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Abstract 

This paper analyses a notion of duality which is defined for a class of non- 
convex problems which arise in the calculus of variations. The duality principle 
which is introduced in Section 2.1 is motivated by a specific problem, namely the 
mathematical  description of the rotating heavy chain. Nevertheless the theory 
applies in many other situations as well. 

In the course of the analysis a notion of critical point is introduced, 
generalising the usual definition of the critical point of a nonlinear functional, and 
it is found that there is a duality principle for the critical points as well as for the 
extremals of the functional question. 

The duality theory is then applied to explain why there are two distinct 
variational formulations of the steadily rotating heavy chain problem. 

1.1. Introduction 

The results of this paper were motivated by some nonlinear problems in the 
calculus of variations which arise in mechanics. It is a familiar situation to find 
that the equilibrium states of a mechanical system can be described by the 
elements of a function space which minimise a given nonlinear functional among 
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a class of admissible functions. There are however some systems, such as the 
heavy nonlinear rotating chain which is treated in section 4, which can equally 
well be described by two different variational principles. It might appear that the 
existence of two variational descriptions of the spinning chain is characteristic of 
a small class of variational problems. This turns out not to be the case. There is 
a clear sense in which the two formulations are in duality. 

Since neither of the functionals which arise in the theory of the spinning 
chain is convex, they cannot be in duality in the sense of ROCKAFELLAR ([5, 6, 
7, 8] and the references cited therein) and FENCHEL [3]. An exposition of these 
theories is given in the book of EKELAND & TEMAM [-2]. 

The ideas of these authors are exploited to the full in what follows but the 
duality results are more obvious than those cited above. 

In a recent paper COFFMAN [1] observed that the equations which are 
usually used to describe the motion of a steadily rotating, heavy chain are the 
Euler-Lagrange equations corresponding to a functional E2 defined in Section 4. 
It is remarkable that this functional is not the energy functional of the string; 
the energy functional gives rise to a different equation which also describes the 
motion of the chain. The duality theory of section2 helps to explain, from 
purely variational considerations, the connection between these two distinct 
mathematical formulations of the problem. 

The two variational formulations of the chain problem have in common the 
feature that each involves a functional which can be written as the difference of 
two convex functionals. The clue to the inter-relationship between the two 
formulations is contained in the following observation: If F and G are lower 
semi-continuous convex functionals on a topological vector space V then 

inf {G(u)-  F(u)} = inf {F* (u*) -  G* (u*)} 
u~V  u*~V* 

where V* is a space in duality with V and F* and G* are the polar functions of 
F and G, respectively. 

Section 2 begins with a proof of a general form of this result which does not 
require the convexity of G (Theorem 2.2). The result holds under special circum- 
stances even when neither F nor G is convex (Theorem 2.3). 

An important question in any consideration of duality is the following: 
"Does existence of a solution of the dual problem imply the existence of a 
solution of the original problem?". This question is treated in Theorem 2.4 and 
its corollaries, where some positive results in this direction are established. 
Section 2 concludes with some results on minimising sequences for G - F  and F* 
-G*, and the possible relationship between them. 

In section 3.1 a special case of the duality theory of section 2 is treated. This 
special case is modelled on a class of non-convex problems typical of those 
arising in the calculus of variations. In this case the dual principle is formulated, 
not on V* as might be expected, but on an associated space Y* as follows: 

Suppose that V, V*, Y, Y* are two pairs of dual spaces, and that A: V--* Y is 
a bijection with adjoint A*: Y*--*V*. If G and F are convex functionals on Y 
and V, respectively, and F is lower semi-continuous then, as shown in Sec- 
tion 3.1, 
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inf {G o A(u) - F(u)} = inf {F* o A* (v* ) -  G* (v*)}. 
uEV v*~Y* 

It is this result that establishes the connection between the two variational 
formulations of the rotating chain problem. 

In the course of section 3.1 it is found that if u ~ V is a minimiser of G o A - F 
and A*v*~ ~F(u) (the subdifferential of F at _u), then _v* minimises F*o A * - G *  
and 

F(u_) + V*(A*v_*) = ( A ' v * ,  u_) 

G* (v*) + G o A(u_) = ( A* v*, u_). 

These two equalities are sufficient to imply that _u and _v* satisfy a weak form of 
the Euler-Lagrange equations for G o A - F  and F*o A * - G * ,  respectively, and 
that the usual transversality conditions hold. Thus u and s are critical points of 
the respective functionals. However, unlike the extremal conditions which arise 
in the theory of convex optimisation ((4.22) and (4.23) of chapter III  of [2]), the 
above equations do not guarantee that _u and _v* are minimisers of G o A -  F and 
F * o A * - G * .  

In section 3.2 a notion of critical point of G o A - F  is introduced which 
generalises the classical definition in the case where G oA and F are not 
necessarily differentiable functionals. A one-to-one correspondence between the 
critical points of G o A - F  and F * o A * - G *  is established, and the Euler- 
Lagrange equations and the classical transversality conditions are seen to be 
necessary conditions for a function to be a critical point of G o A -  F. 

Finally, in section 4, the analysis of the steadily rotating heavy chain is 
carried out. The two variational formulations of the problem are seen to be 
dual. The existence of a minimiser for the functional E z is used to prove the 
existence of a minimiser for the energy functional (which is the dual of E2), and 
a one-to-one correspondence between the critical points of the two functionals is 
established. From duality considerations alone we can infer a point-wise re- 
lationship between critical points of the respective functionals as well as that the 
Euler-Lagrange equations and natural transversality conditions hold. 

