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Abstract. We study a nonlinear coupled fluid–structure system modelling

the blood flow through arteries. The fluid is described by the incompressible

Navier–Stokes equations in a 2D rectangular domain where the upper part
depends on a structure satisfying a damped Euler–Bernoulli beam equation.

The system is driven by time-periodic source terms on the inflow and outflow

boundaries. We prove the existence of time-periodic strong solutions for this
problem under smallness assumptions for the source terms.

1. Introduction. In this paper we are interested in the existence of time-periodic
solutions for a fluid–structure system involving the incompressible Navier–Stokes
equations coupled with a damped Euler–Bernoulli beam equation located on a part
of the fluid domain boundary. This system can be used to model the blood flow
through human arteries and serves as a benchmark problem for FSI solvers in hemo-
dynamics. When the system is driven by periodic source terms, related for example
to the periodic heartbeat, we expect a periodic response of the system. In this arti-
cle, we prove the existence of time-periodic solutions for the fluid–structure system
subject to small periodic impulses on the inflow and outflow boundaries. The study
of this fluid–structure model in a periodic framework seems to be new.

For L > 0 consider the domain Ω in R2 defined by Ω = (0, L) × (0, 1). The
different components of the boundary ∂Ω are denoted by: Γi = {0} × (0, 1), Γo =
{L} × (0, 1), Γb = (0, L)× {0}, Γs = (0, L)× {1} and Γd = Γs ∪ Γi ∪ Γb. Let T > 0
be a period of the system, the domain of the fluid at the time 0 ≤ t ≤ T is denoted
by Ωη(t) and depends on the vertical displacement of the beam η : Γs × (0, T ) 7→
(−1,+∞). More precisely

Ωη(t) = {(x, y) ∈ R2 | x ∈ (0, L), 0 < y < 1 + η(x, t)},

Γη(t) = {(x, y) ∈ R2 | x ∈ (0, L), y = 1 + η(x, t)}.
For space-time domain we use the notations
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Figure 1. Fluid–structure system.

ΣsT = Γs × (0, T ), ΣiT = Γi × (0, T ), ΣoT = Γo × (0, T ), ΣbT = Γb × (0, T ),

ΣdT = Γd × (0, T ), ΣηT =
⋃

t∈(0,T )

Γη(t) × {t}, QηT =
⋃

t∈(0,T )

Ωη(t) × {t}.

Consider the T -periodic fluid–structure system

ut + (u · ∇)u− div σ(u, p) = 0, div u = 0 in QηT ,

u = ηte2 on ΣηT ,

u = ω1 on ΣiT ,

u2 = 0 and p+ (1/2)|u|2 = ω2 on ΣoT ,

u = 0 on ΣbT , u(0) = u(T ) in Ωη(0),

ηtt − βηxx − γηtxx + αηxxxx = −Jη(t)e2 · σ(u, p)|Γη(t)nη(t) on ΣsT ,

η = 0 and ηx = 0 on {0, L} × (0, T ),

η(0) = η(T ) and ηt(0) = ηt(T ) in Γs,

(1)

where u = (u1, u2) is the fluid velocity, p the pressure, η the displacement of the
beam and

σ(u, p) = −pI + ν(∇u + (∇u)T ),

nη(t) = J−1
η(t)

(
−ηx(x, t)

1

)
,

with Jη(t) =
√

1 + η2
x. The constants β ≥ 0, γ > 0, α > 0 are parameters relative

to the structure and ν > 0 is the constant viscosity of the fluid. The periodic
source terms (ω1, ω2) play the role of a ‘pulsation’ for the system and can model
the heartbeat.

The fluid–structure system (1) has been investigated with different conditions on
the inflow and outflow boundaries:

(DBC) homogeneous Dirichlet boundary conditions.
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(PBC) periodic boundary conditions.
(PrBC) pressure boundary conditions.

For (DBC), the existence of strong solutions is proved in [2, 20, 33]. The first result,
stated in [2], is the existence of local-in-time strong solutions for small data. This
result is then improved in [33], where the stabilization process directly implies the
existence of strong solutions, on an arbitrary time interval [0, T ] with T > 0, for
small data. Finally, in [20], the existence of strong solutions for small data and of
local-in-time strong solutions without smallness assumptions on the initial data is
proved. As specified in [5], the strategy developed in [20] works for zero (or small)
initial beam displacement. This difficulty, purely nonlinear, was solved in [5] and
more recently in [13].

For (PBC), the existence of global strong solutions without smallness assump-
tions on the initial data is proved in [12]. For a wide range of beam equations,
depending on the positivity of the coefficients β, γ, α, the existence of local-in-time
strong solutions without smallness assumptions is proved in [13].

The third case (PrBC) is introduced in [29] where the existence of weak solutions
is proved. We investigated in [5] the existence of local-in-time strong solutions
without smallness assumptions on the initial data, which includes non-small initial
beam displacement, and the existence of strong solution on [0, T ] with T > 0 for
small data.

Here we are interested in the existence of time-periodic strong solutions. The
term ‘strong solutions’ is related to the spacial regularity of the solution, which is
typically, for the fluid, H2. In the semigroup terminology of evolution equations,
the solutions considered in [2, 5, 12, 13, 20, 33] correspond to strict solutions in
L2 (see Definition A.1 in the appendix). Motivated by the stabilization of (1) in
a neighbourhood of a periodic solution, we prove the existence of a time-periodic
strict solution in C0 for (1) with Hölder regularity in time. Our result can be directly
adapted for the boundary conditions (DBC)–(PBC)–(PrBC). The Dirichlet bound-
ary condition on the inflow is motivated by applications to boundary stabilization
for this periodic fluid–structure model.

As in [5, 33], the assumption γ > 0 is used to ensure that the linear dynamic
associated to (1) generates an analytic semigroup. The analyticity of the semigroup
and the existence of strong solutions in the case γ = 0 is not known for this model.
When γ = 0, the existence of weak solutions for a similar model in 3D is proved in
[11].

Let us describe the general strategy to construct a periodic solution for (1). First,
we perform a change of variables mapping the moving domain Ωη(t) into the fixed
domain Ω. We then linearize and we rewrite the coupled system as an abstract
evolution equation driven by an unbounded operator (A,D(A)) in Section 2. We
prove that (A,D(A)) is the infinitesimal generator of an analytic semigroup and that
its resolvent is compact. At this stage we use the abstract results developed in the
appendix to ensure the existence of a time-periodic solution for the linear system.
Finally, we study the nonlinear system in Section 3 with a fixed point argument in
the space of periodic functions. The main theorem of this paper, where the notation
] denotes time-periodic functions, can be formulated as follows.

Theorem 1.1. Fix θ ∈ (0, 1) and T > 0. There exists R > 0 such that, for all
T -periodic source terms

(ω1, ω2) ∈
(
Cθ] ([0, T ]; H

3/2
0 (Γi)) ∩ C1+θ

] ([0, T ]; H−1/2(Γi))
)
× Cθ] ([0, T ];H1/2(Γo)),
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satisfying

‖ω1‖Cθ] ([0,T ];H
3/2
0 (Γi))∩C1+θ] ([0,T ];H−1/2(Γi))

+ ‖ω2‖Cθ] ([0,T ];H1/2(Γo)) ≤ R,

the system (1) admits a T -periodic strict solution (u, p, η) belonging to (after a
change of variables mapping Ωη(t) into Ω)

• u ∈ Cθ] ([0, T ];H2(Ω)) ∩ C1+θ
] ([0, T ];L2(Ω)).

• p ∈ Cθ] ([0, T ];H1(Ω)).

• η ∈ Cθ] ([0, T ];H4(Γs) ∩H2
0 (Γs)) ∩ C1+θ

] ([0, T ];H2
0 (Γs)) ∩ C2+θ

] ([0, T ];L2(Γs)).

