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1 Introduction and notations
The null controllability of heat equations is a recurrent subject of research since several

decades. Russel and Fattorini were the first to investigate it, using the moment ([11] and
[7]). Since then, there have been a few other methods to prove the null controllability of
heat equations. A standard proof of the null controllability of the heat equation with a
control source term uses the duality between controllability and observation, it can be
found in [2]. Recently, in [4], Jean-Michel Coron and Hoài-Minh Nguyên uses a backs-
tepping approach to recover the null controllability for the heat equations with variable
coefficients in space in one dimension with Dirichlet boundary control.

In this report, we attempt to extend this method to establish the null controllability for
the heat equations with constant coefficients in space in one dimension with a constrained
source term control.

1.1 Presentation of the problem

In the following, we denote 〈·, ·〉 the scalar product of L2(0, 1). We consider the control-
led heat equation :

ψt(t, x) = ψxx(t, x) + ϕ(x)u(t), (t, x) ∈ (0, T )× (0, 1) ,
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, 1) ,
ψ(0, x) = ψ0(x), x ∈ (0, 1) .

(1)

where T > 0, ϕ ∈ H3(0, 1)∩H1
0 (0, 1), ψ0 ∈ L2(0, 1) and u : (0, T )→ R refer to the control.

We recall the Dirichlet laplacian A : D(A) ⊂ L2(0, 1)→ L2(0, 1) is defined by :

D(A) = H1
0 (0, 1) ∩H2(0, 1), ∀ψ ∈ D(A), Aψ = ψxx . (2)

For n ∈ N∗, we denote ϕn the eigenvector of A associated to the eigenvalue −λn where
λn = (nπ)2. We have :

∀x ∈ (0, 1), ϕn(x) =
√

2 sin(nπx) . (3)

We recall that {ϕn}n∈N∗ is an Hilbert basis of L2(0, 1). It is well-know that A is auto-
adjoint and dissipative, hence generates a strongly continuous semigroup on L2(0, 1). Now,
let B be the continuous operator defined by :

B : u ∈ R 7−→ u · ϕ ∈ L2(0, 1) . (4)

The operator formulation of the system (1) is :{
ψt = Aψ +Bu, t ∈ (0, T ) ,
ψ(0) = ψ0 .

(5)

The goal of this internship is to show the null-controllability of the system (5) using a
backstepping approach.
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1.2 Strategy

Step 1 : Rapid stabilization via backstepping.
Let λ > 0. We want to find two operators T λ and Kλ such that if ψ denotes the

solution of (5) with the feedback u(t) = Kλψ(t) then ψ̃ = T λψ is a solution of :{
ψ̃t = Aψ̃ − λψ̃, t ∈ (0, T ) ,
ψ̃(0) = T λψ0 .

(6)

It is easy to find out that ψ̃ verifies
∥∥∥ψ̃(t)

∥∥∥ ≤ e−λt
∥∥∥T λψ0

∥∥∥. Hence, if T λ is continuous
invertible, we have :

‖ψ‖ ≤ ‖T λ‖‖(T λ)−1‖ ‖ψ0‖ e−λt , (7)

This means the system (5) is stabilizable.
Step 2 : Null-controllability in finite time.
Now, if ‖T λ‖‖(T λ)−1‖ is sub-exponential in λ (for exemple if ‖T λ‖‖(T λ)−1‖ = O(λm)

for some m ≥ 0) then we will be able to find two increasing non negative sequences
{λn}n∈N∗ and {tn}n∈N∗ verifying :

λn −→ +∞ and tn −→ T , (8)

and such that if ψ is the solution of (5) with the following piecewise constant feeback
control :

∀n ∈ N∗, ∀t ∈ ]tn , tn+1[, u(t) = Kλnψ(t) , (9)

then :

ψ(T ) = 0 . (10)

The system (5) is null-controllable.

1.3 Assumptions

As in [11] and [3], we will assume there exists a constant c ≥ 0 such that :

∀n ∈ N∗, |〈ϕ,ϕn〉| ≥
c

n3 . (11)

A straightforward computation gives :

∀n ∈ N∗, 〈ϕ,ϕn〉 =
√

2
(nπ)3 ((−1)nϕ′′(1)− ϕ′′(0))− 1

(nπ)3

∫ 1

0
ϕ′′′(x)ϕn(x) dx . (12)

Since : ∫ 1

0
ϕ′′′(x)ϕn(x) dx −→ 0 when n −→ +∞ , (13)
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necessarily : ∣∣ϕ′′(1)
∣∣ 6= ∣∣ϕ′′(0)

∣∣ , (14)

otherwise, the assumption (11) would be absurd.
Moreover, in the following we will always assume there exists c > such that :

d
(
λ,
{
λn − λk

∣∣∣ (n, k) ∈ (N∗)2
})
≥ c . (15)

This assumption implies :

∀(n, k) ∈ (N∗)2, |λn − λk − λ| ≥ min
(1

2 ,
c

2λ

)
|λn − λk| . (16)

1.4 General setup

To see what kind of condition we have on the operator T λ andKλ, we start by applying
T λ to (5) :

T λψt = ψ̃t = (T λA+ T λBKλ)ψ . (17)

We want T λ and Kλ to verify :

ψ̃t = (AT λ − λT λ)ψ . (18)

Hence, we will seek T λ and Kλ such that :

T λA+ T λBKλ = AT λ − λT λ . (19)

As in [3], in a computation simplification purpose, we introduce the following condition :

T λB = B . (20)

So, we are interested into the operator system :

T λA+BKλ = AT λ − λT λ , (21)
T λB = B . (22)

Now, we introduce some analytic tools we will use through the whole article. For s ≥ 0,
we define :

Hs
(0)(0, 1) := D(As/2) . (23)

To lighten the notation, we will denote Hs
(0)(0, 1) = Hs

(0). The following bilinear product :

〈φ, ψ〉Hs
(0)

=
∑
n≥1

λsn 〈φ, ϕn〉 〈ψ,ϕn〉 (24)
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defines an inner-product of Hs
(0) which gives it an Hilbert space structure. In this paper,

we will mainly use H2
(0) and H3

(0). We can give an explicit formula for these :

H2
(0) = H2(0, 1) ∩H1

0 (0, 1) and H3
(0) =

{
ψ ∈ H3(0, 1) ∩H1

0 (0, 1)
∣∣∣ ψ′′(0) = ψ′′(1) = 0

}
.

(25)

Using the backstepping approach as in [4] and [3], we will search T λ and Kλ with the
following form :

T λ : Hs
(0)(0, 1) −→ Hs

(0)(0, 1)
ψ 7−→

[
x 7→

∫ 1
0 k

λ(x, s)ψ(s) ds
] , (26)

Kλ : Hr
(0)(0, 1) −→ R
ψ 7−→

∫ 1
0 α

λ(s)ψ(s) ds
, (27)

where kλ and αλ are functions to determined and r and s some integers.

1.5 Heuristic

By assuming that :

kλ(x, 0) = kλ(x, 1) = kλ(0, y) = kλ(1, y) = 0, ∀(x, y) ∈ (0, 1)2 , (28)

we kill the border terms when we inject (26) in (21) :
∆yk

λ(x, y)−∆xk
λ(x, y) + λkλ(x, y) + αλ(y)ϕ(x) = 0, (x, y) ∈ (0, 1)2 ,

ϕ(x) =
∫ 1

0 k
λ(x, s)ϕ(s) ds, x ∈ (0, 1) ,

kλ(x, 0) = kλ(x, 1) = kλ(0, y) = kλ(1, y) = 0, (x, y) ∈ (0, 1)2 .

(29)

Following a spectral decomposition approach as in [4] and [11], we decompose kλ and αλ
with the Hilbert basis {ϕn}n∈N∗ . For all y ∈ (0, 1), we have :

kλ(x, y) =
∑
n∈N∗

fλn (x)ϕn(y) , (30)

αλ(y) =
∑
n∈N∗

αλnϕn(y) . (31)

Hence, if we inject this in (29), we obtain for all n ∈ N∗ :
−λnfλn (x)− (fλn )′′(x) + λfλn (x) + αλnϕ(x) = 0, x ∈ 0, 1)
fλn (0) = fλn (1) = 0 ,
ϕ(x) =

∑
n∈N∗ fλn (x) 〈ϕ,ϕn〉 , x ∈ (0, 1) .

(32)

We develop fλn through the Fourier basis :

fλn (x) =
∑
k∈N∗

〈
fλn , ϕk

〉
ϕk(x), x ∈ (0, 1) . (33)
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(32) and (33) give :

∀x ∈ (0, 1), fλn (x) = αλn
∑
k∈N∗

〈ϕ,ϕk〉
λn − λk − λ

ϕk(x) . (34)

αλ is determined by the relation T λB = B :

ϕ(x) =
∑
n∈N∗

fλn (x) 〈ϕ,ϕn〉 . (35)

2 Properties of the transformations T λ and Kλ

In all this section, we fix λ > 0 verifying (15).

2.1 Riesz basis for H2
(0) and H3

(0)

The goal of this section is to determine a Riesz basis of Hs
(0) for some s ∈ N∗ which is

adapted to the problem (see the appendix A for a quick introduction to Riesz bases).
We suppose αλn 6= 0 for all n ∈ N∗. We will show a posteriori this assumption is verified

(see section 2.7). Following the ideas in [3], we introduce a sequence of reals {βλn}n∈N∗ and
a sequence of functions gλn by :

gλn = βλn
αλn
fλn = βλn

∑
k∈N∗

〈ϕ,ϕk〉
λn − λk − λ

ϕk(x) , (36)

In particular, gλn verify the following equation :{
−(gλn)′′(x) + (λ− λn)gλn(x) + βλnϕ(x) = 0, x ∈ (0, 1)
gλn(0) = gλn(1) = 0 . (37)

which is independent of αλ. We will choose {βλn}n∈N∗ such that {gλn}n∈N∗ is a Riesz basis
of Hs

(0).