Thus either of these two variational principles provides a complete de- 
scription, not only of the stable equilibrium configurations of the chain (the 
minimisation problem), but also of the unstable configurations (the critical 
points). 

1.2. Preliminaries 

For the convenience of the reader we introduce in this section the termi- 
nology used consistently in the paper. We also record statements of important  
definitions and results (which will be used without further elaboration in later 
sections) found in the book of EKELAND & TEMAM [2]. 

We shall use R to denote the set of real numbers and ]R for the extended set 
of real numbers, with the convention that oo - ~ = ~ + oo = - oo + ~ = a + 
-- oo for all a ~ IR. 

Let V and V* be two real vector spaces and let ( , ) be a bilinear form on 
the Cartesian product V x V*. We say that the bilinear form puts the spaces in 
duality. The duality defined by ( , ) is said to be separating if 
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(i) when u (+0)~  V there exists an element u*~ V* such that (u, u*)4:0,  

(ii) when u*(4=0)~ V* there exists an element u~ V such that (u, u*)4:0.  

If V and V* are topological vector spaces put in duality by the bilinear form 
( , ) then we can define a linear functional f , ,  for each u* ~ V* by 

f,,(u) = (u, u*) for each u e V. 

Then the weak topology on V induced by ( , ) is the coarsest one for which all 
the linear functionals f , ,  are continuous. This topology will be denoted by 
a(V, V*). The weak topology on V* induced by ( , ) is defined analogously and 
will be denoted by a(V*, V). 

In order that a(V, V*) and a(V*, V) be Hausdorff topologies it is both 
necessary and sufficient that the duality between V and V* be separating. 

Throughout this paper we shall assume the spaces V and V* to be in 
separating duality and to be endowed with the topologies a(V, V*) and a(V*, V). 
All statements concerning continuity, lower semi-continuity, convergence, closure 
etc. will be understood with respect to these topologies. 

A functional F: V-ON` is said to be lower semi-continuous (1.s.c.) if 

F(u) =<lim infF(u,) 
n ~ o o  

for each ue  V and any sequence u,-ou. A functional F: V-ON` is called convex if 

F(2 u + (1 - 2)w) < 2F(u) + (1 - 2)F(w) 

for all 2~(0,1) and all u,w~V. A functional is called strictly convex if it is 
convex and if the above inequality is strict for u4=w and 2~(0, 1). 

Proposition. I f  a functional V-o N is convex, lower semi-continuous, and takes 
the value - oo, then it cannot take any finite value. 

A function f :  V-ON` is called affine continuous on V i f f (u)=l (u)+~,  where l 
is a continuous linear functional on V and ~ ~ N`. 

Proposition. If V and V* are in separating duality, then all affine continuous 
functions on V are of the form f ( u ) =  (u, u*)+c~ for some u*~ V*. 

We shall denote by F(V) the set of all functions F: V-oN. which are 
pointwise suprema of a family of affine continuous functions on V. 

Proposition. A functional F is in F(V) if and only if it is convex and lower 
semi-continuous on V. Moreover if F takes the value -oo ,  then it must be 
identically - co. 

If V and V* are in separating duality and if F: V-ON` is arbitrary, then the 
polar F*: V*-OlR of F is defined by 

F*(u*) =sup {(u, u*) -F(u)} .  
u e V  

Clearly F* sF(V*) for arbitrary F: V-OlR. It is easy to see that if F, G: V-ON` 
and F<G, then G*<F* and ( F + ~ ) * = F * - a  for all eeN`. 
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If F: V ~  then F * : V * ~ .  Consequently F** maps V into ~,. and 
F** ~F(V). In fact F** is the largest convex lower semi-continuous function on V 
which does not exceed F. Thus F**(u)<F(u) for all u~ V and F(u)=F**(u) for 
all u ~ V, if and only if F ~ F(V). 

A function F: V-olR is said to be subdifferentiable at u~ V if F(u) is finite and 
there exists an element u*~ V* such that 

F(u) + <u - u_, u* > < F(u) 

for all u6 V. The set of all u* with this property is denoted by 0F(u). The 
following observation is crucial in the subsequent analysis. 

Theorem 1.1. Let F: V ~ I R  and let F* be its polar. Then u* EOF(u) if and only 

if F(u) + F*(u*) = <u, u*). 

Furthermore u* ~ ~ F(u) implies u ~ ~ F*(u*). 
I f  in addition F ~F(V) then u* EOF(u) if and only if u~OF*(u*). 

If F: V ~  and lira {[F(u+2v) -F(u)] /2}  =<v, u*> for some u*~ V*, then F 
2 4 0  

is said to be Gateaux differentiable at u and we write F ' (u)=u* ~ V*. 

Proposition. If F: V ~  is convex and Gateaux differentiable at u~ V, then F 
is subdifferentiable at u~ V, and ~F(u)= {F'(u)}. 

In the application of Theorem 1.1 it is often necessary to calculate the dual 
of a functional which takes the form of a nonlinear integral on a function space. 
The next result is central in the application to be carried out in section 4. 

Let f2 be an open subset of IR" and let g be a mapping from f2 x IR m to IR 
which satisfies the Carath6odory condition (i.e. for all y ~ , Y ,  x ~ g ( x , y )  is 
measurable, and for almost all x ~ f2, y~g(x ,  y) is continuous). 