The functional spaces are introduced in Section 1.2. In the appendix we present
existence results for time-periodic abstract evolution equation. For a periodic evo-
lution equation {

y′(t) = Ay(t) + f(t), for t ∈ [0, T ],

y(0) = y(T ),

with T > 0, the existence of a solution is related to the spectral criteria 1 ∈ ρ(S(T ))
where (S(t))t≥0 is the semigroup associated withA. This simple criteria follows from
the Duhamel formula and is well known. It is stated, for example, in [7, 8] for T -
periodic mild solutions and in [23, 24] for strict solutions in C0 with Hölder regularity
in time (and for time-dependent operator A(t)). Our approach, however, specifies
the different regularities that we can expect on the periodic solution, depending on
the source term f . We also provide explicit conditions on the pair (A, T ) to ensure
that the spectral criteria is satisfied. Remark that the previous results always
assume that A is the infinitesimal generator of an analytic semigroup. For abstract
periodic evolution equations with weaker assumptions on A we refer to [4].

Let us conclude this introduction with a brief history on the existence of time-
periodic solutions for the Navier–Stokes equations. This question was initially con-
sidered in 1960s in [15, 31, 32, 34]. In particular, in [15, 31, 32], the authors
obtained a periodic weak solution by considering a fixed point of the Poincaré map
which takes an initial value and provides the state of the corresponding initial-value
problem at time T . The existence of strong solutions for small data is proved in
[16] in 3D and without size rectriction in [35] in 2D. For more recent results with
non-homogeneous boundary conditions see [17, 28]. The existence theory for the
periodic Navier–Stokes equations in bounded domain is now as developed as the
existence theory for the initial value problem. For unbounded domain the question
is still delicate and was investigated, with zero boundary conditions at the infinity,
in [9, 10, 18, 25, 26, 36]. For further references on the existence of periodic solutions
for the Navier–Stokes equations we refer to [19].

The method developed in this article corresponds to the Poincaré map approach,
applied on the whole coupled fluid–structure system. Note that the periodic solution
obtained for the Navier–Stokes equations is usually unique. Here the free boundary
makes the analysis of the uniqueness more complicated. For instance, we cannot
considered the difference of two periodic solutions in their respective time-dependent
domains, which may be different. The difference has to be taken after a change of
variables mapping both periodic solutions in the same domain. In that case, energy
estimates are difficult to obtain due to the higher order ‘geometrical’ nonlinear
terms. The uniqueness question remains an open question in our work. For the
convenience of the reader, a table of notations with most of the functional spaces
and operators used throughout this article can be found in the appendix B.
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1.1. Equivalent system in a reference configuration. To fix the domain we
perform the following change of variables

Tη,0(t) :

Ωη(t) −→ Ω,

(x, y) 7−→ (x, z) =
(
x, y

1+η(x,t)

)
.

(2)

Setting QT = Ω× (0, T ),

û(x, z, t) = u(T −1
η,0 (t)(x, z), t) and p̂(x, z, t) = p(T −1

η,0 (t)(x, z), t),

the system (1) becomes

ût − ν∆û +∇p̂ = g(û, p̂, η), div û = div w(û, η) in QT ,

û = ηte2 on ΣsT ,

û = ω1 on ΣiT ,

û2 = 0 and p̂+ (1/2)|û|2 = ω2 on ΣoT ,

û = 0 on ΣbT , û(0) = û(T ) on Ω

ηtt − βηxx − γηtxx + αηxxxx = p̂− 2νû2,z + Ψ(û, η) on ΣsT ,

η = 0 and ηx = 0 on {0, L} × (0, T ),

η(0) = η(T ) and ηt(0) = ηt(T ) in Γs,

(3)

with

G(û, p̂, η) = − ηût +

[
zηt + νz

(
η2
x

1 + η
− ηxx

)]
ûz

+ ν

[
−2zηxûxz + ηûxx +

z2η2
x − η

1 + η
ûzz

]
+ zηxp̂ze1

− zηp̂xe1 − (1 + η)û1ûx + (zηxû1 − û2)ûz,

w[û, η] = − ηû1e1 + zηxû1e2,

Ψ(û, η) = ν

(
ηx

1 + η
û1,z + ηxû2,x −

η2
xz − 2η

1 + η
û2,z

)
.

We study the linear periodic system associated to (3) in Section 2.3–2.5. The
existence of time-periodic solution for (3) is established in Section 3 with a fixed
point procedure.

1.2. Function spaces. To deal with the mixed boundary conditions introduce the
spaces

V 0
n,Γd

(Ω) = {v ∈ L2(Ω) | div v = 0 in Ω,v · n = 0 on Γd},
and the orthogonal decomposition of L2(Ω) = L2(Ω,R2)

L2(Ω) = V 0
n,Γd

(Ω)⊕ grad H1
Γo(Ω),

where H1
Γo

(Ω) = {u ∈ H1(Ω) | u = 0 on Γo}. Let Π : L2(Ω) → V 0
n,Γd

(Ω) be the

so-called Leray projector associated with this decomposition. If u belongs to L2(Ω)
then Πu = u−∇pu −∇qu where pu and qu are solutions to the following elliptic
equations

pu ∈ H1
0 (Ω), ∆pu = div u ∈ H−1(Ω),

qu ∈ H1
Γo(Ω), ∆qu = 0,

∂qu
∂n

= (u−∇pu) · n on Γd, qu = 0 on Γo.
(4)
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Throughout this article the functions and spaces with vector values are written
with a bold typography. For example H2(Ω) = H2(Ω,R2). Using the notations

in [21, Theorem 11.7], we introduce the space H
3/2
00 (Γs) = [H1

0 (Γs), H
2
0 (Γs)]1/2.

This space is a strict subspace of H
3/2
0 (Γs) = H3/2(Γs) ∩ H1

0 (Γs). Odd and even
symmetries preserve the Hk-regularity for functions in Hk

0 (Γs) with k = 1, 2, thus,

by interpolation, the H3/2-regularity is also preserved for functions in H
3/2
00 (Γs).

This property is used in [5] to handle the pressure boundary condition.
For the boundary condition on the inflow, we use the results developed in [27]

for elliptic equations in a dihedron. In our case, the angle between Γi and Γs is
equal to π

2 . If ω (resp. g) denotes the boundary condition on Γi (resp. Γs,0), the

Laplace and Stokes equations possess solutions with H2-regularity near C0,1 = (0, 1)
provided that the data are regular enough and that the compatibility conditions
ω(C0,1) = g(C0,1) is satisfied. To ensure these conditions, the non-homogeneous

boundary condition on Γi is chosen in H
3/2
0 (Γi). Consider the Stokes system

− ν∆u +∇p = f , div u = 0 in Ω,

u = 0 on Γd, u2 = 0 and p = 0 on Γo.
(5)

The energy space associated with (5) is

V = {u ∈H1(Ω) | div u = 0 in Ω, u = 0 on Γd, u2 = 0 on Γo}.

The regularity result for (5) is similar to [5, Theorem 5.4] and, for all f ∈ L2(Ω),
system (5) admits a unique solution (u, p) ∈H2(Ω)×H1(Ω). We define the Stokes
operator (As,D(As)) in V 0

n,Γd
(Ω) by

D(As) = H2(Ω) ∩ V, and for allu ∈ D(As), Asu = νΠ∆u.

We also introduce the space V s
n,Γd

(Ω) = V 0
n,Γd

(Ω) ∩Hs(Ω) for s ≥ 0. To describe
the Dirichlet boundary condition on Γs set

L2(Γs) = {0} × L2(Γs), H3/2
00 (Γs) = {0} ×H3/2

00 (Γs),

Hκ(Γs) = {0} ×Hκ(Γs), Hκ0 (Γs) = {0} ×Hκ
0 (Γs) for κ ≥ 0.