Remark 1. Because {ϕn}n∈N∗ is a Hilbert basis for L2(0, 1), it is easy to show that{
ϕnλ

−s/2
n

}
n∈N∗

is a Hilbert basis for Hs
(0).

Proposition 1. We define :

βλn = −λ
〈ϕ,ϕn〉λn

. (38)

Then,
{
gλn

}
n∈N∗

defined by (36) is a Riesz basis for H2
(0) and

{
gλnλ

−1/2
n

}
n∈N∗

is a Riesz
basis for H3

(0).

Remark 2. With the assumption (11) on the decay of the Fourier coefficients of ϕ, we have
the following estimate on βλn :

cλn ≤
∣∣∣βλn∣∣∣ ≤ Cλn . (39)
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Proof of the proposition 1. The proof is based on the two characterization theorems 4 and
5 in the appendix A. We adapt the proof of the similar proposition in [3].

We begin by showing that {gλn}n is quadratically close to
{
ϕnλ

−s/2
n

}
n∈N∗

for s ∈ {2, 3}.

Lemma 1. Let s ∈ {2, 3}. We have :

∑
n∈N∗

∥∥∥∥∥ ϕnλ
s/2
n

− gλn

λ
(s−2)/2
n

∥∥∥∥∥
2

Hs
(0)

< +∞ . (40)

Proof of the lemma 1. Let s ∈ {2, 3}. Let denote S =
∑
n∈N∗

∥∥∥∥ ϕn

λ
s/2
n

− gλn
λ

(s−2)/2
n

∥∥∥∥2

Hs
(0)

. We

have :

S =
∑
n∈N∗

∑
k∈N∗

λsk

∣∣∣∣∣
〈
ϕn

λ
s/2
n

− gλn

λ
(s−2)/2
n

, ϕk

〉∣∣∣∣∣
2

(41)

=
∑
n∈N∗

∑
k 6=n

λsk

(
βλn

λn − λk − λ

)2 |〈ϕ,ϕk〉|2

λs−2
n

+ λsn

∣∣∣∣∣ 1
λ
s/2
n

+ βλn
λ

〈ϕ,ϕn〉
λ

(s−2)/2
n

∣∣∣∣∣
2

. (42)

We begin by treating the case s = 2. Because of the definition of βλn, we have :

S ≤ Cλ2 ∑
n∈N∗

∑
k 6=n

n2

k2
1

(n2 − k2)2 (43)

≤ Cλ2

∑
n∈N∗

∑
k<n

n2

k2
1

(n2 − k2)2 +
∑
n∈N∗

∑
k>n

n2

k2
1

(n2 − k2)2

 . (44)

For the first term, we have :∑
n∈N∗

∑
k<n

n2

k2
1

(n2 − k2)2 =
∑
n∈N∗

∑
k<n

n2

k2
1

(n− k)2(n+ k)2 (45)

≤
∑
n∈N∗

∑
k<n

1
(n− k)2k2 ≤

∑
n∈N∗

1
n2

2

< +∞ . (46)

For the second term, we have :∑
n∈N∗

∑
k>n

n2

k2
1

(k2 − n2)2 ≤
∑
n∈N∗

∑
k>1

1
((k + n)2 − n2)2 (47)

≤
∑
n∈N∗

∑
k>1

1
k2(k + 2n)2 ≤

1
4

∑
n∈N∗

1
n2

2

< +∞ . (48)

For the case s = 3 there exists a constant C ≥ 0 such that :

S ≤ Cλ2 ∑
n∈N∗

∑
k 6=n

1
(n2 − k2)2 . (49)

We deal with this sum the same way than previously. This ends the proof of the lemma.
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Let s ∈ {2, 3}. We denote :

Bλs :=
{
gλnλ

−(s−2)/2
n

}
n∈N∗

. (50)

Thanks to the lemma 1 and the theorem 4 (see appendix A), it remains to prove the
ω-independance of Bλs . Let {an}n∈N∗ be a sequence of reals such that :∑

n∈N∗
ang

λ
n = 0 in Hs

(0) . (51)

We want to show that an = 0 for all n ∈ N∗. Let ` ∈ N. Because convergence in Hs
(0)

implies convergence in L2(0, 1), we can apply A−` to (51), we get :∑
n∈N∗

anA
−`gλn = 0 in L2(0, 1) . (52)

In fact, this series converges in Hs
(0). To prove this statement, let N ∈ N. We have, thank

to the auto-adjointness of A−` :∥∥∥∥∥
N∑
n=1

anA
−`gλn

∥∥∥∥∥
2

Hs
(0)

=
∑
k∈N∗

λsk

∣∣∣∣∣
〈

N∑
n=1

anA
−`gλn, ϕk

〉∣∣∣∣∣
2

=
∑
k∈N∗

λsk

∣∣∣∣∣
N∑
n=1

an
〈
gλn, A

−`ϕk
〉∣∣∣∣∣

2

(53)

=
∑
k∈N∗

λsk
λ`n

∣∣∣∣∣
〈

N∑
n=1

ang
λ
n, ϕk

〉∣∣∣∣∣
2

≤
∥∥∥∥∥
N∑
n=1

ang
λ
n

∥∥∥∥∥
2

Hs
(0)

. (54)

So : ∑
n∈N∗

anA
−`gλn = 0 in Hs

(0) . (55)

In view of (37), we find that :

A−1gλn = gλn + βλnA
−1ϕ

λn − λ
. (56)

And by recurrence, we see that :

∀` ∈ N, A−`gλn = gλn
(λn − λ)` + βλn

∑̀
k=1

A−kϕ

(λn − λ)`−k+1 . (57)

We first inject (56) in (55) :

∑
n∈N∗

βλng
λ
n

λn − λ
+ anβ

λ
n

λn − λ
A−1ϕ = 0 . (58)

Let denote for ` ∈ N∗ :

cλ` =
∑
n∈N∗

anβ
λ
n

(λn − λ)` . (59)
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By the previous equation, cλ1 is a convergent serie and we have :

cλ1A
−1ϕ = −

∑
n∈N∗

βλng
λ
n

λn − λ
. (60)

By recurrence, we successively found that for all ` ∈ N∗, the series defining cλ` is convergent
and that :

∑̀
k=1

cλ`−k+1A
−`ϕ = −

∑
n∈N∗

βλng
λ
n

(λn − λ)` . (61)

Two cases are in front of us.
First, assume that for every ` ∈ N∗, we have c` = 0. We will show that necessarily for

all n ∈ N∗, we have an = 0 and hence Bλs is a Riesz basis for Hs
(0). We define :

G : z ∈ C 7−→
∑
n∈N∗

anβ
λ
n

λn − λ
e

z
λn−λ . (62)

Because cλ1 is convergent, by uniform convergence on every compact set, G defines an
entire function on C. By assumption, we have :

∀` ∈ N, G(`)(0) =
∑
n∈N∗

anβ
λ
n

(λn − λ)`+1 = 0 , (63)

hence G = 0. Let C := {n | an 6= 0} and assumme that C 6= ∅. Let n0 be the minimum of
C. Hence, we have :

∀z ∈ C, 0 = G(z)e−
z

λn0 −λ =
an0β

λ
n0

λn0 − λ
+
∑
n>n0

anβ
λ
n

λn − λ
e
z

(
1

λn−λ−
1

λn0 −λ

)
. (64)

If we let z ∈ R goes to +∞ then we found :

an0β
λ
n0

λn0 − λ
= 0 , (65)

and so an0 = 0 which is absurd. Hence, C = ∅ and an = 0 for all n.
Now, assume there exists ` ∈ N∗ such that c` 6= 0. We will show that spanBλs is dense

in Hs
(0) which is enough to prove that Bλs is a Riesz basis of Hs

(0) (see theorem 5 in the
appendix A). By recurrence, we can see from (61) that :

∀` ∈ N∗, A−`ϕ ∈ spanBλs . (66)

Now, let d ∈
[
spanBλs

]⊥
. Hence :

∀` ∈ N∗,
〈
A−`ϕ, d

〉
= 0 =

∑
n∈N∗

λsn

〈
A−`ϕ,ϕn

〉
〈d, ϕn〉 =

∑
n∈N∗

λs−`n 〈ϕ,ϕn〉 〈d, ϕn〉 . (67)
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Let’s define :

G : z ∈ C 7−→
∑
n∈N∗

λsn 〈ϕ,ϕn〉 〈d, ϕn〉 e
z
λn . (68)

Because d and ϕ are in Hs
(0), the serie above congerges uniformly, G is an entire function

and we have :

∀` ∈ N, G(`)(0) =
∑
n∈N∗

λs−`n 〈ϕ,ϕn〉 〈d, ϕn〉 = 0 , (69)

hence G = 0. As above, we found out that :

∀n ≥ 1, 〈ϕ,ϕn〉 〈d, ϕn〉 = 0 (70)

which implies 〈d, ϕn〉 = 0. Because d ∈ L2(0, 1), we have d = 0. Hence, Bλs is a Riesz basis
of Hs

(0).