Proposition. Let V=UI(f2) x ... x Urn(O) where 1 < ai < oo. Suppose that for 
all u6 V, the function x ~ g ( x ,  u(x)) is integrable. Then the function u ~ g ( - ,  u(.)) is 
continuous from V to L 1. 

This allows us to define G: V-olR by 

G(u) = ~ g(x, u(x))dx. 
Now let 

1 1 
V * = U  i x . . .  •  '~, ~ / + ~ / = 1 ,  

and let ( , > denote the usual duality between V and V*. Then we get 

Theorem 1.2. Under the hypotheses above, for any u* e V* we have 

G* (u*) = sup {<u, u*) - G(u)} 
UEI" 

= sup u(x) u* ( x ) -  g(x, u(x)) dx} 
u ~ V  I2 

= g* (x, u* d 
r 
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where 
g*(x, y)= sup {yq -g (x ,  q)} 

q ~ m  

for almost all x e (2. 

2.1. Duality Theory 

Let V and V* be linear spaces in duality, and let ( , )" V x V*-->IR denote 
the corresponding bilinear form (which is compatible with the topologies on V 
and V*). If F: V-~IR and G: V~IR we may define a functional J :  V~IR by 

J(u) = G(u)-  F(u) 

for all u s V. We shall denote by ~ the problem of evaluating 

inf J (u), 
u ~ V  

and we shall call an element u s V a solution of ~ if J(_u) is finite and 

inf J (u) = J(_u). 
u E V  

As in the preceding section we let F* and G* denote the polar functionals of F 
and G. 

Theorem 2.1. Suppose that J(u)>e for all u s  V. Then F*(u*)-G*(u*)>>_e for 
all u* s V*. 

Proof. Since G(u)-F(u)>c~ for all u s  V, it follows that G(u)>c~+F(u) for all 
us  V. Consequently G*(u*)<=F*(u*)-u for all u*sV*,  which in turn implies 
that 

F* (u*) - G* (u*) > c~ 

for all u*sV*. This completes the proof of the theorem. 

We define a functional J:  V * ~ N  by 

Y(u*)  = F* (u*) - G* (u*). 

Then Theorem 2.1 asserts that 

i n f J (u )<  inf J(u*). (2.1) 
u E V  u * ~ V *  

We denote by ~ *  the problem of evaluating 

inf J(u*). 
u * ~ V *  

An element _u* s V* will be called a solution of ~ *  if J(u*) is finite and 

inf Y(u*)=Y(u_*). 
U*ffV* 
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We begin by showing that equality holds in (2.1) provided that F is convex 
and lower semi-continuous. 

T h e o r e m  2.2. I f  F EF(V) then 

inf J(u) = inf .f(u*). (2.2) 
u ~ V  u*EV* 

Proof i  Suppose that F* (u*)- G* (u*)> ~ for all u*~ V*. Then F* (u*)> G*(u*) 
+ ~ for all u*~ V*, and so 

F (u) = F** (u) < G** (u) - c~ < G(u) - 

for all u~ V. Hence G(u) -F(u )>a .  Thus infY(u)= + ~ if and only if inf J(u*) 
ttEV u*EV* 

= + ~ ,  and infd(u)> - ~  if and only if inf J(u*)> - ~ .  In the latter case we 
uEV u*EV* 

have established equality, and so (2.2) holds. 

The next result is similar in spirit to Theorem 2.2, but does not require 
convexity of F or G. 

T h e o r e m  2.3. Suppose that u_6 V is a solution of ~ and that gF(u_)#~b. Then 
(2.2) holds and u* solves ~*  provided u* ~ OF(y_). 

Proof. Since _u solves ~,  the quantity G(u_)-F(u_) is finite and 

G(u)-F(u_.)<=G(u)-F(u) for all ueV. 

Then F ( u ) -  F(u_)< G(u ) -  G(u_). Since u*e 0 F(u) we have 

( u - u ,  u*) + F(_u) < F(u), 

which now implies that u* ~G(u) .  Hence 

~(_u) + c *  (u*) = <u, u*> 

F(u) + F* (u*)= (u, u*). 

By subtraction it is clear that (2.2) holds and that u* solves ~*. 

It is worth noting that if F is everywhere subdifferentiable then FeF(V) .  
Hence Theorem 2.2 may be used to infer (2.2) in this case. Theorem 2.3, however, 
is a stronger statement since it implies the following 

Corollary. I f  F is everywhere subdifferentiable and if minJ(u) exists and is 
finite, then rain J(u*) exists and u~v 

u*EV* 

min J(u)= min J(u*). 
u ~ V  u*EV* 

The next theorem gives conditions under which 

inf J(u) = min J(u*). 
u E V U*:E V* 
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Theorem2.4. Suppose F eF(V), and let {u,} be a minimising sequence for 
problem ~.  Then if  infJ(u) is finite and 

u e V  

lira { <u., u* > - F(un) } = F* (u*) < 

for some u* ~ V*, it follows that u* is a solution of problem ~* and 

! i r a  {<u. ,  _u*> - = G*(u*) .  

Conversely, i f  u_* is a solution of ~@* and there is a sequence {Un} such that 

]irn| {<u,, _u*> - G(un) } = G*(_u*), 
then 

inf J(u) is finite, 
u e V  

Jim {(u,, u*) -V(Un)} =f*(u*)  < 

and {Un} is a minimising sequence for ~.  