For κ ≥ 0, the dual space of Hκ(Γs) with L2(Γs) as pivot space is denoted by
(Hκ(Γs))

′.
For space-time dependent functions we use the notations introduced in [22]:

L2(QT ) = L2(0, T ;L2(Ω)), Hp,q(QT ) = L2(0, T ;Hp(Ω)) ∩Hq(0, T ;L2(Ω)),

L2(ΣsT ) = L2(0, T ;L2(Γs)), H
p,q(ΣsT ) = L2(0, T ;Hp(Γs)) ∩Hq(0, T ;L2(Γs)),

with p, q ≥ 0. If X is a space of functions and ρ ≥ 0 we set

Cρ] ([0, T ];X) := {v|[0,T ] | v ∈ Cρ(R;X) is T -periodic},

Hρ
] (0, T ;X) := {v|[0,T ] | v ∈ Hρ

loc(R;X) is T -periodic}.

2. Linear system.

2.1. Stokes system with non-homogeneous mixed boundary conditions.
In this section we consider the Stokes system

λu− ν∆u +∇p = f , div u = 0 in Ω,

u = g on Γs, u = ω on Γi,

u2 = 0 and p = 0 on Γo, u = 0 on Γb,

(6)
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with λ ∈ C, f ∈ L2(Ω), g ∈ H3/2
00 (Γs) and ω ∈ H

3/2
0 (Γi). The following lemmas

provide suitable lifting of the non-homogeneous Dirichlet boundary conditions on
Γs and Γi.

Lemma 2.1. There exists Φs ∈ L(H3/2
00 (Γs),H

2(Ω)) such that, for all functions

g ∈ H3/2
00 (Γs), w = Φs(g) satisfies

div w = 0 in Ω,

w = g on Γs, w = 0 on Γi ∪ Γb, w2 = 0 on Γo.
(7)

Proof. The idea to solve (7) is to use a Stokes system with Dirichlet boundary
conditions on an extended domain. We set Ωe = (0, 2L)×(0, 1), Γs,e = (0, 2L)×{1},
Γb,e = (0, 2L)× {0}, Γo,e = {2L} × (0, 1) and

ĝ :

{
ĝ = g on (0, L)× {1},
ĝ(x, 1) = −g(2L− x, 1) for x ∈ (L, 2L).

Thanks to the properties of the space H
3/2
00 (Γs) with respect to symmetries, the

function ĝ is in H3/2
00 (Γs,e). Moreover, it has a zero average by construction. Con-

sider the Stokes system

− ν∆v +∇q = 0, div v = 0 in Ωe,

v = ĝ on Γs,e, v = 0 on ∂Ωe \ Γs,e.
(8)

This system admits a unique solution (v, q) ∈ H2(Ωe) ×H1(Ωe) (see for example
[27]; note that one could not find w directly by solving (8) on Ω, since g does not
necessarily have a zero average on Γs, contrary to ĝ on Γs,e. We introduce the
function

vs(x, y) :=

(
1 0
0 −1

)
v(2L− x, y) for all (x, y) ∈ Ωe.

The function vs ∈H2(Ωe) still satisfies

div vs = 0 in Ωe,

vs = ĝ on Γs,e, vs = 0 on ∂Ωe \ Γs,e,

and v̂ := v+vs
2 verifies v̂2(L, y) = 0 for all y ∈ (0, 1). The restriction to Ω of v̂

is solution to (7). The linearity of the mapping g 7→ w is obvious from the con-
struction above, and its continuity (that is, an estimate ‖w‖H2(Ω) ≤ C ‖g‖H3/2

00 (Γs)
)

follows from the classical estimates for the Stokes system with Dirichlet boundary
conditions.

Lemma 2.2. There exists Φi ∈ L(H
3/2
0 (Γi),H

2(Ω)) such that, for all functions

ω ∈H
3/2
0 (Γi), w = Φi(ω) satisfies

div w = 0 in Ω,

w = ω on Γi, w = 0 on Γs ∪ Γb, w2 = 0 on Γo.
(9)

Proof. Once again we construct w by solving a Stokes system with Dirichlet bound-
ary conditions. First, we have to compensate the non-zero average of ω · n on Γi.

Consider the function ω− ∈ H3/2
00 (Γs) defined by

ω−(x) = − ϕ(x)∫
Γs
ϕ

(∫
Γi

ω · n
)

e2, ∀x ∈ (0, L),
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where ϕ ∈ C∞0 (Γs) satisfies
∫

Γs
ϕ 6= 0. Consider then the system

− ν∆v +∇q = 0, div v = 0 in Ω,

v = ω on Γi, v = ω− on Γs, v = 0 on Γb ∪ Γo.

Using [27], we obtain a solution (v, q) ∈ H2(Ω) × H1(Ω) to this system. Finally
w = v − Φs(ω

−) satisfies (9). Once again, the linearity of Φi : ω 7→ w is trivial by
construction, and its continuity follows from the classical estimates for the Stokes
equations with Dirichlet boundary conditions, and from the construction of ω−.

We can now specify the regularity results for (6).

Theorem 2.3. For all (f , g,ω) ∈ L2(Ω) × H3/2
00 (Γs) × H

3/2
0 (Γi), (6) admits a

unique solution (u, p) ∈H2(Ω)×H1(Ω) which satisfies

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H3/2
00 (Γs)

+ ‖ω‖
H

3/2
0 (Γi)

).

Proof. Consider v = u− Φs(g)− Φi(ω). The pair (v, p) is solution to

λv − ν∆v +∇p = f̂ , div v = 0 in Ω,

v = 0 on Γd, u2 = 0 and p = 0 on Γo,

with f̂ = f + ν∆Φs(g) + ν∆Φi(ω)−λΦs(g)−λΦi(ω) ∈ L2(Ω). The H2-regularity
of v in a neighbourhood of Γi is well known for Stokes with homogeneous Dirichlet
conditions. The lower order term λv does not impact the regularity of the system
and can be dealt with a bootstrap argument. The regularity on a neighbourhood
of Γo is proved in [5, Theorem 5.4]. Hence, (v, p) ∈ H2(Ω) × H1(Ω), and thus
(u, p) ∈H2(Ω)×H1(Ω) with the desired estimates.

We introduce the lifting operators:

• L ∈ L(H3/2
00 (Γs),H

2(Ω)×H1(Ω)) defined by

L(g) = (L1(g), L2(g)) = (w1, ρ1), (10)

where (w1, ρ1) is solution to (6) with (f , g,ω) = (0, g,0) and λ = 0.

• LΓi ∈ L(H
3/2
0 (Γi),H

2(Ω)×H1(Ω)) defined by

LΓi(ω) = (LΓi,1(ω), LΓi,2(ω)) = (w2, ρ2), (11)

where (w2, ρ2) is the solution to (6) with (f , g,ω) = (0,0,ω) and λ = 0.
• LΓo ∈ L(H1/2(Γo), H

1(Ω)) a continuous lifting operator.

In order to express the pressure, we also consider the operators:

• Ns ∈ L(H3/2
00 (Γs), H

3(Ω)) defined by Ns(g) = p1 with

∆p1 = 0 in Ω,

∂p1

∂n
= g · n on Γs,

∂p1

∂n
= 0 on Γi ∪ Γb,

p1 = 0 on Γo.

(12)
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• Nv ∈ L(H2(Ω), H1(Ω)) defined by Nv(u) = p2 with

∆p2 = 0 in Ω,

∂p2

∂n
= ν∆Πu · n on Γd,

p2 = 0 on Γo.

(13)

• Np ∈ L(L2(Ω), H1
Γo

(Ω)) defined by Np(f) = p3 with (I −Π)f = ∇p3.

For more details related to the H3-regularity of the elliptic problem (12) we refer
to [14, Theorem 5.1.2.4] and to [5, Lemma 5.4].

Lemma 2.4. The operator Ns can be extended as follows:

• Ns ∈ L((H3/2(Γs))
′, L2(Ω)).

• Ns ∈ L((H1/2(Γs))
′, H1(Ω)).