2.2 Definition of {αλn}n∈N∗ and of the operators T and K

Because ϕ is in H2
(0), there exists {φλn}n∈N∗ ∈ `2(N∗) such that :

ϕ =
∑
n≥1

φλng
λ
n in H2

(0) . (71)

Heuristically, the condition (20) implies :

∑
n≥1

φλng
λ
n =

∫ 1

0
kλ(x, s)ϕ(s) ds =

∑
n≥1

αλn
βλn
〈ϕ,ϕn〉 gλn . (72)

The formal unicity of the decomposition (71) comply us to choose αλn the following form :

∀n ∈ N∗, αλn = φλnβ
λ
n

〈ϕ,ϕn〉
= −λφλn
|〈ϕ,ϕn〉|2 λn

. (73)

We will see that a posteriori that αλn defined as above is not equal to zero (see section 2.7).
The heuristic of the section 1.5 leads to the following definition of the operator T λ and

Kλ :

T λ : ψ 7−→
∑
n∈N∗

fλn 〈ψ,ϕn〉 , (74)

Kλ : ψ 7−→
∑
n∈N∗

αλn 〈ψ,ϕn〉 . (75)

Recall there exists constants 0 < c ≤ C such that :

cλn ≤
∣∣∣βλn∣∣∣ ≤ Cλn , (76)

which leads to the following estimate for αλn :∣∣∣αλn∣∣∣ = O
(∣∣∣φλn∣∣∣n4

)
. (77)
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Unfortunately, this estimate is not sharp enough to show the continuity of T λ and Kλ.
Now, we emphasize an another issue by computing a formal form for (T λ)−1. Let

χ ∈ H3
(0). Because

{
gλnλ

−1/2
n

}
n∈N∗

is a Riesz basis of H3
(0), there exists {χλn}n∈N∗ ∈ `2(N∗)

such that :

χ =
∑
n∈N∗

χλn

λ
1/2
n

gλn in H3
(0) . (78)

Let ψ ∈ H3
(0). Then, because of the Riesz basis properties :

T λψ = χ⇐⇒
∑
n∈N∗

αλn
βλn
〈ψ,ϕn〉 gλn =

∑
n∈N∗

χλn

λ
1/2
n

gλn ⇐⇒ ∀n ∈ N∗, 〈ψ,ϕn〉 = βλnχ
λ
n

λ
1/2
n αλn

. (79)

Hence, formally, we have :

(T λ)−1 : χ =
∑
n∈N∗

χλn

λ
1/2
n

gλn 7−→
∑
n∈N∗

βλnχ
λ
n

λ
1/2
n αλn

ϕn . (80)

Hence, we see that if we aim to estimate the norm of (T λ)−1, we have to find a lower
bound for {αλn}n∈N∗ .

2.3 Regularity of
{
αλn
}
n∈N∗

We will use the same kind of regularization techniques as in [3] to find a shaper estimate
for {αλn}n∈N∗ . We decompose ϕ as the sum of two functions. We denote :

h(x) = 1
6
(
ϕ′′(1)− ϕ′′(0)

)
x3 + ϕ′′(0)

2 x2 − 1
6
(
2ϕ′′(0) + ϕ′′(1)

)
x . (81)

h verifies :

∀k ∈ N∗, 〈h, ϕk〉 =
√

2
(kπ)3

(
(−1)kϕ′′(1)− ϕ′′(0)

)
. (82)

Now, we denote :

g = ϕ− h . (83)

Lemma 2. We have : {
n(φλn − λn 〈h, ϕn〉)

}
n∈N∗

∈ `2(N∗) . (84)

This result gives the following estimates for φλn and αλn :

Corollary 1. There exists two constants C1(λ) > 0 and C2(λ) > 0 such that :∣∣∣φλn∣∣∣ ≤ C1(λ)
n

and
∣∣∣αλn∣∣∣ ≤ C2(λ)n3 . (85)

There exists N(λ) ∈ N∗ and an λ independent constant c > 0 such that :

∀n ≥ N(λ),
∣∣∣αλn∣∣∣ ≥ cn3 . (86)
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Proof of the corollary 1. The first two estimates are easy consequences of the lemma 2, of
the expression (82) of the Fourier coefficients of h and of the previous estimate (77) for
αλn.

Now, we using that :

cλn4 ≤
∣∣∣∣∣ βλn
〈ϕ,ϕn〉

∣∣∣∣∣ ≤ Cλn4 , (87)

and the lemma 2, we found :{
αλn
n3 −

λnβ
λ
n

n3
〈h, ϕn〉
〈ϕ,ϕn〉

}
n∈N∗

∈ `2(N∗) . (88)

Hence :

∃N(λ) ∈ N∗, ∀n ≥ N(λ),
∣∣∣∣∣αλnn3 −

λnβ
λ
n

n3
〈h, ϕn〉
〈ϕ,ϕn〉

∣∣∣∣∣ ≤ c

2 . (89)

Using triangular inequality and the estimate (87), we have :∣∣∣αλn∣∣∣
n3 ≥

c

2 > 0 . (90)

Proof of the lemma 2. Through the computation of g′′, we can see that g ∈ H3
(0). Because

{gλnλ
−1/2
n }n∈N∗ is a Riesz basis for H3

(0) (see proposition 1), there exists {δλn}n∈N∗ ∈ `2(N∗)
such that :

g =
∑
n≥1

δλn

λ
1/2
n

gλn in H3
(0) . (91)

Moreover, {gλn}n∈N∗ is a Riesz basis for H2
(0) and h ∈ H2

(0), hence there exists {ρλn}n∈N∗ ∈
`2(N∗) such that :

h =
∑
n≥1

ρλng
λ
n in H2

(0) . (92)

Let γλn such that :

ρλn = λn 〈h, ϕn〉+ λn 〈ϕ,ϕn〉 γλn . (93)

This equality expresses the fact a Riesz basis is a bounded perturbation of the an Hilbert
basis (see [1]). Let k ∈ N∗. We have :

〈h, ϕk〉 =
∑
n∈N∗

λn 〈h, ϕn〉
〈
gλn, ϕk

〉
+
∑
n∈N∗

λnγ
λ
n 〈ϕ,ϕn〉

〈
gλn, ϕk

〉
(94)

=
∑
n∈N∗

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

+
∑
n∈N∗

λnβ
λ
nγ

λ
n 〈ϕ,ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

(95)

= 〈h, ϕk〉+
∑
n6=k

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

+
∑
n∈N∗

λnβ
λ
nγ

λ
n 〈ϕ,ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

. (96)
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Hence :

−
∑
n6=k

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

=
∑
n∈N∗

λnβ
λ
nγ

λ
n 〈ϕ,ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

(97)

We denote :

h̃λ = −
∑
k∈N∗

∑
n6=k

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

ϕk . (98)

We assert that h̃λ ∈ H3
(0). Indeed, we have :

∑
k∈N∗

λ3
k

∣∣∣〈h̃λ, ϕk〉∣∣∣2 =
∑
k∈N∗

λ3
k

∣∣∣∣∣∣
∑
n6=k

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

∣∣∣∣∣∣
2

≤ C
∑
k∈N∗

∣∣∣∣∣∣
∑
n 6=k

1
|k2 − n2|

∣∣∣∣∣∣
2

. (99)

We decompose
∑
n 6=k

1
|k2−n2| in two terms. First :

k−1∑
n=1

1
|k2 − n2|

= 1
2k

(
k−1∑
n=1

1
k + n

+ 1
k − n

)
(100)

= 1
2k

[2k−1∑
n=1

1
n
− 1
k

]
= O

( ln k
k

)
(101)

Now let N > 3k, for the second term we have :
N∑

n=k+1

1
|k2 − n2|

= 1
2k

 N∑
n=k+1

− 1
k + n

+ 1
n− k

 (102)

= 1
2k

 N+k∑
n=2k+1

− 1
n

+
N−k∑
n=1

1
n

 (103)

= 1
2k

 2k∑
n=1

1
n
−

N+k∑
n=N−k+1

1
n

 . (104)

We deduce : ∑
n≥k+1

1
|k2 − n2|

= O

( ln k
k

)
. (105)

Hence :

h̃λ ∈ H3
(0) . (106)

Using (97) and the Fubini theorem, we have :

h̃λ =
∑
k∈N∗

∑
n∈N∗

λnβ
λ
nγ

λ
n 〈ϕ,ϕn〉 〈ϕ,ϕk〉
λn − λk − λ

ϕk =
∑
n∈N∗

〈ϕ,ϕn〉λnγλn

∑
k∈N∗

βλn 〈ϕ,ϕk〉
λn − λk − λ

ϕk


(107)

=
∑
n∈N∗

〈ϕ,ϕn〉λnγλngλn . (108)
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From (106) and (107), we found :

〈ϕ,ϕn〉λ3/2
n γλn ∈ `2(N∗) . (109)

Using the decomposition (71) for ϕ and the previous computation, we have :

φλn = λn 〈h, ϕn〉+ λn 〈ϕ,ϕn〉 γλn + δλn

λ
1/2
n

, (110)

which prove the lemma.

The first consequence of these estimates is the continuity of Kλ.

Corollary 2. The linear operator Kλ : H4
(0) → R is continuous.

Remark 3. Kλ can not be continuous as an operator H3
(0) → R. Indeed, from the second

part of the lemma 1, we have :

∀n ≥ N(λ),
∣∣∣∣∣Kλ

(
ϕn

λ
3/2
n

)∣∣∣∣∣ =
∣∣∣∣∣ αλnλ

3/2
n

∣∣∣∣∣ ≥ c > 0 . (111)

And for :

ψN := 1√
N

N(λ)+N−1∑
n=N(λ)

ϕn

λ
3/2
n

sign(αλn) , (112)

we have : ∥∥∥ψN∥∥∥
H3(0)

= 1 and
∣∣∣K(ψN )

∣∣∣ ≥ √Nc −→
N→+∞

+∞ (113)

2.4 Estimate of
{
αλn
}
n∈N∗

in λ

If we want to follow the strategy of the section 1.2, we have to estimate ‖T λ‖ in function
of λ. It is the purpose of this section. We will use the Jaffard lemma [8] and some results
about localized frames (see appendix A or [1]).