Proofi Suppose first that u* solves ~* and that lim{<Un, U*>-G(Un)} 
= G* (u*). Since F e F(V) it follows that 

in fJ (u)=  inf J(u*)=~, 
u ~ V  u * ~ V *  

where e is real. Since F*(_u*)-e=G*(u*), the assumptions imply that 

lim {<u,, u*> -G(u,)} + e = F* (u*). 

By definition, G(Un)-F(Un)>e for all n, and so 

lira inf { < u,, _u* > - F (Un)} > F* (u*). 

It follows from the definition of F*(u*) that 

lim {<u,, __u*> -F(Un) } =V*(u*). 
n ~ o o  

F*(u*) is clearly finite (since F*(u*)-e*(__u*)=c~elR), whence 

G ( u n ) - F ( u , ) ~  as n--* oo. 

Conversely, suppose that {u,} is a minimising sequence for ~ and that 

lira {<u,, u*> - F(u,)} =F*(u*) < oo. 

Since lira {G(un) - F(Un)} = c~ e IR it follows that 

lim { < u n, u* ) - G (Un)} = F* (u*)-- c~ > G* (u*). 

Hence lira {<u,, u*)-G(Un)} =G*(u*) and u* is a solution of 9~*. 

Corollary 2.5. Suppose that FeF(V),  that G is lower semi-continuous and that 
u* solves ~*. I f  there exists a sequence {u,}, with u . ~ u  in the topology a(V, V*), 
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and if 
]irn { <u,, _u*) - G(u,)} = G* (u*), 

then u_ is a solution of ~.  

Proof. Since u,~_u, we have lim <u,, u*)=<_u, _u*); thus the lower semi-con- 
tinuity of G implies that 

lim G(u,) = - G* (u*) + (_u, u*)  < G(._u) < lira inf G(u,). 

Hence G(u.)-~G(u_). Similarly, F(u,)~F(u_) and _u is a solution of ~ since, by 
Theorem 2.4, {u.} is a minimising sequence for ~ .  

Corollary 2.6. Under the hypotheses of Corollary 2.5 we have 

and 

F(u_) + F* (u_*) = ( u, u_*) 

6(u) + 6* (u*) = (u, u*).  

Proof. Since F(u.)~F(u), G(u.)-~G(u), the result follows immediately from 
the proof of Corollary 2.5. Thus we have established a criterion which ensures 
that if ~ is soluble and finite then so is ~*.  

Theorem 2.7. Suppose that V is a reflexive Banach space, that F e F(V), and 
that G is lower semi-continuous. I f  G(u)/llulq-~oo as Ilull-~oo and u_* solves ~*,  
then there exists a solution u_ of ~ and 

F(_u) + F* (u*) = (u, _u*) 

6(u) + 6 .  (u*) = <u, 2*) .  

Proof. Since F~F(V),  we have 

in f J (u )=  inf {F*(u*)-G*(u*)}EIR. 
ttEV u*~V* 

Let {u,} be any sequence such that 

(u,,u*)-G(u,)-~G*(u_*) as n - ~ .  

Then Theorem 2.4 ensures that {u,} is a minimising sequence for ~ .  By 
hypothesis, {u,} is bounded and so the reflexivity of V implies that {u,} has a 
weakly convergent subsequence. Then Corollaries 2.5 and 2.6 are applicable, and 
the proof is complete. 

If G is not coercive (G(u)/tlull +-, ~ as Ilull--" ~),  then there exists at least one 
w*eV* such that w*r for any ueV. If F(u)=(u ,w*)  for all ueV, it is 
clear that F*(u*)= ~ if u* 4:w*, and F*(w*)=0. 

Hence w*eV* is a solution of ~*  if G*(w*) is finite, yet there may be 
no solution of ~.  In some cases, however, the behaviour of F may compensate 
for a lack of coerciveness of G. 
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by 
Theorem 2.8. I f  the coerciveness assumption on G in Theorem 2.7 is replaced 

G(u) -F(u)~oo as Ilull~oo, 

then the same conclusion holds. 

Proof. Since infJ(u) is finite and {u,} is a minimising sequence for ~ ,  it 
I t ~ V  

follows that {Un} is bounded, and in turn that it has a weakly convergent 
subsequence. The proof then proceeds as before. 

The previous two results guarantee the existence of solutions of ~ given the 
existence of solutions ~*.  Note that in Theorems 2.7 and 2.8 we do not require 
the lower semi-continuity of G - F ,  as we would if we were attempting to show 
directly that ~ is soluble. Thus we are led to the problem of proving the 
existence of solutions of ~*.  

Theorem 2.9. Let V be a reflexive Banach space and V* its dual. Suppose that 
G* has the property that if u*~u* in a(V*, V) then there exists a subsequence 
{u'j} with G*(u*)~G*(u*) as j ~ .  I f  J(u*)~oo as Ilu*/I--,oo and J is bounded 
below, then ~* has a solution. 

Proof. Let {u*} be a minimising sequence for ~*.  Then {u*} is bounded 
(except in the trivial case when J-= oo). Since V is reflexive we can assume that 
u*~u* in a(V*, V) for some u* e V*. Thus there exists a subsequence {Un*} with 
G*(u*)~G*(u*). The lower semicontinuity of F* implies that 

_ G* * F* (u*) - G* (u*) < lira inf {F* (u*) - (u.)}. 