Proof. The first result is obtained by duality. The second follows from interpolation
techniques.

To prepare the matrix formulation of the fluid–structure system, we recast the
Stokes system in terms of Πu and (I −Π)u.

Theorem 2.5. Suppose that ω = 0 and (f , g) ∈ L2(Ω) ×H3/2
00 (Γs). A pair (u, p)

is solution to (6) if and only if

λΠu−AsΠu +AsΠL1(g) = Πf ,

(I −Π)u = ∇Ns(g),

p = −λNs(g) +Nv(Πu) +Np(f).

(14)

Proof. Remark that u− L1(g) belongs to D(As) and

−νΠ∆u = −νΠ∆(u− L1(g)) + νΠ∆L1(g) = −AsΠ(u− L1(g))

= −AsΠu +AsΠL1(g).
(15)

In the previous identities we have used the extrapolation method to extend As as
an unbounded operator in D(A∗s)

′ with domain V 0
n,Γd

(Ω). Applying Π on the first
line of (6) we obtain

λΠu− νΠ∆u = Πf ,

which, using (15), provides the first line in (14). The second line follows directly
from the elliptic equations (4) used to compute (I − Π)u. Finally the pressure is
obtained by applying (I −Π) to the first line of (6).

2.2. Beam equation. Let (Aα,β ,D(Aα,β)) be the unbounded operator in L2(Γs)
defined by D(Aα,β) = H4(Γs) ∩H2

0 (Γs) and, for all η ∈ D(Aα,β), Aα,βη = βηxx −
αηxxxx. The operator Aα,β is self-adjoint and is an isomorphism from D(Aα,β) to
L2(Γs).

The space H2
0 (Γs) is equipped with the inner product

〈η1, k1〉H2
0 (Γs) =

∫
Γs

(−Aα,β)1/2η1(−Aα,β)1/2k1.

The unbounded operator (Ab,D(Ab)) associated with the beam, in Hb = H2
0 (Γs)×

L2(Γs), is defined by

D(Ab) = (H4(Γs) ∩H2
0 (Γs))×H2

0 (Γs) and Ab =

(
0 I

Aα,β γ∆s

)
.



3300 JEAN-JÉRÔME CASANOVA

Theorem 2.6. The operator (Ab,D(Ab)) is the infinitesimal generator of an ana-
lytic semigroup on Hb.

Proof. See [6, Theorem 1.1].

2.3. Semigroup formulation of the linear fluid–structure system. Consider
a period T > 0. Set θ ∈ (0, 1) and

(ω1, ω2) ∈
(
Cθ] ([0, T ];H

3/2
0 (Γi)) ∩ C1+θ

] ([0, T ];H−1/2(Γi))
)
× Cθ] ([0, T ];H1/2(Γo)).

For (f ,Θ, h) in Cθ] (0, T ;L2(Ω))× Cθ] ([0, T ];H1/2(Γo))× Cθ] ([0, T ];L2(Γs)) and

w ∈ C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω) ∩H1

0(Ω)),

consider the following linear system

ut − ν∆u +∇p = f , div u = div w in QT ,

u = ηte2 on ΣsT , u = ω1 on ΣiT ,

u2 = 0 and p = ω2 + Θ on ΣoT ,

u = 0 on ΣbT , u(0) = u(T ) in Ω,

ηtt − βηxx − γηtxx + αηxxxx = p− 2νu2,z + h in ΣsT ,

η = 0 and ηx = 0 on {0, L} × (0, T ),

η(0) = η(T ) and ηt(0) = ηt(T ) in Γs.

(16)

For a scalar function η defined on Γs we use the notation L1(η) = L1(ηe2). We look
for a solution to (16) under the form (u, p, η) = (v, q, η)+(w+LΓi,1(ω1), LΓo(ω2)+
LΓo(Θ) + LΓi,2(ω1), 0) with (v, q, η) solution to

vt − ν∆v +∇q = F, div v = 0 in QT ,

v = ηte2 on ΣsT , v = 0 on ΣiT ,

v2 = 0 and q = 0 on ΣoT ,

v = 0 on ΣbT , v(0) = v(T ) in Ω,

ηtt − βηxx − γηtxx + αηxxxx = q +H in ΣsT ,

η = 0 and ηx = 0 on {0, L} × (0, T ),

η(0) = η(T ) and ηt(0) = ηt(T ) in Γs,

(17)

where F = f −wt + ν∆w − ∂tLΓi,1(ω1)−∇LΓo(ω2)−∇LΓo(Θ) and H = w2,z +
LΓi,2(ω1) + LΓo(ω2) + LΓo(Θ) + h.

Theorem 2.7. Suppose that ηt ∈ C1+θ
] ([0, T ];L2(Γs)) ∩ Cθ] ([0, T ];H2

0 (Γs)). A pair

(v, q) ∈
(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω))

)
× Cθ] ([0, T ];H1(Ω)) (18)

obeys the fluid equations of (17) if and only if

Πvt = AsΠv −AsΠL1(ηt), v(0) = v(T ),

(I −Π)v = ∇Ns(ηt),

q = −Ns(ηt)t +Nv(Πv) +Np(F ).

(19)
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Proof. A pair (v, q) as in (18) is solution to the fluid equations in (17) if and only
if

− ν∆v +∇q = F − vt, div v = 0 in QT ,

v = ηte2 on ΣsT , v = 0 on ΣiT ,

v2 = 0 and q = 0 on ΣoT , v = 0 on ΣbT .

We then apply Theorem 2.5 to conclude.

Introduce the space

H = V 0
n,Γd

(Ω)×H2
0 (Γs)× L2(Γs),

equipped with the inner product

〈(u, η1, η2), (v, ζ1, ζ2)〉H = 〈u,v〉L2(Ω) + 〈η1, ζ1〉H2
0 (Γs) + 〈η2, ζ2〉L2(Γs).

Owing to Theorem 2.7, System (17) can be recast in terms of (Πv, η, ηt):
d

dt

Πv

η

ηt

 = A

Πv

η

ηt

+ f ,

Πv(0)

η(0)

ηt(0)

 =

Πv(T )

η(T )

ηt(T )

 ,

(I −Π)v = ∇Ns(ηt),
q = −Ns(ηt)t +Nv(Πv) +Np(F ),

(20)

where

f =

 ΠF
0

(I +Ns)
−1(Np(F ) +H)

 ,

and A is the unbounded operator in H defined by

D(A) = {(Πv, η1, η2) ∈ V 2
n,Γd

(Ω)× (H4(Γs) ∩H2
0 (Γs))×H2

0 (Γs) |
Πv −ΠL1(η2) ∈ D(As)},

and

A =

I 0 0
0 I 0
0 0 (I +Ns)

−1

As 0 −AsΠL1

0 0 I
Nv Aα,β γ∆s

 , (21)

with ∆s = ∂xx.

2.4. Analyticity of A. The unbounded operator A has already been studied, with
small variations related to the boundary conditions, in [5, 33].

Theorem 2.8. The operator (A,D(A)) is the infinitesimal generator of an analytic
semigroup on H. Moreover, the resolvent of (A,D(A)) is compact.

Proof. We write A = A1 +A2 with

A1 =

As 0 −AsΠL1

0 0 I
0 Aα,β γ∆s

 ,

A2 =

 0 0 0
0 0 0

(I +Ns)
−1Nv KsAα,β Ksγ∆s

 ,
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where Ks = (I +Ns)
−1− I. We start with the resolvent of A1. Let λb ∈ R be such

that {λ ∈ C | Re λ ≥ λb} ⊂ ρ(Ab). For λ ∈ C such that Re λ ≥ λb, consider the
system

λu− ν∆u +∇p = F1, div u = 0 in Ω,

u = η2e2 on Γs, u = 0 on Γi,

u2 = 0 and p = 0 on Γo,

u = 0 on Γb,

(22)

λη1 − η2 = F2 on Γs,

λη2 − βη1,xx − γη2,xx + αη1,xxxx = F3 on Γs,

η1 = 0 and η1,x = 0 on {0, L},
for (F1, F2, F3) ∈ H. This system is triangular: the beam equation can be solved
first, and its solution injected in the Stokes system. The assumption on λ ensures the
existence of (η1, η2) ∈

(
H4(Γs) ∩H2

0 (Γs)
)
×H2

0 (Γs) solution to the beam equations
with the estimate,

‖η1‖H4(Γs)∩H2
0 (Γs)

+ ‖η2‖H2
0 (Γs)

≤ C(‖F2‖H2
0 (Γs)

+ ‖F3‖L2(Γs)
).

