L∞ for i = 1, . . . , N −
1. In particular, taking subsequences if necessary, we may assume that
for every i, (qn−i)n converges weakly ∗ in L∞(X−i,F−i,m−i) to some q−i,
in particular

∫
X−i

K(xi, x−i)q
n
−i(x−i)dm−i(x−i) converges for mi-a.e. xi to∫

X−i
K(xi, x−i)q−i(x−i)dm−i(x−i). But since log(µni ) converges in L∞(Xi,Fi,mi)

to log(µi), we deduce from (4.2) that ψni converges mi-a.e. (and also in Lp
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for every p ∈ [1,+∞) by Lebesgue’s dominated convergence Theorem) to
some ψi ∈ L∞. Passing to the limit in (4.2), we then have µ = T (ψ) or
equivalently µ = T (ϕ) for ϕ ∈ E such that ϕ − ψ is constant. This shows
that T (E) is closed in F++.

We are now in position to state our main result:

Theorem 4.3. For every µ ∈ F++, the multi-marginal Schrödinger system
(2.3) admits a unique solution ϕ = S(µ) ∈ E, moreover S ∈ C∞(F++, E).

Proof. It follows from Proposition 3.1 that T (E) is open in F++ and Lemma
4.2 ensures it is closed in F++, since F++ is connected (it is actually convex)
we deduce that T (E) = F++. Together with Proposition 4.1 this implies that
T is a bijection between E and F++, the smoothness claim then follows from
Proposition 3.1.

5 Further properties of the Schrödinger map

From now on, we refer to the smooth map S = T−1 : F++ → E from Theorem
4.3 as the Schrödinger map. Our aim now is to study the (local) Lipschitz
behavior of S. Given M ≥ 1 we define

F++,M := {µ ∈ F++ :
1

M
≤ µi ≤M mi-a.e.}. (5.1)

Let us start with an elementary a priori bound:

Lemma 5.1. For every M ≥ 1 there is a constant RM such that S(F++,M)

is included in the ball of radius RM of
∏N

i=1 L
∞(Xi,Fi,mi).

Proof. Let µ ∈ F++,M and ϕ = S(µ), as in the proof of Lemma 4.2 we
introduce constants λi with zero sum such that µ = T (ψ) with ψi = ϕi + λi
is normalized by (4.1) (instead of (2.4)). Using the fact that K is bounded
and bounded away from 0, that M−1 ≤ µN ≤ M , (4.1) and µN = TN(ψ)
gives upper and lower bounds on eψN i.e. an L∞ bound (depending on M
and K only) on ψN . This bound and µi = Ti(ψ) in turn provide L∞ bounds
on ψi for i = 1, . . . , N − 1. Finally, we get bounds on the constants λi since
λi =

∫
Xi
ψidmi for i = 1, . . . , N − 1 and λN = −

∑N−1
i=1 λi. This gives the

desired bounds on ϕ = S(µ).

More interesting in possible applications, is the Lipschitz behavior of S
given by the following
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Theorem 5.2. For every M ≥ 1 there is a constant CM , such that2 for every
µ and ν in F++,M , there holds

‖S(µ)− S(ν)‖L2 ≤ CM‖µ− ν‖L2 , (5.2)

and
‖S(µ)− S(ν)‖L∞ ≤ CM‖µ− ν‖L∞ . (5.3)

Proof. Let µ ∈ F++,M and ϕ = S(µ) ∈ E, our aim is to estimate the operator
norm of S ′(µ) = [T ′(ϕ)]−1 (first in L2 and then in L∞). Let θ ∈ F and
h = S ′(µ)(θ) i.e. T ′(ϕ)(h) = θ which can be rewritten as

T̃ ′i (ϕ)(h) = θ̃i with θ̃i :=
θi
µi
. (5.4)

Defining the measure Qϕ by (3.8) and disintegrating it with respect to its
i-th marginal as in (3.9) in the proof of proposition 3.1 gives that for every
i and mi-a.e. xi one has

θ̃i(xi) = hi(xi) +

∫
X−i

(∑
j 6=i

hj(xj)
)
Q−iϕ (dx−i|xi). (5.5)

We then argue in a similar way as we did in the proof of Proposition 3.1,
multiplying (5.5) by hi and integrating with respect to Qi

ϕ and summing over
i, we obtain

N∑
i=1

∫
Xi

θ̃i(xi)hi(xi)dQ
i
ϕ(xi) =

∫
X

( N∑
j=1

hj(xj)
)2

dQϕ(x). (5.6)

Next we observe that thanks to the fact that µ ∈ F++,M , the upper and lower
bounds on K and Lemma 5.1 there is a constant νM ≥ 1 such that

m

νM
≤ Qϕ ≤ νMm,

mi

νM
≤ Qi

ϕ ≤ νMmi. (5.7)

Using the fact that ‖θ̃i‖L2(Xi,Fi,mi) ≤ M‖θi‖L2(Xi,Fi,mi), (5.7) and Cauchy-
Schwarz inequality, we deduce from (5.6) that there is a constant CM such
that∫

X

( N∑
j=1

hj(xj)
)2

dm(x) ≤ CM

N∑
i=1

‖θi‖L2(Xi,Fi,mi)‖hi‖L2(Xi,Fi,mi). (5.8)

2In formulas (5.2) (respectively (5.3)) L2 (resp. L∞) is an abbreviated notation for∏N
i=1 L

2(Xi,Fi,mi) (resp.
∏N

i=1 L
∞(Xi,Fi,mi)).
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Finally recall that since h ∈ E we have∫
X

( N∑
j=1

hj(xj)
)2

dm(x) =
N∑
j=1

∫
Xj

h2
j(xj)dmj(xj) =: ‖h‖2

L2

hence

‖h‖L2 = ‖S ′(µ)(θ)‖L2 ≤ CM‖θ‖L2 i.e. sup
µ∈F++,M

‖S ′(µ)‖L(L2) ≤ CM . (5.9)

By the mean-value inequality (5.9) immediately gives the Lipschitz in L2

estimate (5.2).

As for a bound on the operator norm of S ′(µ) in L∞ , we first observe
that for some positive constant λM we have Q−iϕ ≤ λMm−i, so that (5.5)
gives

‖hi‖L∞ ≤ ‖θ̃i‖L∞(mi) + λM
∑
j 6=i

∫
Xj

|hj(xj)|dmj(xj)

≤M‖θi‖L∞(mi) + λM
√
N‖h‖L2

≤M‖θi‖L∞(mi) + λM
√
NCM‖θ‖L2

≤ C ′M‖θ‖L∞

where we have used Cauchy-Schwarz inequality in the second line and (5.9)
in the third one. This clearly implies (5.3).

Acknowledgments: G.C. is grateful to the Agence Nationale de la
Recherche for its support through the project MAGA (ANR-16-CE40-0014).
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[9] Christian Léonard. Minimization of entropy functionals. J. Math. Anal.
Appl., 346(1):183–204, 2008.
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