* is a minimising sequence for ~*,  the proof of the theorem is complete. Since u.j 

2.2. On Minimising Sequences 

Theorem 2.10. Suppose that F is everywhere subdifferentiable and that {Un} is a 
. . . .  *~ OF(u,), then {u*} is a minimising sequence for mmtmlsmg sequence for ~.  I f  u, 

~*. 

Proof. If inf J (u )=  o0 then the result is immediate. If i n f J ( u ) = ~ <  oo, let {u,} 
u~V uEV 

be a minimising sequence. Since u* ~ ~F(u,), we have 

F(u.) + F* (u*) -- (u.,  u*) 
and 

lim {G(u,) - F(u,)} = c~. 
n ~ o a  
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Hence 

6(u . ) -  V(u.) = 6 (u . ) -  (u., u. ) + F (u.) 

* * * * F ( u , ) - G  (u.). 

Consequently {u*} is a minimising sequence for ~*. If lira J(u,)= - 0% then the 
above argument goes through for any c~ e Ill, and so ,4 

lira { F * ( u * ) -  G * ( u * ) }  = - oo. 
t l~-g) 

The proof of the theorem is complete. 

Theorem 2.11. Let V be aBanach space, and suppose that F( ~_ + oo) is convex 
and lower semi-continuous on V. Let {u.} be a minimising sequence for ~ with 
infJ(u)sIR.  Then there exists a sequence {v,} such that 
u E V  

1 
~?F(v,)4=49 and ]lv.-u.I I < ~ .  

Furthermore the sequence {v*}, v* e OF(v,), is a minimising sequence for ~*. 

Proof. For each n, F(u,)=F**(u,); hence 

V(u,)= sup {(u,, u*) -F*(u*)}. 
u * E V *  

* V *  Thus for each n there exists an element u, e with 

1 
(U., u*) -F*(u*)>F(u . )  4"" 

* such that Then, by Theorem 6.2 of Chapter I of [2], there exist elements Vk, V k 

1 
Ilu"-Vall N2k(1 + ]lu* LI)' Ilu~*-v~ [I =<(1 + Ilu~ II) 2 k 4 .  , v~,. e~?F(v k.). 

Choose k. so large that F(Vk,)>F(u.)-1/2", k ,>n (this is possible since F is 
lower semi-continuous). 

Put 
G(u . ) -F(u . )=~+e . ,  where inf d(u)=~. 

u ~ V  

Since F (Va.) + F* (v~.) = (~ k., Va.) and F (Vk. ) > F (u.) - 1/2", we must have 

Therefore 

1 
F(u.) + F* (v L) ~ (v~~ vL) + 5;" 

1 
G (u.) + F* (~L) --< ~ + (v~~ vL) + ~ + ~., 
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and so 

Hence 

1 
F*(vL) + G ( u . ) - ( v k . ,  v•) < a + ~ +  e n. 

1 1 
F* (v~.) - G* (v~.) < ~ + ~g + e. + (v  k - u., Vk. ) = 

Putting v n = Vkn and v * -  Ukn , we arrive at the assertion of the theorem. 

Corollary. I f  G is continuous in the norm topology on V then {Vn} in Theorem 
2.10 can be chosen to be a minimising sequence. 

Proof. If G is continuous in the norm topology, then v n may be chosen so 
that 

1 I G(v.)- G(u.)l __<~, 
and at the same time so that 

Hence 

1 
F(Vn)> F(Un) 2"" 

G(v.) - F(v.) < I G(Vn) - G(u.)] + G ( u . ) -  F(v.) 

1 1 
< ~ + G ( u n ) - F ( U n ) + ~ .  

The proof  of the corollary is complete. 

3.1. An Important Special Case: the Calculus of  Variations 

In this section we consider a special case which is of considerable importance 
in applications. 

Let Y and V be locally convex spaces, and let Y* and V* be in duality with 
Y and V, respectively. Without ambiguity we shall use ( , ) to indicate the 
duality between Y and Y* and between V and V*. Suppose that A is a linear 
homeomorphism from V to Y, with adjoint A*, and that F: V ~ R  and G: Y ~ R  
are convex functionals. 

Put J ( u ) = G o A ( u ) - F ( u )  for all uEV. As before; we denote by ~ the problem 
of evaluating 

inf J (u), 
U E V  

and an element u of V is called a solution of ~ if 

G o A (u) - F(u) = inf J (u) ~ IR. 
u~.V 

If  F ~ F ( V ) ,  we know from Theorem 2.2 that 

inf J (u )=  inf {F*(u*) - (G o A)*(u*)}. 
uEV u*~V* 
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In this case, however, we shall introduce a dual problem different from the usual 
one considered in section 2. 