The Stokes system can then be solved, and we find (u, p) ∈H2(Ω)×H1(Ω) solution
to (22)1−4 such that

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖η2‖H2
0 (Γs)

+ ‖F1‖L2(Ω))

≤ C(‖F1‖L2(Ω) + ‖F2‖H2
0 (Γs)

+ ‖F3‖L2(Γs)
).

System (22) is equivalent to
λ

Πu

η1

η2

 = A1

Πu

η1

η2

+

F1

F2

F3

 ,

(I −Π)u = ∇Ns(η2),

p = −λNs(η2) +Nv(Πu),

and the reasoning above shows that {λ ∈ C | Re λ ≥ λb} ⊂ ρ(A1). The resolvent
estimates on A1 are similar to [5, Theorem 3.2] and (A1,D(A1) = D(A)) is sec-
torial. Using a similar technique as in [5, Lemma 5.3] we prove that (A1,D(A1))
is the infinitesimal generator of a strongly continuous semigroup on H. Finally,
the previous properties imply that (A1,D(A1)) is the infinitesimal generator of an
analytic semigroup on H.

As in [5, Theorem 3.3], the term A2 is A1-bounded with relative bound zero.
Using [30, Section 3.2, Theorem 2.1], we thus obtain the analyticity of (A,D(A)).

The Rellich compact embedding theorem ensures that D(A)
c
↪→H and the resolvent

of A is therefore compact.

2.5. Time-periodic solutions of the linear system. In this section we apply
the existence results of periodic solutions developed in the appendix to the system
(16).

In the appendix, we prove the existence of time-periodic solutions for abstract
evolution equations y′(t) = Ay(t)+f(t) under the assumption (30). This assumption
is a restriction on the period T of the system depending on the eigenvalues of A
lying on the imaginary axis. Here, this condition does not restrict the choice of T
as we are able to prove that all the non-zero eigenvalues of A have a negative real
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part. Indeed, let λ ∈ C be a non-zero eigenvalues of A and (Πu, η1, η2) ∈ D(A) be
an associated eigenvector. The system

λ

Πu
η1

η2

−A
Πu
η1

η2

 = 0,

is equivalent to

λu− ν∆u +∇p = 0, div u = 0 in Ω,

u = η2e2 on Γs, u = 0 on Γi,

u2 = 0 and p = 0 on Γo,

u = 0 on Γb,

λη1 − η2 = 0 on Γs,

λη2 − βη1,xx − γη2,xx + αη1,xxxx = p on Γs,

η1 = 0 and η1,x = 0 on {0, L},

(23)

with u = Πu+∇Ns(η2) and p = −λNs(η2) +Nv(Πu). Multiplying the first line of
(23) by u (the complex conjugate of u) and integrating by part we obtain

λ

∫
ω

|u|2 + ν

∫
Ω

|∇u|2 +

∫
Γs

pη2 = 0.

Then, multiplying the second line of the beam equation by η2, using the identity
λη1 = η2 and integration by part we obtain∫

Γs

pη2 = λ

∫
Γs

|η2|2 + βλ

∫
Γs

|η1,x|2 + γ

∫
Γs

|η2,x|2 + αλ

∫
Γs

|η1,xx|2.

Combining the previous energy estimates we obtain

λ

[∫
Ω

|u|2 +

∫
Γs

|η2|2
]

+ λ

[
β

∫
Γs

|η1,x|2 + α

∫
Γs

|η1,xx|2
]

+ ν

∫
Ω

|∇u|2 + γ

∫
Γs

|η2,x|2 = 0.

Taking the real part of the previous identity we deduce that Re λ < 0. It is easily
verified that 0 6∈ σp(A) (recall that σp(A) = σ(A) as the resolvent of A is compact)
and we can apply Theorem A.7 to solve the linear system (20) without restriction
on the period T . Let W be the set defined by

W := Cθ] ([0, T ];L2(Ω))×
(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω) ∩H1

0(Ω))
)

× Cθ] ([0, T ];H1/2(Γo))× Cθ] ([0, T ];L2(Γs)).

The regularity space for the beam is denoted by

Cθbeam := Cθ] ([0, T ];H4(Γs) ∩H2
0 (Γs)) ∩ C1+θ

] ([0, T ];H2
0 (Γs)) ∩ C2+θ

] ([0, T ];L2(Γs)).

Theorem 2.9. For all T > 0 and (f ,w,Θ, h) ∈W , (16) admits a unique periodic
solution

(u, p, η) ∈
(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω))

)
× Cθ] ([0, T ];H1(Ω))× Cθbeam.

Moreover (u(0), η(0), ηt(0)) is given by

u(0) = Πv(0) +∇Ns(ηt(0)) + w(0) + LΓi,1(ω1)(0) and

Πv(0)
η(0)
ηt(0)

 = PAf ,
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where PA is defined in Lemma A.3. Finally, the following estimate holds

‖u‖C1+θ] ([0,T ];L2(Ω))∩Cθ] ([0,T ];H2(Ω)) + ‖p‖Cθ] ([0,T ];H1(Ω)) + ‖η‖Cθbeam

≤ CL
[
‖ω1‖Cθ] ([0,T ];H

3/2
0 (Γi))∩C1+θ] ([0,T ];H−1/2(Γi))

+ ‖ω2‖Cθ] ([0,T ];H1/2(Γo))

+ ‖(f ,w,Θ, h)‖W
]
.

(24)

3. Nonlinear system. In this section we prove the existence of classical solutions
for the nonlinear system (3) using a fixed point argument. Without additional
source terms in the model, here given through the inflow and outflow boundary
conditions, the solution obtained with the fixed point procedure is the null solution.
Hence, in what follows, the pair (ω1, ω2) is assumed to be non trivial, eventually
small enough, and represent the ‘impulse’ of the system. The period T of (ω1, ω2)
determines the period of the whole system.

Let T > 0 be a fixed time and

(ω1, ω2) ∈
(
Cθ] ([0, T ];H

3/2
0 (Γi)) ∩ C1+θ

] ([0, T ];H−1/2(Γi))
)
× Cθ] ([0, T ];H1/2(Γo)).

Consider the Banach space X defined by

X =
(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω))

)
× Cθ] ([0, T ];H1(Ω))× Cθbeam,

and

B(R,µ) = {(u, p, η) ∈ X | ‖(u, p, η)‖X ≤ R,
∥∥(1 + η)−1

∥∥
C([0,T ]×Γs)

≤ µ},

with R > 0 and µ > 0.

