Compléments sur les espaces préhilbertiens

Jean-Jérôme Casanova

1 Isométries

On se place dans un espace prehilbertien $(E, \langle \cdot, \cdot \rangle)$.

Définition 1. On dit que $f \in \mathcal{L}(E)$ est une isométrie si

$$\forall x \in E, \quad \|f(x)\| = \|x\|.$$

Proposition 2. Une application $f \in \mathcal{L}(E)$ est une isométrie si et seulement si

$$\forall (x,y) \in E^2, \quad \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

Remarque 3. Une isométrie est toujours injective. En dimension finie elle est bijective.

Proposition 4. On suppose que E est euclidien (i.e. de dimension finie). Une application f est une isométrie si et seulement si l'image d'une base orthonormale de E par f est une base orthonormale de E.

Remarque 5. (Conséquence sur les représentations matricielles). Soient $B = (e_1, \ldots, e_n)$ une base orthonormale de E, f une isométrie et $A = \text{Mat}_B(f)$. On note C_i les colonnes de A qui représentent les coordonnées des vecteurs $f(e_i)$ dans la base B. On a

$$\langle f(e_i), f(e_j) \rangle = \delta_{i,j} = C_i^T C_j.$$

On déduit directement de l'identité précédente la relation $A^TA = Id$. Une matrice vérifiant cette relation est appelée une matrice orthogonale et f est une isométrie si et seulement si sa matrice dans une base orthonormale est une matrice orthogonale. On voit au passage que $\det(A) \in \{-1, +1\}$. On parle d'isométries directes (déterminant égale à 1) ou indirectes (déterminant égale à -1).

Exemple 6. Dans \mathbb{R}^2 la rotation d'angle θ est :

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix},$$

est une matrice orthogonale/une isométrie. On peut montrer (bon exercice) que toute les isométries directes de \mathbb{R}^2 s'écrivent, dans une base orthonormale B, sous la forme matricielle précédente.

2 Endomorphismes adjoints

Définition 7. Soit $f, g \in \mathcal{L}(E)$. On dit que f et g sont adjoints si

$$\forall (x,y) \in E^2, \quad \langle f(x), y \rangle = \langle x, g(y) \rangle.$$

Remarque 8. En dimension infinie on a pas toujours l'existence d'un adjoint. C'est le cas en dimension finie. Supposons que E soit un espace euclidien muni d'une base orthonormée $B = (e_1, \ldots, e_n)$. Soit $f \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_B(f)$. Alors, en notant X le vecteur colonne des coordonnées d'un vecteur X dans la base B:

$$\forall (x,y) \in E^2, \quad \langle f(x), y \rangle = (AX)^T Y = X^T (A^T Y) = \langle x, g(y) \rangle,$$

ou $g \in \mathcal{L}(E)$ est l'endomorphisme associé à la matrice A^T dans la base B. On notera par la suite f^* l'adjoint de f.

On dit qu'un endomorphisme f de E est auto-adjoint si $f^* = f$. Dans ce cas sa matrice dans une base orthonormée vérifie $A^T = A$ i.e. est une matrice symétrique.

Théorème 9. Soit E un espace euclidien et $f \in \mathcal{L}(E)$ un endomorphisme auto-adjoint. Alors il existe une base orthonormée de vecteurs propres pour f. De plus les valeurs propres de f sont réelles.

Corollaire 10. Soit A une matrice symétrique réelle. Alors A est diagonalisable dans une base orthonormée. Plus précisément il existe une matrice orthogonale P et une matrice diagonale D (toute deux à coefficients réels) telles que :

$$A = PDP^{T} = PDP^{-1}.$$

 $D\acute{e}monstration$. On munit \mathbb{R}^n de sa base canonique et du produit scalaire usuel $\langle X,Y\rangle=X^TY=\sum_{i=1}^n x_iy_i$ (on remarque au passage que la base canonique est une base orthonormée pour ce produit scalaire). Soit f l'endomorphisme associé à A dans la base B. Puisque A est symétrique f est auto-adjoint. D'après le théorème précédent il existe une base B' orthonormée telle que $D=\operatorname{Mat}_{B'}(f)$ soit une matrice diagonale. Si on note $P=\operatorname{Mat}_{B',B}(Id)$ la matrice de passage de B à B' on a :

$$A = PDP^{-1}.$$

Finalement puisque P est la matrice de passage d'une base orthonormale à une autre il s'agit d'une matrice orthogonale donc $P^T = P^{-1}$.