Since A: V--* Y is a linear homeomorphism, so is A*: Y*--, V*. Now for each 
u*eV* there exists an element v*eY* with u*--A* v*. Hence 

(G o A)* (u*) = (G o A)* (A* v*) 

= sup {(u, A* v*) - (G o A)(u)} 
u E V  

= sup {(A u, v*) - G(A u)} 
uEV 

= sup {(v, v*) - a(v)} = G* (v*). 
v~.Y 

Hence, by Theorem 2.2 and the above remarks, if F ~ F(V) then 

inf {F* o A*(v*)-G*(v*)} = inf {G o A(u)-F(u)} .  
v*~Y* u ~ V  

In this section problem ~*  is the problem of evaluating 

inf J (v*)= inf {F*oA*(v*)-G*(v*)}, 
V* ~ Y* V* ~ Y* 

and a point _v* E Y* will be called a solution of ~*  if 

J(_v*) = inf J(v*)  ~ IR. 
V* ~ Y* 

Now if_u is a solution of ~ and A*_v* eOF(_u), then _v* is a solution of ~*.  
Furthermore 

F(u_)+ V* o A*(v*)=(_u, A ' v * )  
and 

G* (_v*) + G o A (_u) = (_u, A* v*).  

These two conditions should be compared with the so called extremality 
conditions (4.22), (4.23) of Chapter III of [2]. They play a crucial role in the 
analysis of the spinning chain, which follows in the last section. However, as we 
shall see in the next section, they are not sufficient to guarantee that _u and _v* 
solve ~ and ~*.  

Theorem 3.1. Suppose that F E F(V) and GeE(Y).  I f  F is Gateaux differenti- 
able and G* is subdifferentiable and strictly convex, and if the solution u_ of ~ is 
unique then there exists precisely one solution v_* of ~*,  and A*__v* = F'(u_). 

Proof. If _u is the unique solution of ~ ,  then A*v_*sOF(u) for some _v*s V*, 
and v* is a solution of ~*.  If there exists another solution of ~*,  say v*, then by 
assumption there exists an element A u e Y with A u ~ ~ G* (v*). Furthermore, u is 
a solution o f ~ ,  and so u=_u. The fact that A_u is an element of both OG*(_v*) and 
t?G*(v*) may be expressed as follows: 

G(A_u) + G* (_v*) = (A_u, _v*), 

G(Au_) + G* (v*) = (Au_, v*). 
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The strict convexity of G* implies that this is impossible unless v* =v*. Note 
that in the course of the proof we have shown that A 'v*  =F'(u). 

We now discuss the correspondence between the weak forms of the Euler- 
Lagrange equations which are satisfied by solutions of ~ and ~'*. 

Theorem 3.2. Suppose that F e F(V) and G E F(Y)  are both Gateaux differenti- 
able and strictly convex. I f  u_ is a solution of ~,  then 

F'(u_)=(GoA)'(u_)=A*v*, 

where 

o G* (v*) = ~ (V* o A*)(v*) = {A u}, 

and v* is a solution of ~*.  

Proof. Since F and G o A are Gateaux differentiable, the proof is identical to 
that of Theorem 3.1 once one notices that 

F'(u_)=(GoA)'(u_), 

this equality following from the fact that _u is a solution of ~ .  

3.2. Critical Points of $ and 

Let us consider briefly a problem related to that of finding extremals for the 
functional J. Let F ~ F ( V )  and G~F(Y) .  A point u 6 V  will be called a critical 
point for J if 

O (Go A)(u) n OF(u) 4= 4). 

Theorem 3.3. Suppose u ~ V is a critical point for J. I f  

A* v* ~ O( G o A)(u) ~ OF(u), 

then v* is a critical point for J, i.e. 

O G* (v*) n O (F* o A*) v* 4= c~. 
Furthermore, 

G o A ( u ) - r ( u )  =F* o A* (v*)-  G* (v*). 

Proof. Since A* v* ~ OF(u), we have 

F(u)+ F* o A ' v*  --(u,  A ' v * )  

and since A ' v *  Ea(GoA)(u) it follows that 

Go A(u) + G*(v*) = (u, A* v*). 

Hence 
A u ~ 0 G* (v*) n 0 (F* o A*)(v*). 

Subtracting the two expressions for (u, A* v*), we see that 

G o A (u) - F(u) = F* o A* (v*) - G* (v*). 
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Theorem 3.4. I f  F and G are both strictly convex and Gateaux differentiable, 
then 

(G o A)' ( u ) -  F'(u) = 0 

if and only if 

O(G o A)(u) c~ OF(u) * (a. 

Furthermore 

(G o A)' (u) = F' (u) = A* v* 

if and only if 

On the other hand 

if and only if 

{Au} = ~ G*(v*) = O(F* o A*)(v*). 

Au ~ 0 G* (v*) n O(F* o A*) v* 

A* v* =F ' (u )=(G o A)'(u). 

Proof. The first part or the theorem follows from the fact that 

~(G o A)(u) = {(C o A)'(u)} 
and 

~3F(u)={F'(u)} for all ueV. 

Now suppose that (Go A) ' (u)-F ' (u)=O and A* v* =F'(u). Then 

F(u) + F* o A* v* = (u, A* v*). 

Since F is strictly convex, Au is the unique element in O(F* o A*)(v*). Similarly 
A u is the unique element in 8G*(v*). Conversely, suppose that 

A u6c3 G* (v*) c~ 3(V* o A*)(v*). 

Then 

G*(v*)+Go A ( u ) = ( A u ,  v*) 

and 

which imply that 

F* o A* (v*) + F(u) = ( A  u, v*) 

A* v* - F ' ( u ) = ( G  o A)'(u). 

The proof of the theorem is complete. 