Theorem 3.1. Let R > 0, µ > 0 and (u, p, η) ∈ B(R,µ). There exists a polynomial
Q ∈ R+[X] satisfying Q(0) = 0 and a constant C(µ) > 0 such that the following
estimates hold

|| (G(u, p, η),w(u, η), (1/2)|u|2,Ψ(u, η))︸ ︷︷ ︸
=:F (u,p,η)

||W ≤ C(µ)Q(R) ‖(u, p, η)‖X ,

and for (ui, pi, ηi) ∈ B(R,µ) (i = 1, 2)

‖F (u1, p1, η1)− F (u2, p2, η2)‖W ≤ C(µ)Q(R) ‖(u1, p1, η1)− (u2, p2, η2)‖X (25)

Proof. The nonlinear terms (G(u, p, η),w(u, η), (1/2)|u|2,Ψ(u, p)) are already es-
timated in [5, Section 4.1] with explicit time dependency for Sobolev regularity in
time. Here the time dependency is straightforward as all the functions involved in
the estimates are Hölder continuous and T is fixed. For example:

‖ηut‖Cθ([0,T ];L2(Ω)) = ‖ηut‖C([0,T ];L2(Ω)) + sup
t1 6=t2

‖η(t1)ut(t1)− η(t2)ut(t2)‖L2(Ω)

|t1 − t2|θ
,

and the following estimates hold

‖ηut‖C([0,T ];L2(Ω)) ≤ ‖η‖C([0,T ];L∞(Γs))
‖ut‖C([0,T ];L2(Ω))



PERIODIC SOLUTIONS TO A FLUID–STRUCTURE SYSTEM 3305

sup
t1 6=t2

‖η(t1)ut(t1)− η(t2)ut(t2)‖L2(Ω)

|t1 − t2|θ

≤ sup
t1 6=t2

‖η(t1)− η(t2)‖L∞(Γs)

|t1 − t2|θ
‖ut‖C([0,T ];L2(Ω))

+ sup
t1 6=t2

‖ut(t1)− ut(t2)‖L2(Ω)

|t1 − t2|θ
‖η‖C([0,T ];L∞(Γs))

≤ ‖η‖Cθ([0,T ];H4(Γs))
‖ut‖C([0,T ];L2(Ω)) + ‖ut‖Cθ([0,T ];L2(Ω)) ‖η‖C([0,T ];L∞(Γs))

≤ 2 ‖η‖Cθ([0,T ];H4(Γs))
‖ut‖Cθ([0,T ];L2(Ω)) .

The other ‘ball’ estimates and the Lipschitz estimates (25) are obtained through
the same techniques using the following Sobolev embeddings

‖η‖Cθ([0,T ];L∞(Γs))
+ ‖ηx‖Cθ([0,T ];L∞(Γs))

+ ‖ηxx‖Cθ([0,T ];L∞(Γs))

+ ‖ηxxx‖Cθ([0,T ];L∞(Γs))
+ ‖ηt‖Cθ([0,T ];L∞(Γs))

+ ‖ηtx‖Cθ([0,T ];L∞(Γs))

≤ C ‖η‖Cθ([0,T ];H4(Γs))∩C1+θ([0,T ];H2(Γs))
.

Finally remarks that all the nonlinear terms are at least quadratic and thus are
bounded by ‖(u, p, η)‖αX for α ≥ 2. Writing ‖(u, p, η)‖αX ≤ Rα−1 ‖(u, p, η)‖X , with
α− 1 ≥ 1, concludes the proof.

For R > 0 and µ > 0 introduce the map

F :

{
B(R,µ) −→ X ,
(u, p, η) 7−→ (u∗, p∗, η∗),

(26)

where (u∗, p∗, η∗) is the solution to (16) with right-hand side

(f ,w,Θ, h) = (G(u, p, η),w(u, η), (1/2)|u|2,Ψ(u, η)).

Theorem 3.2. There exists R∗ > 0 and µ∗ > 0 such that for all

(ω1, ω2) ∈
(
Cθ] ([0, T ];H

3/2
0 (Γi)) ∩ C1+θ

] ([0, T ];H−1/2(Γi))
)
× Cθ] ([0, T ];H1/2(Γo)),

satisfying

‖ω1‖Cθ] ([0,T ];H
3/2
0 (Γi))∩C1+θ] ([0,T ];H−1/2(Γi))

+ ‖ω2‖Cθ] ([0,T ];H1/2(Γo)) ≤
R∗

2CL
,

where CL is the constant involved in (24), system (3) admits a unique solution
(u, p, η) in the ball B(R∗, µ∗).

Proof. Let R1 > 0 and µ∗ > 1. In order to ensure that the map F is well de-
fined from B(R∗, µ∗) into itself (with R∗ to be defined) we control the estimate
on
∥∥(1 + η)−1

∥∥
C([0,T ]×Γs)

with the parameter R1. Precisely, for all (u, p, η) ∈
B(R1, µ

∗), the following estimate holds

‖η‖C([0,T ]×Γs,Γs)
≤ C∞R1,

with C∞ > 0 a positive constant. Then we choose R2 <
µ∗−1
C∞µ∗

and for all (u, p, η) ∈
B(R2, µ

∗) the following estimate holds∥∥(1 + η)−1
∥∥
C([0,T ]×Γs,Γs)

≤ 1

1− C∞R2
< µ∗.
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The linear estimate 24 implies that, for all (u, p, η) ∈ B(R2, µ
∗),

‖F(u, p, η)‖X ≤ CL(‖ω1‖Cθ] ([0,T ];H
3/2
0 (Γi))∩C1+θ] ([0,T ];H−1/2(Γi))

+ ‖ω2‖Cθ] ([0,T ];H1/2(Γo)) + C(µ∗)Q(R2) ‖(u, p, η)‖X ).

We choose 0 < R∗ < R2 such that C(µ∗)Q(R∗) < min( 1
2CL

, 1
2 ). Finally choose

(ω1, ω2) such that

‖ω1‖Cθ] ([0,T ];H
3/2
0 (Γi))∩C1+θ] ([0,T ];H−1/2(Γi))

+ ‖ω2‖Cθ] ([0,T ];H1/2(Γo)) ≤
R∗

2CL
.

At this point we proved that F is well defined from B(R∗, µ∗) into itself. Moreover,
using (25), the Lipschitz estimate

‖F(u1, p1, η1)−F(u2, p2, η2)‖X ≤ CLC(µ∗)Q(R∗) ‖(u1, p1, η1)− (u2, p2, η2)‖X

≤ 1

2
‖(u1, p1, η1)− (u2, p2, η2)‖X .

for all (ui, pi, ηi) ∈ B(R∗, µ) (i = 1, 2) shows that F is a contraction from B(R∗, µ∗)
into itself. The Banach fixed point theorem then ensures the existence of a solution
to (3).

Remark 1. Notice that all the previous work can be done similarly with data

(ω1, ω2) ∈
(
L2(0, T ;H

3/2
0 (Γi)) ∩H1

] (0, T ;H−1/2(Γi))
)
× L2(0, T ;H1/2(Γo)).

Indeed, using Theorem A.4, the existence of a solution for the linear system is
similar and the nonlinear estimates are provided in [5, Section 4.1]. We obtained a
solution

(u, p, η) ∈H2,1
] (QT )× L2(0, T ;H1(Ω))×H4,2

] (ΣsT ).

This proof of existence also applies to other boundary conditions. For instance, as
soon as the Stokes problem admits a solution in H2(Ω) (e.g. for pressure boundary
conditions on the inflow and the outflow, Dirichlet boundary condition, periodic
boundary conditions...) the results are valid.

Appendix A. Abstract results on periodic evolution equations. Let H be
a Hilbert space (with norm ‖·‖) and A be the infinitesimal generator of an analytic
semigroup S(t) on H with domain D(A). In this section we are interested in the
existence of a T -periodic solution to the following abstract evolution equation

y′(t) = Ay(t) + f(t) , for t ∈ R, (27)

where f : R → H is a T -periodic source term with a regularity to be specified.
A T -periodic function y is solution to (27) if and only if its restriction to [0, T ] is
solution to {

y′(t) = Ay(t) + f(t) , for all t ∈ [0, T ],

y(0) = y(T ).
(28)

In this section, two frameworks are considered to study (28). The Hilbert case,
when f ∈ L2(0, T ;H), and the continuous case when f ∈ C([0, T ];H) (or f is
Hölder continuous). The Hilbert case provides powerful tools to study (28) through
the existence of isomorphism theorems [3, Theorem 3.1, part II, section 1.3]. This
framework is used to prove the existence of a unique solution to (28) under addi-
tional hypothesis on the operator A. The previous strategy is developed in Section
A.1. When f is continuous or Hölder continuous, we use the continuous theory
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for evolution equations to improve the regularity of this solution. In both case we
are interested in the existence of strict solutions. For y0 ∈ H and f ∈ L2(0, T ;H)
consider the evolution equation{

y′(t) = Ay(t) + f(t) , for all t ∈ [0, T ],

y(0) = y0.
(29)

Definition A.1. (i) y is a strict solution of (29) in L2(0, T ;H) if y belongs to
L2(0, T ;D(A))∩H1(0, T ;H), y′(t) = Ay(t) + f(t) for a.e. t ∈ [0, T ], and y(0) = y0.