First, we show some estimates on {gλnλ
−1/2
n }n∈N∗ . In particular, {gλnλ

−1/2
n }n∈N∗ is self-

localized with decay coefficient 2 (see appendix A for the definition).

Lemma 3. {gλnλ
−1/2
n }n∈N∗ verifies for all γ ∈ ]0 , 1

2 [ :∣∣∣∣∣〈gλnλ−1/2
n , gλkλ

−1/2
k

〉
H3

(0)

∣∣∣∣∣ ≤ Cλ2

(1 + |n− k|)2

( 1
|λk − λ|γ

+ 1
|λn − λ|γ

)
, (114)

and if λ > max(λn, λk) : ∣∣∣∣∣〈gλnλ−1/2
n , gλkλ

−1/2
k

〉
H3

(0)

∣∣∣∣∣ ≥ c√λ . (115)
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Proof of the lemma 3. Let n 6= k ∈ N∗ × N∗. We have :

〈
gλnλ

−1/2
n , gλkλ

−1/2
k

〉
H3

(0)
= βnβk

λ
1/2
n λ

1/2
k

∑
`∈N∗

λ3
` 〈ϕ,ϕ`〉

2

(λ+ λ` − λk)(λ+ λ` − λn) . (116)

Now, using (11), (76), the relation :

1
(λ+ λ` − λk)(λ+ λ` − λn) = 1

λk − λn

( 1
λ+ λ` − λk

− 1
λ+ λ` − λn

)
, (117)

and for all a > 0 such that a /∈ N2 :∑
`∈N∗

1
|`2 + a|

= O

( 1√
a

)
, (118)

∑
`∈N∗

1
|`2 − a|

= O

(
ln(
√
a)√
a

)
, (119)

we have for all γ ∈ ]0 , 1
2 [ :∣∣∣∣∣〈gλnλ−1/2

n , gλkλ
−1/2
k

〉
H3

(0)

∣∣∣∣∣ ≤ Cλ2

|λn − λk|
∑
`∈N∗

( 1
|λ+ λ` − λk|

+ 1
|λ+ λ` − λn|

)
(120)

≤ Cλ2

|λn − λk|

( 1
|λk − λ|γ

+ 1
|λn − λ|γ

)
. (121)

Using (105) and the relation :

1
|n2 − k2|

≤ 1
(n− k)2 ≤

4
(1 + |n− k|)2 , (122)

we conclude :∣∣∣∣∣〈gλnλ−1/2
n , gλkλ

−1/2
k

〉
H3

(0)

∣∣∣∣∣ ≤ Cλ2

(1 + |n− k|)2

( 1
|λk − λ|γ

+ 1
|λn − λ|γ

)
. (123)

Now, let (n, k) ∈ N∗×N∗. and assume λ > max(λn, λk). Then, using (11), (76), we have :∣∣∣∣∣〈gλnλ−1/2
n , gλkλ

−1/2
k

〉
H3

(0)

∣∣∣∣∣ ≥ cλ2 ∑
`∈N∗

1
(λ+ λ` − λk)(λ+ λ` − λn) (124)

≥ cλ2 ∑
`∈N∗

1
(λ+ λ`)2 ≥ cλ

2 ∑
`≥
⌈√

λ
π2

⌉ `−4 (125)

≥ c
√
λ . (126)

Which ends the proof of the lemma.
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Let {hλn}n∈N∗ be the Riesz dual basis of {gλnλ
−1/2
n }n∈N∗ in H3

(0). Thanks to the previous
lemma and the theorem 6 (see appendix A), we know that {hλn}n∈N∗ is also self-localized
with decay coefficient 2. However, this theorem is not sufficient to estimate ‖T λ‖ in function
of λ because it does not provide any estimate in λ. So, we will need to specify the proof.

We introduce some notations and define the space of the infinite matrix with polyno-
mial off-diagonal coefficients decay. LetM be the space of the infinite matrix indexed by
N∗ × N∗ and let γ,C > 0. We define :

QCγ :=
{
A = (An,k) ∈M

∣∣∣∣ ∃C ≥ 0, ∀(n, k) ∈ (N∗)2, |An,k| ≤
C

(1 + |n− k|)γ
}
. (127)

If A is an infinite matrix indexed by N∗ × N∗, we denote by ‖A‖ the norm of A as an
operator `2(N∗)→ `2(N∗). Moreover, for δ > 0, we define :

‖A‖δ = sup
n,k∈N∗×N∗

|An,k| (1 + |n− k|)δ . (128)

Clearly, if A is in QCγ then ‖A‖γ ≤ C and by the Schur lemma (see, for example, [1]), if
A ∈ QCγ then ‖A‖ ≤ C.

Let Gλ = (Gλn,k)(n,k)∈(N∗)2 be the Gram matrix associate to {gλnλ
−1/2
n }n∈N∗ which is

defined by :

∀(n, k) ∈ (N∗)2, Gλn,k =
〈
gλnλ

−1/2
n , gλkλ

−1/2
k

〉
H3

(0)
. (129)

The lemma 3 shows that Gλ ∈ QCλ2
2 .

Let {hλn}n∈N∗ be the Riesz dual basis of {gλnλ
−1/2
n }n∈N∗ in H3

(0). Because {g
λ
nλ
−1/2
n }n∈N∗

is a Riesz basis for H3
(0), G

λ is invertible and the coefficients of (Gλ)−1 are given by :

∀(n, k) ∈ N∗ × N∗, (Gλ)−1
n,k =

〈
hλn, h

λ
k

〉
H3

(0)
. (130)

The Jaffard lemma shows there exists C(λ) > 0 such that :

(Gλ)−1 ∈ QC(λ)
2 . (131)

Let Bλ be the operator such that :

Gλ =
∥∥∥Gλ∥∥∥ (1−Bλ) . (132)

Gλ is invertible, hence we have :∥∥∥Bλ
∥∥∥ < 1 and (Gλ)−1 =

∥∥∥Gλ∥∥∥−1 ∑
n∈N

(Bλ)n . (133)

And we have : ∥∥∥(Gλ)−1
∥∥∥

2
≤
∥∥∥Gλ∥∥∥−1 ∑

n∈N∗

∥∥∥(Bλ)n
∥∥∥

2
. (134)
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In the proof of the Jaffard lemma (see [8]),
∥∥∥Bλ

∥∥∥ plays a crucial role in the bootstrap
argument. By the functional calculus, we have :

∥∥∥Bλ
∥∥∥ = 1− inf(SpGλ)

‖Gλ‖
. (135)

In the course of my internship, I did not manage to find a lower bound for inf(SpGλ). So,
I have to make an hypothesis if a want to carry on the proof.

Hypothesis 1. There exists δ ∈ ]0 , 2] and c > 0 such that :

inf(SpGλ) ≥ cλδ . (136)

In consequence, if λ is big enough, we have :∥∥∥Bλ
∥∥∥ ≤ 1− c̃λδ−2 < 1 . (137)

Now, using this assumption, if we follow the proof of the Jaffard lemma, we can see that
there exists m > 0 such that :∣∣∣∣〈hn, hk〉H3

(0)

∣∣∣∣ ≤ Cλm

(1 + |n− k|)2 , (138)

We recall the decomposition :

φλn = λn 〈h, ϕn〉+ λn 〈ϕ,ϕn〉 γλn + δλn

λ
1/2
n

. (139)

Lemma 4. If λ is big enough, there exists {δ̃n}n∈N∗ ∈ `2(N∗) such that :∣∣∣δλn∣∣∣ ≤ λm+2δ̃n . (140)

Proof of the lemma 4. Thanks to the Riesz basis properties, we have :

g =
∑
n∈N∗

δλn

λ
1/2
n

gλn =
∑
n∈N∗

〈
g, gλnλ

−1/2
n

〉
H3

(0)
hλn , (141)

which leads to :

δλn =
〈
g, hλn

〉
H3

(0)
=
∑
k∈N∗

〈
g, gλkλ

−1/2
k

〉
H3

(0)

〈
hλn, h

λ
k

〉
H3

(0)
(142)

Now, we have :〈
g, gλkλ

−1/2
k

〉
H3

(0)
=
∑
`∈N∗

λ3
` 〈g, ϕ`〉

〈
gλkλ

−1/2
k , ϕ`

〉
(143)

= βλk

λ
1/2
k

∑
`∈N∗

λ3
`

( −1
(`π)3

〈
ϕ′′′, ϕ`

〉) 〈ϕ,ϕ`〉
λk − λ` − λ

= a1
k(λ) + a2

k(λ) , (144)
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where :

a1
k(λ) = βλk 〈ϕ,ϕk〉λ

5/2
k

(kπ)3λ

〈
ϕ′′′, ϕk

〉
, (145)

a2
k(λ) = βλk

λ
1/2
k

∑
6̀=k
λ3
`

( −1
(`π)3

〈
ϕ′′′, ϕ`

〉) 〈ϕ,ϕ`〉
λk − λ` − λ

. (146)

Using (76) and (11), we have :

c
∣∣〈ϕ′′′, ϕk〉∣∣ ≤ ∣∣∣a1

k(λ)
∣∣∣ ≤ C ∣∣〈ϕ′′′, ϕk〉∣∣ . (147)

For the second term, using (76), (11) and the Cauchy-Schwarz inequality, we have :
∣∣∣a2
k(λ)

∣∣∣ ≤ Cλ2∑
6̀=k

|〈ϕ′′′, ϕ`〉|
|k2 − `2|

(148)

≤ Cλ2 ∥∥ϕ′′′∥∥L2

√√√√∑
`6=k

1
|k2 − `2|2

:= λ2c̃k . (149)