4.1. The Nonlinear Heavy Rotating Chain 

It is the purpose of this section to explain, in terms of the results of Section 3, 
the connection between the two different differential equations which describe 
the motion of a heavy rotating chain. In the original paper on this problem [4], 
Kolodner considered the chain to be suspended with one end-point fixed, and 
acted on solely by the forces of gravity and tension T. He proceeded to seek 



56 J.F. TOLAND 

solutions which describe a chain lying on a vertical plane and rotating with 

constant angular speed 1/2. Taking the independent variable ~ to be arc-length 
measured from the free end of the chain, and the dependent variables v(o) and 
T(o) to be the horizontal displacement and tension, respectively, of the chain at 
the point at a distance ~ from the free end, he showed that the position of the 
chain could be described in terms of a new variable u(~)= T(o)v(o) by the 
differential equation 

u"(~) +,~ u(~)(u(~) 2 + ~2)- .2  = 0  
(4.1) 

u(0)=u'(1)=0. 

(Here all physical constants have been appropriately normalised.) 
If the original variable v(~) is retained, then after some manipulation it is 

found that the displacement v satisfies the equation 

~v'(~) ~' 
(1 ~-~u~)l/2~ q'- "~U(o)=O (4.2) 

v0)=0.  

On examination it turns out that (4.2) is in fact the Euler-Lagrange equation 
for the functional 

El (V)= - i { ~  q- o(1-v'(o)2)l/2} d s 

where v(~) is subject to the conditions 

Iv'(o)l<l, v(1)=0. 

This functional is the total energy of a chain which is lying on a plane in a 
configuration described by v(~), ~ [ 0 ,  1], when the plane rotates with angular 

speed V~ (see 1-9] for further details). On the other hand, (4.1) is the Euler- 
Lagrange equation for the functional 

E2(u)= i ~u'(~ --(u(d)2 + d2)i/2} d ~ -  
where u(0) = 0. 

It is easy to see (c.f. [ i])  that a minimiser for E 2 exists and that it is a 
classical solution of the Euler-Lagrange equation (4.1). 

It is not so easy to show that a minimiser for E 2 exists. If such a minimiser 
were known to exist, it could lie on the boundary of the domain of definition of 
the functional, and so satisfy a differential inequality rather than the Euler- 
Lagrange equations, (4.2). 

It is out intention to settle these questions, by investigating the duality of E 1 
and E z. 

4.2. A Duality Result for the Heavy Rotating Chain 

We shall begin by appropriately specifying the spaces V, V*, Y and Y* in 
section 3. Let V be the set of functions in W1'2[0, l]  which vanish at zero. For 
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any Cl-function v(o) which vanishes at o =0, we have 

v2(~ =2  i v(t) v'(t) dt, 
0 

whence IIVILL2~2 Jlv'IIL2 by Schwarz's inequality. It is possible, then, to define a 
norm on V by Lvl = IIV'IIL=; this definition is equivalent to the usual W"2[0 ,  1] 
norm, and makes V a Hilbert space. Let Y be L2[0, 1], and let A: V--*Y be given 
by Au=u'~Y for u~V. Here ' denotes weak differentiation. For  each v~Y the 
function 

o 

u(o)=~v(t)dt, oe[0, 1], 
0 

is an element of V, and u'=v. Hence A is surjective. If Au=O for some u~V, 
then u=c, a constant almost everywhere. But u is continuous and u(0)=0, and 
so u _ 0 .  Furthermore IIAUIIL2=Ilu'IIL2=IUl, which implies that A is a linear 
homeomorphism between V and Y. We shall also put Y* = L  2 [0, 1] and 

1 

(v,v*)=~v(o)v*(o)dv for v*eY*, veY. 
0 

Let us define the functionals F: V--,IR by 

F(u) = l(u(~ 2 + 62) 1/2 d 6, 
0 

and G: Y--* IR by 
G , ,  1/)2(0) 

t v ) = ~ - d r  veY. 

ueV 

Then, in the context of section 3, we are interested in the problem ~ given by 

inf J(u) = inf { G o A (u) - F(u)}. 
u e V  u e V  

We wish to establish the existence of a minimiser in V of the functional 

i ~_(u(o), +~2),/2 ao. 
Theorem 4.1. For all v*r we have 

1 

F* (A* v*) = - ~o(1 - v*'(o)2) 1/2 d o 
0 

/f V*E14ZI'2[0, 1], V*(1)=0 and Iv*'(o)l< 1 a.e. 

Proof. We begin by observing that, for all v*eY* and ueV, 

1 

<A* v*, u> = ~ v*(o) u'(o) c/~. 
0 
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For  each v*~Y*, 

F*(A* v*) = sup {(u, A* v*) - F(u)} 
ueV 

=sup~}[V*(5'"(O'--('(O'2+O2)l/2]u.V (.0 do} .  

Now we must consider two cases. Suppose first that v*r W 1'2 [0, 1]. Then 

liv*(o)u'(o)do 

is unbounded with respect to the L 2 norm of u in W1'2[0, 1] (i.e. there exists a 
1 

sequence {un} in W1'2[-0,1] with [[Unl[f2<l , but ~v*(o) u',(o)do~o�9 as n~oo) .  
Thus if v*r W 1'2 [0, 1] then F* o A* v* = ~ .  o 

Suppose on the other hand that  v*~W1'2[O, 1]. If ~b is a Coo function on 
1-0, 1] with ~b(0)=0, then ~b~V and 

1 

F* (A* v*)~ ~ {v*(o) qY(o)-(6(0) 2 + 02) a/2} do 
0 

1 

= - ~ {v*'(o) ~b(v) + (q5 (o) 2 + 02) a/z } d o + 4)(1) v* (1). 
o 

Now wc can choose a sequence {~b,} of C~176 in V with H~b, llL~< 1 and 
q~ (1)--,oo as n ~ o o .  Thus, unless v*(1)=0, we have F*oA*v*=oo. 