(ii) y is a strict solution of (29) in C([0, T ];H) if y belongs to C([0, T ];D(A)) ∩
C1([0, T ];H), y′(t) = Ay(t) + f(t) for all t ∈ [0, T ], and y(0) = y0.

(iii) y is a classical solution of (29) in C([0, T ];H) if y belongs to C((0, T ];D(A))∩
C1((0, T ];H) ∩ C([0, T ];H), y′(t) = Ay(t) + f(t) for all t ∈ [0, T ], and y(0) = y0.

(iv) The function

y(t) = S(t)y0 +

∫ t

0

S(t− s)f(s)ds,

is called the mild solution of problem (29) if y belongs to C([0, T ];H).

In what follows we assume that the pair (A, T ) satisfies the assumption:

A has a compact resolvent, 0 6∈ σp(A) and T ∈ R+ \ {2kπ

bj
| k ∈ Z, 0 ≤ j ≤ NA}

where {ibj}0≤j≤NA denote the non zero eigenvalues of A on the imaginary axis iR
with NA ∈ N and bj ∈ R∗ with 0 ≤ j ≤ NA.

(30)
Remark that the assumptions A generates an analytic semigroup and has a compact
resolvent directly imply that NA is a finite number.

A.1. Hilbert case. In this section we obtain a simple criteria to ensure that the
problem (28) admits a unique strict solution in L2(0, T ;H).

Lemma A.2. The evolution equation (28) admits a strict solution in L2(0, T ;H)
if and only if the equation

(I − S(T ))z =

∫ T

0

S(T − s)f(s)ds. (31)

admits at least one solution z ∈ [D(A), H]1/2.

Proof. Suppose that (28) admits a strict solution y ∈ L2(0, T ;D(A))∩H1(0, T ;H).
We recall, see [21], that L2(0, T ;D(A)) ∩H1(0, T ;H) ⊂ C([0, T ]; [D(A), H]1/2). As
this solution coincides with the mild solution given by the Duhamel formula we
have

y(0) = y(T ) = S(T )y(0) +

∫ T

0

S(T − s)f(s)ds,

and thus z = y(0) satisfies (31). Reciprocally if z ∈ [D(A), H]1/2 satisfies the
equation (31) then consider the evolution equation{

y′(t) = Ay(t) + f(t) , for all t ∈ [0, T ],

y(0) = z.
(32)

The isomorphism theorem [3, Theorem 3.1, part II, section 1.3] shows that (32)
admits a unique solution y ∈ L2(0, T ;D(A)) ∩ H1(0, T ;H). Finally this solution
satisfies (28) by choice of z.
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Lemma A.3. Suppose that the pair (A, T ) satisfies the assumption (30). Then the
equation (31) admits a unique solution z ∈ [D(A), H]1/2. Moreover the operator PA
defined by

PAf = (I − S(T ))−1

∫ T

0

S(T − s)f(s)ds,

is a bounded linear operator from L2(0, T ;H) into [D(A), H]1/2.

Proof. Let v be the function defined by

v(t) =

∫ t

0

S(t− s)f(s)ds,

and remark that v(t) ∈ [D(A), H]1/2 for all t ∈ [0, T ]. The analyticity of the
semigroup S(t) implies that S(T )z ∈ D(An) for all n ≥ 0 and z ∈ H. Hence a
solution z to (31) has the same regularity to v(T ) i.e. is in [D(A), H]1/2.

The assumption that A has a compact resolvent implies (see [30, Theorem 3.3]
and recall that S(t) is analytic and thus differentiable, which implies the continuity
for the uniform operator topology for t > 0) that S(t) is a compact semigroup.
Hence σ(S(T )) = σp(S(T )) and the spectral mapping theorem eTσp(A) = σp(S(T )),
coupled with the assumption (30), shows that 1 ∈ ρ(S(T )). Thus (I − S(T ))z = w
for w ∈ [D(A), H]1/2 ⊂ H can be rewritten z = (I − S(T ))−1w ∈ H and this z
belongs to [D(A), H]1/2. We have proved that the operator (I−S(T )) is a bijection
from [D(A), H]1/2 into itself. By definition S(T ) ∈ L(H). Moreover, using the
graph norm on D(A) and a classical estimate for analytic semigroups, we have for
all u ∈ D(A)

‖S(T )u‖D(A) = ‖S(T )u‖H + ‖AS(T )u‖H ≤ ‖S(T )‖L(H) ‖u‖H +
C

T
‖u‖H

≤ C ‖u‖D(A) .

Hence (I − S(T )) ∈ L(D(A)) and by interpolation (I − S(T )) ∈ L([D(A), H]1/2).

Finally the bounded inverse theorem implies that (I − S(T ))−1 is a bounded lin-
ear operator on [D(A), H]1/2. From the continuous embedding L2(0, T ;D(A)) ∩
H1(0, T ;H) ⊂ C0([0, T ]; [D(A), H]1/2) we obtain that

‖v(T )‖[D(A),H]1/2
≤ C(‖v‖L2(0,T ;D(A)) + ‖v‖H1(0,T ;H)) ≤ C ‖f‖L2(0,T ;H) ,

and

‖PAf‖[D(A),H]1/2
≤ C

∥∥(I − S(T ))−1
∥∥
L([D(A),H]1/2)

‖f‖L2(0,T ;H) .

Hence we have proved the following theorem.

Theorem A.4. Suppose that the pair (A, T ) satisfies the assumption (30). Then the
periodic evolution equation (28) admits a unique strict solution y ∈ L2(0, T ;D(A))∩
H1
] (0, T ;H) in L2(0, T ;H). The following estimate holds

‖y‖L2(0,T ;D(A))∩H1
] (0,T ;H) ≤ C ‖f‖L2(0,T ;H) .
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Proof. It remains to prove the estimate. Using [3, Theorem 3.1, part II, section 1.3]
and Lemma A.3 we obtain

‖y‖L2(0,T ;D(A))∩H1
] (0,T ;H) ≤ C(

∥∥y0
∥∥

[D(A),H]1/2
+ ‖f‖L2(0,T ;H))

≤ C(‖PAf‖[D(A),H]1/2
+ ‖f‖L2(0,T ;H))

≤ C ‖f‖L2(0,T ;H) .

Using the regularization properties of analytic semigroup for t > 0, that is S(t)z ∈
D(An) for all n ≥ 1 and z ∈ H, we can prove that the regularity of the solution
solely depends on the source term f . Hence the previous result can be improved
when f is more regular. We introduce the space Hr = [D(An+1),D(An)]1−α with
r = n+ α, n ≥ 0 an integer and 0 ≤ α ≤ 1 a real number.

Lemma A.5. Let f be in L2(0, T ;Hr−1) with r > 1 and suppose that the pair
(A, T ) satisfies the assumption (30). Then the unique strict solution y in L2(0, T ;H)
belongs to y ∈ L2(0, T ;Hr) ∩H1

] (0, T ;Hr−1) and y(0) ∈ [Hr,Hr−1]1/2.