Clearly, c̃ := {c̃k}k∈N∗ ∈ `2(N∗). Now, coming back to
〈
g, gλkλ

−1/2
k

〉
H3

(0)
, using (138), we

have : ∣∣∣δλn∣∣∣ =
∣∣∣∣∣〈g, gλnλ−1/2

k

〉
H3

(0)

∣∣∣∣∣ ≤ ∑
`∈N∗

λ3
` |〈g, ϕ`〉|

∣∣∣〈gλkλ−1/2
k , ϕ`

〉∣∣∣ (150)

≤ Cλm+2 ∑
k∈N∗

|〈ϕ′′′, ϕk〉|+ c̃k
(1 + |n− k|)2 . (151)

We denote :

δ̃n := C
∑
k∈N∗

|〈ϕ′′′, ϕk〉|+ c̃k
(1 + |n− k|)2 . (152)

Then, the estimate :

∣∣∣δ̃n∣∣∣ ≤ C
∣∣〈ϕ′′′, ϕn〉∣∣+ c̃n + (‖c̃‖`2(N∗) +

∥∥ϕ′′′∥∥L2)
√√√√∑
k 6=n

1
|n− k|4

 , (153)

shows that {δ̃n}n∈N∗ ∈ `2(N∗). Finally :∣∣∣δλn∣∣∣ ≤ λm+2δ̃n . (154)

We have have the same kind of estimate for γλn.
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Lemma 5. If λ is big enough, there exists {γ̃n}n∈N∗ ∈ `2(N∗) such that :∣∣∣γλn∣∣∣ ≤ λm+4γ̃n . (155)

Proof of the lemma 5. We follow the same previous proof, replacing g by h̃λ and using the
following estimation for

〈
h̃λ, ϕ`

〉
:

∣∣∣〈h̃λ, ϕ`〉∣∣∣ =

∣∣∣∣∣∣
∑
n6=`

λnβ
λ
n 〈h, ϕn〉 〈ϕ,ϕ`〉
λn − λ` − λ

∣∣∣∣∣∣ (156)

≤ Cλ2

`3

∑
n6=`

1
|n2 − `2|

≤ Cλ2 ln(`)
`4

. (157)

Now, from the decomposition (139), we have :
Proposition 2. If λ is big enough, we have for all n ∈ N∗∣∣∣nφλn∣∣∣ ≤ Cλm+4 and

∣∣∣αλn∣∣∣ ≤ Cλm+4n3 . (158)

2.5 Continuity of T λ

We recall T λ is defined by :

T λ : ψ 7−→
∑
n∈N∗

fλn 〈ψ,ϕn〉 . (159)

Lemma 6. Let ψ ∈ H3
(0). Then : ∑

n∈N∗
fλn 〈ψ,ϕn〉 (160)

converges in H2
(0).

Proof of the lemma 6. Let ψ ∈ H3
(0) and M ≥ N ≥ 1. We have :∥∥∥∥∥

M∑
n=N

fλn 〈ψ,ϕn〉
∥∥∥∥∥

2

H2
(0)

=
∑
k∈N∗

λ2
k

∣∣∣∣∣
〈

M∑
n=N

fλn 〈ψ,ϕn〉 , ϕk

〉∣∣∣∣∣
2

(161)

=
∑
k∈N∗

λ2
k

∣∣∣∣∣
M∑
n=N
〈ψ,ϕn〉

〈
fλn , ϕk

〉∣∣∣∣∣
2

(162)

≤
∑
k∈N∗

λ2
k

(
M∑
n=N

λ3
n |〈ψ,ϕn〉|

2
) M∑

n=N

∣∣∣〈fλn , ϕk〉∣∣∣2
λ3
n

 (163)

≤ ‖ψ‖2H3
(0)

M∑
n=N

(αλn)2

(βλn)2λ3
n

∑
k∈N∗

λ2
k

∣∣∣〈gλn, ϕk〉∣∣∣2 (164)

≤ ‖ψ‖2H3
(0)

M∑
n=N

∥∥∥gλn∥∥∥2

H2
(0)

(αλn)2

(βλn)2λ3
n

(165)
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Thank to corollary 1 and to the estimate (76) for βλn , we have :

(αλn)2

(βλn)2λ3
n

= O

( 1
n2

)
. (166)

Because
{
gλn

}
n∈N∗

is a Riesz basis for H2
(0), there exists a constant C > 0 such that :

∀n ∈ N∗,
∥∥∥gλn∥∥∥2

H2
(0)
≤ C . (167)

Hence
{∑N

n=1 f
λ
n 〈ψ,ϕn〉

}
N∈N∗

is a Cauchy sequence of H2
(0), then a convergent series in

H2
(0).

Now, we have everything we need to show the continuity of T λ.

Proposition 3. If λ is big enough, then :

T λ : H3
(0) −→ H3

(0) (168)

is a continuous linear operator. Moreover :∥∥∥T λ∥∥∥ = O
(
λm+5

)
. (169)

Proof. Let ψ ∈ H3
(0). By the lemma 6 the series defining T λ is convergent in H2

(0) hence in
L2(0, 1), which justifying the following equality :

∀n ∈ N∗,
〈
T λψ,ϕn

〉
=
∑
k∈N∗

〈ψ,ϕk〉
〈
fλk , ϕn

〉
(170)

Using the corollary 1 and the Cauchy-Schwarz inequality, we have :

∥∥∥T λψ∥∥∥2

H3
(0)

=
∑
n∈N∗

λ3
n

∣∣∣〈T λψ,ϕn〉∣∣∣2 =
∑
n∈N∗

λ3
n

∣∣∣∣∣∣
∑
k∈N∗

〈ψ,ϕk〉
〈
fλk , ϕn

〉∣∣∣∣∣∣
2

(171)

=
∑
n∈N∗

λ3
n |〈ϕ,ϕn〉|

2

∣∣∣∣∣∣
∑
k∈N∗

αλk 〈ψ,ϕk〉
λk − λn − λ

∣∣∣∣∣∣
2

(172)

≤ 2
∑
n∈N∗

λ3
n |〈ϕ,ϕn〉|

2 (αλn)2 |〈ψ,ϕn〉|2

λ2 + 2
∑
n∈N∗

λ3
n |〈ϕ,ϕn〉|

2

∣∣∣∣∣∣
∑
k 6=n

αλk 〈ψ,ϕk〉
λk − λn − λ

∣∣∣∣∣∣
2

(173)

≤ Cλ2m+6 ‖ψ‖2H3
(0)

+ Cλ2m+10 ‖ψ‖2H3
(0)

∑
n∈N∗

∑
k 6=n

1
(n2 − k2)2 . (174)

The second term is a finite double series (see the proof of the lemma 1). Hence, T λ is
continuous from H3

(0) to H3
(0) and we have the estimate :

‖T λ‖ = O
(
λm+5

)
. (175)

20



2.6 Operator equality

In the rest of this section, we aim to show the operator equality :

T λ(A+BKλ) = AT λ − λT λ . (176)

Following the ideas in the article [3] from Coron, we first specify the space where this
equality holds. At least, we need :

(A+BKλ)ψ ∈ H3
(0) . (177)

This leads to the following space :

D(A+BKλ) :=
{
ψ ∈ H4

(0)

∣∣∣ ∆ψ +Kλ(ψ)ϕ ∈ H3
(0)

}
. (178)

Proposition 4. If λ is big enough, then : D(A+BKλ) is dense in H3
(0).

Proof of the proposition 4. Let ψ ∈ D(A+BKλ)⊥ in H3
(0). By the asymptotic behavior of

αλn (see lemma 2), there exists N(λ) ∈ N∗ such that αλn 6= 0 for all n ≥ N(λ). Let m ∈ N∗
and n ≥ N(λ). We have :

ϕm −
αλm
αλn

ϕn ∈ H5(0, 1) ∩H4
(0) . (179)

Moreover :

Kλ(ϕm −
αλm
αλn

ϕn) = αλm −
αλm
αλn

αλn = 0 . (180)

Hence ϕm − αλm
αλn
ϕn ∈ D(A+BKλ). We have :

0 =
〈
ψ,ϕm −

αλm
αλn

ϕn

〉
H3

(0)

= 〈ψ,ϕm〉H3
(0)
− αλm
αλn
〈ψ,ϕn〉H3

(0)
(181)

= 〈ψ,ϕm〉H3
(0)
− αλmλ

3/2
n

αλn
(λ3/2
n 〈ψ,ϕn〉) . (182)

Using the lemma 2 and λ3/2
n 〈ψ,ϕn〉 ∈ `2(N∗), we have :

0 =
〈
ψ,ϕm −

αλm
αλn

ϕn

〉
H3

(0)

−→
n→+∞

〈ψ,ϕm〉H3
(0)
, (183)

and so : 〈ψ,ϕm〉H3
(0)

= 0. We conclude ψ = 0.