Finally suppose/)*~W1'2[0, 1], v*(1)=0. Then 

1 

F* (A* v*) --- sup - ~ {v*'(0) u(o)+ (u(o) 2 + 02) 2/2} d 0 
u~V 0 

1 
= sup - ~ {v*'(o)u(o)+ (u(o) 2 + o2) 1/2} d o 

ueL2 0 
f 1 

=~--!0(1-v*'(0)2)1/Zd0 if Iv*'(v)[<l, a.e. 

[ .  otherwise, 

the last equality following from Theorem 1.2 of section 1. 

Theorem 4.2. For v* ~ Y* = L 2, 

G* (v*) = i 2. v* (0) 2 j 
0 ~ - u O "  

Proof. By Theorem 1.2 

1 v2(o) 
G*(v*)= sup ~v*(o) v(o)-2~-do 

v~L2[O, 1 ] 0 

i 2.v*(o) 2 
=o ~ d ~  
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We have now established the duality between the problem of finding 

1 U,(O]2 
inf!~-(u(o)2+o2)l/2do, 

where u~Wl'2[O, 1] and u(O)=O, and the problem of finding 

1 /~ U2z x 
inf-!~2t~J +o(1-v'(o)2)l/2 ds , 

where veWa'~176 v(1)=0, and [v ' l<l  a.e. 

It is clear that both F and G are strictly convex, Gateaux differentiable, and 
lower semi-continuous. It is known that there exists a unique minimiser _u for J, 
and, since G* is strictly convex and subdifferentiable, Theorem 3.1 implies that 
there exists a unique minimiser v* for J = E  1. Theorem 3.2 is also applicable 
here, so that 

F' (u) --- (G o A)' (u) = A* v* 

and 
G* (_v*) = 3(F* o A*)(_v*) = {A_u}. 

These last two statements imply the equalities 

- F(u)  + ( A *  v*,_u) = F* o A* (v*) (4.3) 

and 
- G(Au) + (_v*, A_u) = G* (v*). (4.4) 

We remark that (4.3) implies ]v*'(o)]<l almost everywhere, and v*(1)=0. By 
Theorem 1.2 

1 

~* (-~*) = S g* (~,-~* (o)) a 
0 

where 

Hence 

x2 } )~t2 
g*(o,t)=sup t x - ~  =~- .  

)._v*(o) 2 
2 

almost everywhere, but 

o (  2 

, u'(~) 2 
_~*(~)u (~)+-~->__0 

, U'(o) 2") 
= 0  

u'(~) 
by (4.4). Therefore the integrand is zero almost everywhere, and so v*(o)--- 2 
almost everywhere. 
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Now by (4.3), we have Lv*'(/9)l <1 almost everywhere, _v*(1)=0, and 

1 
~{ __ (U(/9)2 ..[= 02)1/2 --_V* '(/9)b/(0)-[- 0(1 --l)*t(O) 2) 1/2} d/9 -~ O. 
0 

Again by Theorem 1.2, for _v*eW 1'~ with _v*(1)=0 and [v*(o)l<l almost 
everywhere, 

1 
F*o A* (_v*)= I f *  (o, v*'(o))d/9 

0 
where 

f *  (/9, t) = sup { - t x - (x 2 ~-/9 2) 1/2} = _ /9  t/1 -- t 2" 
xeHI. 

Once again the integrand is positive almost everywhere, and, since the integral is 
zero, the integrand is zero almost everywhere. Consequently 

-~v*'(r 
u(/9) =(1 __U~(/9)2)1/2 

almost everywhere. But _v*(/9)= u ~ ,  and so 

/9_v*'(o) "(+2v*(o)=0 (4.5) (1 -_v*'(o)Z)l/2J - 

almost everywhere. 

Thus by the duality theory of section 3 it is possible to establish the existence 
and uniqueness of a minimiser of the functional J = E  2. Furthermore, we have 
shown that such a minimiser satisfies a weak form of the Euler-Lagrange 
equations. Finally we have established a pointwise relationship between the 
minimisers of J and a* (which can be verified directly from the Euler-Lagrange 
equations, though it was established independently of them). Since J has an 
infinite number of critical points, so has J (there is a one-to-one correspondence 
between the critical points of J and those of J, according to Theorem 3.3) and 
each critical point of J satisfies the Euler-Lagrange equations (4.5) in its weak 
form. The same pointwise relationship between critical points of J and J holds 
as in the case of their minimisers. 

Note added in proof The notion of duality considered in sections 2 and 3 has been 
generalised by the author in "Duality in Nonconvex Optimisation', J. Math. Anal. Appl. 
(in press), and the definition of critical point introduced in section 3.2 is further 
elaborated in "A variational method for boundary value problems with discontinuous 
nonlinearities" by C. A. STUART and J. F. TOLAND (to appear). 

Recently the author learnt of a quite independent, but related, approach to the 
question of duality for non-convex problems due to IVAR EKELAND "Duality in Nonconvex 
Optimisation and the Calculus of Variations" (to appear in S.I.A.M. Journal of Control). 
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