Proof. We split (28) in two parts{
y′1(t) = Ay1(t) + f(t) , for all t ∈ [0, T ],

y1(0) = 0,

and {
y′2(t) = Ay2(t) , for all t ∈ [0, T ],

y2(0) = z.

Using the analyticity of S we have y2(T ) = S(T )z ∈ D(An) for all n ≥ 1. On the
other hand [3, Theorem 2.2, part II, section 3.2.1] (and the remark following the the-
orem on the extension of the isomorphism theorem) implies that y1 ∈ L2(0, T ;Hr)∩
H1(0, T ;Hr−1) ⊂ C0([0, T ]; [Hr, Hr−1]1/2). Hence y(T ) = y1(T ) + y2(T ) is in

[Hr, Hr−1]1/2. Then we use the periodic condition y(T ) = y(0) and again [3,

Theorem 2.2, part II, section 3.2.1] to obtain y ∈ L2(0, T ;Hr)∩H1
] (0, T ;Hr−1).

A.2. Hölder continuous case. Let us recall the fundamental existence and reg-
ularity result (see [1, Theorem 1.2.1, Section II]):

Theorem A.6. Suppose that f ∈ Cρ([0, T ];H) with ρ ∈ (0, 1) and y0 ∈ H. Then
the Cauchy problem (29) possesses a unique classical solution y in C([0, T ];H) and

y ∈ Cρ((0, T ];D(A)) ∩ Cρ+1((0, T ];H),

with the estimate, for all ε > 0,

‖y‖Cρ([ε,T ];D(A))∩Cρ+1([ε,T ];H) ≤ C(‖y(ε)‖D(A) + ‖f‖Cρ([0,T ];H)).

If y0 ∈ D(A) then the solution is strict.

Proof. The estimate can be obtained following the steps of the proof in [1, Theorem
1.2.1, Section II], see in particular [1, Theorem 2.5.6, Section III].

We are now able to prove the existence of a strict periodic solution in C([0, T ];H).
Moreover, the previous Hölder regularity result and the periodicity show that the
periodic solution possesses Hölder regularity up to t = 0.
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Theorem A.7. Let f ∈ Cρ([0, T ];H) with ρ ∈ (0, 1) and suppose that the pair
(A, T ) satisfies the assumption (30). Then the periodic evolution equation (28)
admits a unique strict solution y in C([0, T ];H). Moreover

y ∈ Cρ([0, T ];D(A)) ∩ Cρ+1([0, T ];H),

and the following estimate holds

‖y‖Cρ([0,T ];D(A))∩Cρ+1([0,T ];H) ≤ C ‖f‖Cρ([0,T ];H) . (33)

Proof. We already know that there exists a strict solution in L2(0, T ;H). Keeping
the notations used in Lemma A.5, we split y = y1 + y2. For y2 we still have
y2(T ) ∈ D(A). Theorem A.6 implies that y1 ∈ Cρ((0, T ];D(A)) ∩ Cρ+1((0, T ];H),
thus y1(T ) ∈ D(A). Then the periodic condition y(0) = y(T ) implies that y(0) ∈
D(A) and Theorem A.6 ensures the existence of a strict solution in C([0, T ];H).
Finally, considering the T -periodic extension ŷ of y on [0, 2T ] the Hölder regularity
result implies that ŷ ∈ Cρ((0, 2T ];D(A)) ∩ Cρ+1((0, 2T ];H). Hence ŷ is Hölder in
a neighbourhood of T , which implies that y ∈ Cρ([0, T ];D(A)) ∩ Cρ+1([0, T ];H). It
remains to estimate y with respect to f . Let us fix ε = T

2 . We have

y(ε) = S(ε)y0 +

∫ ε

0

S(ε− s)f(s)ds.

The homogeneous part was already estimated in Lemma A.3∥∥S(ε)y0
∥∥
D(A)

≤ C
∥∥y0
∥∥
H
.

The integral part in Duhamel can be estimated as follows∫ ε

0

AS(ε− s)f(s)ds =

∫ ε

0

AS(ε− s)(f(s)− f(ε))ds+

∫ ε

0

AS(ε− s)f(ε)ds,

and ∥∥∥∥∫ ε

0

AS(ε− s)f(ε)ds

∥∥∥∥
H

= ‖(S(ε)− I)f(ε)‖H ≤ C ‖f‖Cρ([0,T ];H) ,

where we have used
d

dt
S(t) = AS(t). Finally∥∥∥∥∫ ε

0

AS(ε− s)(f(s)− f(ε))ds

∥∥∥∥
H

≤
∫ ε

0

C

|ε− s|
|ε− s|ρ ‖f‖Cρ([0,T ];H) ds

≤ C ‖f‖Cρ([0,T ];H) ,

and ‖y(ε)‖D(A) ≤ C ‖f‖Cρ([0,T ];H). The estimate in Theorem A.6 implies that

‖ŷ‖Cρ([ε,2T ];D(A))∩Cρ+1([ε,2T ];H) ≤ C
∥∥∥f̂∥∥∥

Cρ([0,2T ];H)
,

where f̂ is the T -periodic extension of f to [0, 2T ]. Then, taking the restriction to
a period T , we obtain the estimate (33).
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Appendix B. Table of notations.

Operator Formula Description

Π Πu = u−∇pu −∇qu (4) Leray projector

As νΠ∆ Stokes operator

∆s ∂xx 1D Laplace operator

Aα,β β∆s − α∆2
s

Ab
(

0 I

Aα,β γ∆s

)
Beam operator

L (10) Lifting operator on Γs
LΓi (11) Lifting operator on Γi
LΓo LΓo ∈ L(H1/2(Γo), H

1(Ω)) Lifting operator on Γo
Ns, Nv, Np (12), (13), Np(f) = p, (I −Π)f = ∇p Splitting of the pressure

Ks (I +Ns)
−1 − I

Ms

I 0 0

0 I 0

0 0 (I +Ns)
−1

 Added mass operator

A Ms

As 0 −AsΠL1

0 0 I

Nv Aα,β γ∆s

 Fluid–structure operator

A1

As 0 −AsΠL1

0 0 I

0 Aα,β γ∆s

 Principal part of A

A2

 0 0 0

0 0 0

(I +Ns)
−1Nv KsAα,β Ksγ∆s

 Perturbation part of A

Function space

V 0
n,Γd

(Ω) = {v ∈ L2(Ω) | div v = 0 in Ω, v · n = 0 on Γd}
H1

Γo
(Ω) = {u ∈ H1(Ω) | u = 0 on Γo}

V = {u ∈H1(Ω) | div u = 0 in Ω, u = 0 on Γd, u2 = 0 on Γo}
H

3/2
00 (Γs) = [H1

0 (Γs), H
2
0 (Γs)]1/2

H3/2
00 (Γs) = {0} ×H3/2

00 (Γs)

Cρ] ([0, T ];X) = {v|[0,T ] | v ∈ Cρ(R;X) is T -periodic}
Hρ
] (0, T ;X) = {v|[0,T ] | v ∈ Hρ

loc(R;X) is T -periodic}
D(As) = V ∩H2(Ω)

D(A) =
{(Πv, η1, η2) ∈ V 2

n,Γd
(Ω)× (H4(Γs) ∩H2

0 (Γs))×H2
0 (Γs) |

Πv −ΠL1(η2) ∈ D(As)}

W =
Cθ] ([0, T ];L2(Ω))×

(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω) ∩H1

0(Ω))
)

× Cθ] ([0, T ];H1/2(Γo))× Cθ] ([0, T ];L2(Γs))

Cθbeam = Cθ] ([0, T ];H4(Γs) ∩H2
0 (Γs)) ∩ C1+θ

] ([0, T ];H2
0 (Γs))

∩ C2+θ
] ([0, T ];L2(Γs))

X =
(
C1+θ
] ([0, T ];L2(Ω)) ∩ Cθ] ([0, T ];H2(Ω))

)
× Cθ] ([0, T ];H1(Ω))× Cθbeam
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