Proposition 5. If λ is big enough, then for all ψ ∈ D(A+BKλ), the following holds :

T λ(A+BKλ)ψ = (AT λ − λT λ)ψ . (184)
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Proof of the proposition 5. Let ψ ∈ D(A+BKλ).
We recall that D(A) = H2

(0) and that A is a closed operator. On one hand, thank to
the lemma 6, we have :

(AT λ − λT λ)ψ = (A− λ)
∑
n∈N∗

fλn 〈ψ,ϕn〉 =
∑
n∈N∗

(A− λ)fλn 〈ψ,ϕn〉 , (185)

the convergence being in L2(0, 1). Because fλn is the solution of the equation (32), we have :

(AT λ − λT λ)ψ =
∑
n∈N∗

ϕαλn 〈ψ,ϕn〉 − λnfλn 〈ψ,ϕn〉 . (186)

On the other hand :

T λ(A+BKλ)ψ =
∑
n∈N∗

fλn

〈
(A+BKλ)ψ,ϕn

〉
=
∑
n∈N∗

fλn 〈ψ,Aϕn〉+Kλ(ψ)fλn 〈ϕ,ϕn〉

(187)
= Kλ(ψ)

∑
n∈N∗

fλn 〈ϕ,ϕn〉 −
∑
n∈N∗

λnf
λ
n 〈ψ,ϕn〉 , (188)

the convergence being in H2
(0) hence in L2(0, 1). Recall the "T λB = B" condition which

says that :

ϕ =
∑
n∈N∗

fλn 〈ϕ,ϕn〉 in L2(0, 1) . (189)

Injecting (189) in (188), we found that :

T λ(A+BKλ)ψ = (AT λ − λT λ)ψ . (190)

Remark 4. If ψ ∈ D(A+BKλ), then, using the equality :

AT λψ = λT λψ − T λ(A+BKλ)ψ ∈ H3
(0) , (191)

we deduce that T λψ ∈ H5
(0).

2.7 Invertibility of T λ

We can’t prove the invertibility of T λ by a direct method because we don’t have a
lower boundary for

{
αλn

}
n∈N∗

. Following [3], we first prove that T λ is a Fredholm operator
then we conclude showing that ker[(T λ)∗] = {0}.

Proposition 6. If λ is big enough, there exists T̃ λ : H3
(0) → H3

(0) invertible such that
T λ − T̃ λ is a compact operator of H3

(0).

22



Proof of the proposition 6. We define T̃ λ in the following way :

T̃ λ : ψ ∈ H3
(0) 7−→

∑
n∈N∗

λ3/2
n

〈h, ϕn〉
〈ϕ,ϕn〉

〈ψ,ϕn〉
gλn

λ
1/2
n

∈ H3
(0) . (192)

T̃ λ is well-defined and continuous. Indeed, if ψ is in H3
(0) then :∣∣∣∣λ3/2

n

〈h, ϕn〉
〈ϕ,ϕn〉

〈ψ,ϕn〉
∣∣∣∣ ≤ C ∣∣∣λ3/2

n 〈ψ,ϕn〉
∣∣∣ ∈ `2(N∗) . (193)

Let’s show that T̃ λ is invertible. To see that, let χ ∈ H3
(0). There exists

{
χλn

}
n∈N∗

∈ `2(N∗)
such that :

χ =
∑
n∈N∗

χλn
gλn

λ
1/2
n

∈ H3
(0) . (194)

Because of the Riesz bases properties, if ψ ∈ H3
(0) verifies T λψ = χ if and only if for all

n ∈ N∗ :

〈ψ,ϕn〉 = χλn 〈ϕ,ϕn〉
〈h, ϕn〉λ3/2

n

. (195)

Conversely, if χ ∈ L2(0, 1) verifies (195), then :

|〈ψ,ϕn〉| = O


∣∣∣χλn∣∣∣
n3

 , (196)

which implies χ ∈ H3
(0).

We show that T λ − T̃ λ is compact by the Hilbert-Schmidt criterium, which is :

∑
n∈N∗

∥∥∥∥∥(T λ − T̃ λ) ϕn
λ

3/2
n

∥∥∥∥∥
2

H3
(0)

< +∞ . (197)

However :

(T λ − T̃ λ) ϕn
λ

3/2
n

= (φλn − λn 〈h, ϕn〉)
λn 〈ϕ,ϕn〉

gλn

λ
1/2
n

. (198)

Hence, using the lemma 2 :

∑
n∈N∗

∥∥∥∥∥(T λ − T̃ λ) ϕn
λ

3/2
n

∥∥∥∥∥
2

H3
(0)

≤ C
∑
n∈N∗

∣∣∣(φλn − λn 〈h, ϕn〉)n∣∣∣2 < +∞ . (199)

This concludes the proof.

Proposition 7. If λ is big enough, the operator T λ is invertible from H3
(0) into itself.
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Proof of the proposition 7. Using the proposition 6, there exists an invertible operator
T̃ λ : H3

(0) → H3
(0) and a compact operator K̃λ : H3

(0) → H3
(0) invertible such that :

T = T̃ λ
(
1 + (T̃ λ)−1K̃λ

)
. (200)

Thank to the Fredholm theory, to show that T λ is invertible it is sufficient to show that :

ker[(T λ)∗] = {0} . (201)

We write the main ideas of the proof. The details can be found in [3].
We rewrite (176) :

T λ(A+BKλ + λ+ ρ) = (A+ ρ)T λ , (202)

where ρ ∈ C will be chosen later such that :

(A+ ρ) is an invertible operator from D(A+BKλ) to H3
(0) , (203)

(A+BKλ + λ+ ρ) is an invertible operator from D(A) to H3
(0) . (204)

All the spaces are complexified. We deduce :

(A+ ρ)−1T λ = T λ(A+BKλ + λ+ ρ)−1 . (205)

Then, by a rapid computation, we show that ker[(T λ)∗] is stable by [(A + ρ)∗]−1. Hence,
if ker[(T λ)∗] 6= {0}, [(A+ ρ)∗]−1 has an eigenfunction ψ 6= 0 in ker[(T λ)∗] which is also an
eigenfunction of (A∗)−1. There exists ν ∈ C such that :

(A∗)−1ψ = νψ . (206)

Now, we have :

∀j ∈ N∗, ν 〈ψ,ϕj〉 =
〈

(A∗)−1ψ,ϕj
〉

= − 1
λj
〈ψ,ϕj〉 . (207)

Because ψ is not zero, there exists one and only one k ∈ N∗, such that :

ν = − 1
λk

. (208)

Hence, there exists c ∈ C such that ψ = cϕk. Now, using the T λB = B condition (189),
we have :

c 〈ϕ,ϕk〉 = 〈ϕ,ψ〉 =
〈
T λϕ,ψ

〉
=
〈
ϕ, (T λ)∗ψ

〉
= 0 . (209)

Because 〈ϕ,ϕk〉 6= 0, we have c = 0 and ψ = 0. This is absurd and we must have :

ker[(T λ)∗] = {0} . (210)

It remains to show there exists ρ ∈ C such that (203) holds. Denoting κ = ρ + λ and
applying A−1 to A + BKλ + κ, we just have to prove the set of κ ∈ C such that 1 +
A−1BKλ + κA−1 is invertible from D(A+BKλ) to D(A) is not empty.
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If Kλ(A−1ϕ) 6= −1 then it is easy to show that 1 +A−1BKλ is invertible from D(A+
BKλ) to D(A) and the proof is over.

Now, assume Kλ(A−1ϕ) = −1. It corresponds to the case A−1ϕ ∈ D(A + BKλ) (see
the definition of D(A + BKλ) (178)). 0 is an eigenvalue of A + A−1BKλ of algebraic
multiplicity 1. From the chapter 7 of [9], there exists an open set Ω ⊂ C of 0 ∈ C,
there exists an holomorphic function κ ∈ Ω 7→ λ(κ) ∈ C and an holomorphic function
κ ∈ Ω 7→ ψ(κ) ∈ D(A+BKλ) such that for all κ ∈ Ω :

ψ(0) = A−1ϕ , (211)
(1 +A−1BKλ + κA−1)ψ(κ) = λ(κ)ψ(κ) . (212)

If λ(κ) 6= 0 in a small neighborhood near 0 then (1 + A−1BKλ + κA−1) is invertible for
κ near 0 and the proof is over. Assume λ(κ) = 0 in a small neighborhood near 0. We
consider the series expansion of ψ around 0 :

ψ(κ) = A−1ϕ+
∑
k∈N∗

κkψκ . (213)

At the order 0 in (212), we obtain :

A−1ϕ+A−1ϕKλ(A−1ϕ) = 0 . (214)

At the higher order, we obtain :

ψk +A−1ϕKλ(ψk) +A−1(ψk−1) = 0 . (215)

Taking Kλ of (215), we obtain :

∀k ∈ N, Kλ
(
A−1ψk

)
= 0 (216)

By recurrence, taking successively A−1 and Kλ of (215), we obtain :

∀n ∈ N∗, ∀k ∈ N∗, Kλ(A−nψk) = 0 . (217)

However, we have for all n ≥ 2 :

Kλ (A−nϕ) =
∑
k∈N∗

αλk
〈
A−nϕ,ϕk

〉
=
∑
k∈N∗

(−1)nαλk
λnk

〈ϕ,ϕk〉 = 0 . (218)

Now, we introduce :

H(z) :=
∑
k∈N∗

(−1)nαλk
λ2
k

〈ϕ,ϕk〉 e
− z
λk (219)

H is an entire function and following the same strategy than the proof of 1, we found :

∀k ∈ N∗, αλk = 0 , (220)

which is in contradiction with the corollary 1. Hence, 1+A−1BKλ+κA−1 is invertible for κ
in a small neighborhood of 0. Now, we just have to choose κ small enough to simultaneously
have (A+BKλ + κ) and A+ κ invertible.
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Now, we can prove a posteriori that :

∀n ∈ N∗, αλn 6= 0 . (221)

It is not a logic loop because the proof of the invertibility of T λ does not use this fact and
we also give an explicit expression of (T λ)−1.

Let χ ∈ H3
(0). Because

{
gλnλ

−1/2
n

}
n∈N∗

is a Riesz basis of H3
(0), there exists {χ

λ
n}n∈N∗ ∈

`2(N∗) such that :

χ =
∑
n∈N∗

χλn

λ
1/2
n

gλn in H3
(0) . (222)

Let ψ ∈ H3
(0). Then, because of the Riesz basis properties :

T λψ = χ⇐⇒
∑
n∈N∗

αλn
βλn
〈ψ,ϕn〉 gλn =

∑
n∈N∗

χλn

λ
1/2
n

gλn ⇐⇒ ∀n ∈ N∗,
〈ψ,ϕn〉λ1/2

n αλn
βλn

= χλn .

(223)

Then, if there exists n0 ∈ N∗ such that αλn0 = 0, for χλn = δn,n0 , the equation Tψ = χ does
not have any solution. Hence :

∀n ∈ N∗, αλn 6= 0 . (224)

Now, the last equality uniquely defines ψ. Conversely, if ψ is such that ∀n ∈ N∗, 〈ψ,ϕn〉 =
βλnχ

λ
n

λ
1/2
n αλn

, then, using the estimate (76) and the corollary 1 :

∑
n∈N∗

λ3
n |〈ψ,ϕn〉|

2 =
∑
n∈N∗

λ3
n

(αλn)2
(βλn)2

λn
(χλn)2 ≤ C

∑
n∈N∗

(χλn)2 < +∞ . (225)

Hence ψ ∈ H3
(0) and T λ is invertible. Moreover, this shows that :

(T λ)−1 : χ =
∑
n∈N∗

χλn

λ
1/2
n

gλn ∈ H3
(0) 7−→

∑
n∈N∗

βλnχ
λ
n

λ
1/2
n αλn

ϕn , (226)

is continuous from H3
(0) into itself.

Remark 5. Unfortunately, we can’t find an estimate for ‖(T λ)−1‖ by the usual means
without a lower bound for

∣∣∣αλn∣∣∣ for all n ∈ N∗. I did not manage to find one during my
internship. Then, it is an open question.

3 Well-posedness of the problem and rapid stabilization

3.1 Well-posedness of the closed-loop system

Now, we focus our attention on the closed-loop system :{
ψt = (A+BKλ)ψ, t ∈ (0, T ) ,
ψ(0) = ψ0 .

(227)
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Proposition 8. Let λ > 0 big enough verifying (15). The unbounded operator (A+BKλ)
defined on D(A + BKλ) generates a strongly continuous semigroup on H3

(0). Thus there
exists a unique solution C([0, T ];H3

(0)) of (227) with u(t) = Kλ(ψ(t)).

Proof. We have already proved that D(A+BKλ) is densely defined (see lemma 4). Now,
we prove that (A+BKλ) is a closed operator.

Let (ψn)n∈N∗ ∈ D(A+BKλ) and (ψ, φ) ∈ (H3
(0))

2 such that :

ψn −→ ψ in H3
(0) , (228)

∆ψn +Kλ(ψn)ϕ −→ φ in H3
(0) . (229)

Using the first equation (228), we have :

∆ψn −→ ∆ψ in H1
(0) . (230)

Reinjecting in the second equation (229) :

Kλ(ψn)ϕ −→ φ−∆ψ in H1
(0) . (231)

Because Rϕ is closed in H1(0), there exists κ ∈ R such that :

Kλ(ψn)ϕ −→ κϕ in H1
(0) . (232)

Which implies :

Kλ(ψn) −→ κ . (233)

And because ϕ ∈ H2
(0), we also have convergence in H2

(0) :

Kλ(ψn)ϕ −→ κϕ = φ−∆ψ in H2
(0) . (234)

Hence :

∆ψ ∈ H2
(0) =⇒ ψ ∈ H4

(0) , (235)

And Kλ(ψ) is well defined. Moreover :

‖∆ψ −∆ψn‖H2
(0)
≤
∥∥∥Kλ(ψn)− (φ−∆ψ)

∥∥∥
H2

(0)
+
∥∥∥(∆ψn +Kλ(ψn))− φ

∥∥∥
H2

(0)
, (236)

hence :

∆ψn −→ ∆ψ in H2
(0) =⇒ ψn −→ ψ in H4

(0) . (237)

Using the lemma 1, we have :

∣∣∣Kλ(ψ)−Kλ(ψn)
∣∣∣ =

∣∣∣∣∣∣
∑
k∈N∗

αλk 〈ψ − ψn, ϕk〉

∣∣∣∣∣∣ ≤
√√√√∑
k∈N∗

(
αλk
λ2
k

)2

︸ ︷︷ ︸
<+∞

‖ψ − ψn‖H4
(0)
−→ 0 . (238)
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We successively obtain :

κ = Kλ(ψ) , (239)
∆ψ +Kλ(ψ)ϕ = φ and (240)
ψ ∈ D(A+BKλ) . (241)

Let us now prove the dissipativity of (A + BKλ). Since T λ is invertible from H3
(0) into

itself, ‖ · ‖Tλ :=
∥∥∥T λ · ∥∥∥

H3
(0)

defines a equivalent norm to ‖ · ‖H3
(0)
. Let ψ ∈ D(A + BKλ),

from proposition 5 and remark 4, we have :〈
(A+BKλ)ψ,ψ

〉
Tλ

=
〈
T λ(A+BKλ)ψ, T λψ

〉
H3

(0)
(242)

=
〈

(A− λ)T λψ, T λψ
〉
H3

(0)
(243)

= −λ
∥∥∥T λψ∥∥∥2

H3
(0)

+
∑
k∈N∗

λ3
k

〈
AT λψ,ϕk

〉〈
T λψ,ϕk

〉
(244)

= −λ
∥∥∥T λψ∥∥∥2

H3
(0)
−
∑
k∈N∗

λ4
k

∣∣∣〈T λψ,ϕk〉∣∣∣2 (245)

= −λ
∥∥∥T λψ∥∥∥2

H3
(0)
−
∥∥∥T λψ∥∥∥2

H4
(0)
≤ 0 . (246)

Concerning the dissipativity of (A+BKλ)∗, we first explicit D((A+BKλ)∗).
Here, we will consider A to be the invertible unbounded operator on H3

(0) :

A : D(A) := H5
(0) −→ H3

(0) . (247)

A is symetric. Moreover, if ψ ∈ D(A∗) then it exists wψ ∈ H3
(0) such that :

∀n ∈ N∗, 〈wψ, ϕn〉H3
(0)

= 〈ψ,Aϕn〉H3
(0)

= −λn 〈ψ,ϕn〉H3
(0)
. (248)

Hence : 〈wψ, ϕn〉 = −λn 〈ψ,ϕn〉 and we have :

wψ =
∑
n∈N∗

〈ϕn, wψ〉ϕn =
∑
n∈N∗

−λn 〈ϕn, ψ〉ϕn , (249)

and :

wψ ∈ H3
(0) ⇐⇒

∑
n∈N∗

λ3
n |〈wψ, ϕn〉|

2 =
∑
n∈N∗

λ5
n |〈ψ,ϕn〉|

2 < +∞⇐⇒ ψ ∈ H5
(0) . (250)

So D(A∗) = H5
(0) and A is self-adjoint. Let ψ ∈ D((A + BKλ)∗) and φ ∈ D(A + BKλ).

We recall that T λφ ∈ H5
(0) (see remark 4). And we have :〈

ψ, (A+BKλ)φ
〉
Tλ

=
〈
T λψ, (A− λ)T λφ

〉
H3

(0)
. (251)
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Let ψ ∈ D((A+BKλ)∗). Then :

∃wψ ∈ H3
(0), ∀φ ∈ D(A+BKλ),

〈
T λψ, (A− λ)T λφ

〉
H3

(0)
=
〈
ψ, (A+BKλ)φ

〉
Tλ

(252)

= 〈wψ, φ〉Tλ =
〈
T λwψ, T

λφ
〉
H3

(0)
.

(253)

BecauseD(A+BKλ) is dense inH3
(0) and T

λ continuous fromH3
(0) into itself, if ψ ∈ D((A+

BKλ)∗) then T λψ ∈ D(A∗) = H5
(0). Conversely, if ψ ∈ H

5
(0), then forall φ ∈ D(A+BKλ) :〈

ψ, (A+BKλ)φ
〉
Tλ

=
〈
T λψ, (A− λ)T λφ

〉
H3

(0)
=
〈

((T λ)−1AT λ − λ)ψ, φ
〉
Tλ

, (254)

and ψ ∈ D((A+BKλ)∗). Hence : D((A+BKλ)∗) = H5
(0). Now, let ψ ∈ D((A+BKλ)∗).

We have : 〈
(A+BKλ)∗ψ,ψ

〉
Tλ

=
〈

((T λ)−1AT λ − λ)ψ,ψ
〉
H3

(0)
(255)

=
〈
AT λψ, T λψ

〉
H3

(0)
− λ

∥∥∥T λψ∥∥∥2

H3
(0)
≤ 0 . (256)

Thank to the Lumer-Phillips theorem (see, for example, [6]), A+BKλ generates a strongly
continuous semigroup on H3

(0).

3.2 Rapid stabilization

We are now interested by the proof of the rapid stabilization of initial system :{
ψt = Aψ +Bu, t ∈ (0, T ) ,
ψ(0) = ψ0 .

(257)

Theorem 1. Let λ > 0 big enough verifying (15) and ψ0 ∈ H3
(0). Then, there exists

a linear feedback control uλ such that any solution of (257) with ψ0 as initial condition
verifies :

∃C ≥ 0, ‖ψ(t)‖H3
(0)
≤ Ce−λt ‖ψ0‖H3

(0)
. (258)

Proof of the theorem 1. Let ψ0 ∈ D(A+BKλ). The solution is given by :

ψ(t) = et(A+BKλ)ψ0 . (259)

Let χ(t) = T λψ(t). Thanks to the operator inequality, we have :

d
dtχ(t) = T λ

d
dtψ(t) = T λ(A+BKλ)ψ(t) (260)

= (AT λ − λT λ)ψ(t) = Aχ(t)− λχ(t) . (261)
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Taking the scalar product with χ(t) leads to :

d
dt ‖χ(t)‖2H3

(0)
= 2

〈 d
dtχ(t), χ(t)

〉
= 2 〈Aχ(t), χ(t)〉 − 2λ ‖χ(t)‖2H3

(0)
(262)

≤ −2λ ‖χ(t)‖2H3
(0)
. (263)

Hence, by Gronwall lemma :

‖χ(t)‖2H3
(0)
≤ e−2λt

∥∥∥T λψ0
∥∥∥2

H3
(0)
. (264)

The continuity and the invertibility of T λ implies :

‖ψ(t)‖H3
(0)
≤ ‖T λ‖‖(T λ)−1‖e−λt ‖ψ0‖H3

(0)
. (265)

Now, using the density of D(A+BKλ) in H3
(0) and this previous estimate, we can extend

it to all ψ0 ∈ H3
(0).

3.3 Null-controllability

We now investigate the null controllability of the system (257). If we want to use the
rapid stabilization result of the system (257) as in [4], we need an estimation on ‖(T λ)−1‖.
Unfortunately, because we did not manage to find a lower bound for all αλn, we have to
make an new strong assumption :

Hypothesis 2. There exists m̃ > 0 and C > 0 such that for all λ > 0 big enough and
verifying (15), we have :

‖(T λ)−1‖ ≤ Cλm̃ . (266)

Now, we can state the null controllability of the control system 257.

Theorem 2. Under the assumptions 1 and 2, there exists exists two increasing sequences
{λn}n∈N∗ and {tn}n∈N∗ such that for all n ∈ N∗, λn is big enough and verifies (15) and :

t1 = 0 and tn −→
n→+∞

T , (267)

and such that the solution ψ of (257) with :

∀t ∈ [0 , T ], u(t) = Kλnψ(t) if t ∈ [tn , tn+1[ ,

verifies :

ψ(T ) = 0 .

Proof of the theorem 2. Let {λn}n∈N∗ and {tn}n∈N∗ be two increasing sequence such that
for all n ∈ N∗, λn is big enough and verifies (15) and :

t1 = 0 and tn −→
n→+∞

T . (268)
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We denote sn = tn − tn−1. The assumptions 2 and the theorem 1 give p > 0 such that for
all n ≥ 2 the solution ψn of the control system :{

ψnt = Aψn +BKλnψn, t ∈ (tn−1, tn) ,
ψn(0) = ψn0 .

(269)

verifies :

‖ψn(tn)‖H3
(0)
≤ Cλpne−λnsn ‖ψn0‖H3

(0)
. (270)

Hence, the solution ψ of (257) with :

∀t ∈ [0 , T ], u(t) = Kλnψ(t) if t ∈ [tn , tn+1[ ,

verifies :

‖ψ(tn)‖H3
(0)
≤ Cn(λn · · ·λ1)pe−

∑n

k=1 λksk ‖ψ0‖H3
(0)

≤ exp
(
n ln(C) +

n∑
k=1

p ln(λk)− λksk

)
‖ψ0‖H3

(0)
.

We choose, for example, {λn}n∈N∗ and {tn}n∈N∗ such that :

∀n ∈ N∗, sn = 6T
n2π2 and ∃C2 > C1 > 0, ∀n ∈ N∗, C1n

3 ≤ λn ≤ C2n
3 . (271)

Clearly tn → T as n goes to +∞ and we have :

‖ψ(tn)‖H3
(0)
≤ exp

[
n(ln(C) + 3pC2 ln(n))− 6C1T

π2
n(n+ 1)

2

]
‖ψ0‖H3

(0)
−→

n→+∞
0 . (272)

Hence :

ψ(T ) = 0 . (273)
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A Notions about Riesz bases
Definition 1. A collection of vectors {xn}n∈N∗ in an Hilbert space H is a Riesz basis for
H if it is the image of an hilbertian basis for H under an invertible linear transformation.

The following theorem gathers the fundamental properties of the Riesz bases.

Theorem 3. Let {xn}n∈N∗ a collection of vectors in a Hilbert space H.
(a) If {xn}n∈N∗ is a Riesz basis for H then there is a unique collection {yn}n∈N∗ such that
〈xn, yk〉 = δn,k. In this case {yn}n∈N∗ is also a Riesz basis for H and is called the dual
Riesz basis of {xn}n∈N∗.

(b) If {xn}n∈N∗ is a Riesz basis for H then there are constants 0 ≤ A ≤ B such that for
x ∈ H :

A ‖x‖2 ≤
∑
n∈N∗

|〈x, xn〉|2 ≤ B ‖x‖2 . (274)

This inequality is called the frame inequality.
(c) {xn}n∈N∗ is a Riesz basis for H if and only if there are constants 0 ≤ A ≤ B such

that for all finite sequences {αn}n∈N∗, we have :

A
∑
n∈N∗

|αn|2 ≤

∥∥∥∥∥∥
∑
n∈N∗

αnxn

∥∥∥∥∥∥
2

≤ B
∑
n∈N∗

|αn|2 . (275)

(d) If {xn}n∈N∗ is a Riesz basis for H then for each x ∈ H there is a unique collection of
scalars {αn}n∈N∗ such that x =

∑
n∈N∗ αnxn and

∑
n∈N∗ |αn|2 < +∞.

Now, we give two characterization theorems.

Definition 2. Let H be an infinite-dimensional Hilbert space. An infinite collection
{xn}n∈N∗ of vectors inH is ω-linearly independent if a sequence {αn}n such that

∑
n∈N∗ αnxn

converges in the norm of H to 0 must be identically zero.

Definition 3. Let H be an infinite-dimensional separable Hilbert space and {en}n∈N∗ an
orthonormal basis H. An infinite collection {xn}n∈N∗ of vectors in H is quadratically close
to {en}n∈N∗ if ∑

n∈N∗
‖xn − en‖2H < +∞ . (276)

Theorem 4. Let H be an infinite-dimensional separable Hilbert space and {en}n∈N∗ an or-
thonormal basis H. If {xn}n∈N∗ is ω-linearly independent sequence of H and is quadracally
close to {en}n∈N∗ then {xn}n∈N∗ is a Riesz basis for H.

Theorem 5. Let H be an infinite-dimensional separable Hilbert space and {en}n∈N∗ an
orthonormal basis H. If {xn}n∈N∗ is a quadracally close to {en}n∈N∗ sequence of H and if
span{xn, n ∈ N∗} is dense in H then {xn}n∈N∗ is a Riesz basis for H.
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Definition 4. Let {xn}n∈N∗ be a Riesz basis in a Hilbert space H. The analysis operator
T associated to {xn}n∈N∗ is the bounded operator define by :

T : x ∈ H 7−→ {〈x, xn〉}n∈N∗ ∈ `2(N∗) . (277)

The synthesis operator T ∗ associated to {xn}n∈N∗ is the adjoint operator of T and is define
by :

T ∗ : α = {αn}n∈N∗ ∈ `2(N∗) 7−→
∑
n∈N∗

αnxn ∈ H . (278)

The Gram matrix G associated to {xn}n∈N∗ is the infinite matrix associated to the auto-
adjoint operator T ∗T . We have :

∀(n, k)2 ∈ (N∗)2, Gnk = 〈xn, xk〉 . (279)

Proposition 9. Let {xn}n∈N∗ be a Riesz basis in a Hilbert space H, G its Gram matrix
and {yn}n∈N∗ its dual Riesz basis. Then, G is invertible, G−1 is the Gram matrix associated
to {yn}n∈N∗ and we have :

∀(n, k) ∈ (N∗)2, G−1
nk = 〈yn, yk〉 . (280)

We introduce a specific class of Riesz bases.

Definition 5. Let {xn}n∈N∗ be a sequence in a Hilbert space H. We say that {xn}n∈N∗

is self-localized with decay rate α > 1 if there exists C > 0 such that :

∀(n, k) ∈ (N∗)2, |〈xn, xk〉| ≤
C

(1 + |n− k|)α . (281)

Theorem 6. Let {xn}n∈N∗ be a Riesz basis in a Hilbert space H. If {xn}n∈N∗ is self-
localized with decay rate α > 1 then its dual Riezs basis is also self-localized with decay
rate α > 1.

B Solutions de (32)
We want to resolve the differential system (282) in L2(0, 1).{

−λnfn(x)− f ′′n(x) + λfn(x) + αnϕ(x) = 0, x ∈ 0, 1)
fn(0) = fn(1) = 0 . (282)

Let f ∈ L2(0, 1) be a solution of (282). We decompose fn the Hilbert basis {ϕn}n∈N∗ :

fn =
∑
k∈N∗

〈fn, ϕk〉ϕk in L2(0, 1) . (283)

Let ψ ∈ C∞c (0, 1). We have :〈
f ′′n , ψ

〉
:=
〈
fn, ψ

′′〉 =
∑
k∈N∗

〈fn, ϕk〉
〈
ψ′′, ϕk

〉
=
∑
k∈N∗

−λk 〈fn, ϕk〉 〈ψ,ϕk〉 (284)

=
〈∑
k∈N∗

−λk 〈fn, ϕk〉ϕk, ψ
〉
. (285)
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Hence :

f ′′n =
∑
k∈N∗

−λk 〈fn, ϕk〉ϕk in L2(0, 1) . (286)

If we take the scalar product of with ϕk, we found :

〈fn, ϕk〉 = αn 〈ϕ,ϕk〉
λn − λk − λ

. (287)

Conversely, if we definite fn by (283) and (287), fn lie in L2(0, 1) because :

1
|λn − λk − λ|

≤ C and |〈ϕ,ϕk〉| ≤
C

k3 . (288)

And, the previous computations show that fn is solution of (282).
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