Optimisation Continue (13 déc. 2023)

We prove here the following: let $f: X \to (-\infty, +\infty]$ be a proper, lower semicontinuous convex function and D its domain, and we assume that D has non empty interior, $f \in C^1(\operatorname{int}(D))$, $\lim_{n\to\infty} ||df(x_n)||_* \to \infty$ for any sequence $x_n \to \partial D$. Then $\partial f(x) = \emptyset$ for any $x \in \partial D$. (In finite dimension, one can replace "interior" by "relative interior" and the same is true.)

Proof: We first observe that f is locally bounded from above in the interior of the domain, because we have assumed it is C^1 . (If we want to relax this assumption, it also relies on Baires's theorem, using that for y in the interior we have $D = \bigcup_{n \ge 1} y + n[\{x : f(x) \le f(y) + 1\} - y]$ so that the set $\{f(x) \le f(y) + 1\}$ contains a ball, then one can show that f is bounded in some ball around y.)

We consider y, δ with $B(y, \delta) \subset \operatorname{int}(D)$ and $\sup_{B(y, \delta)} f < +\infty$. We let for $x \in D, t \in]0, 1[, |z| < \delta$,

$$f_t(z) = \frac{1}{t} (f((1-t)x + t(y+z)) - f(x)).$$

By convexity, $f_t(z) \leq f(y+z) - f(x) \leq \sup_{B(y,\delta)} f - f(x) < +\infty$. Assume $x \in \partial D$ with $\partial f(x) \neq \emptyset$. Then if $p \in \partial f(x)$,

 $f((1-t)x + t(y+z)) - f(x) \ge (p, (1-t)x + t(y+z) - x) = t(p, y+z-x)$

so that for $|z| < \delta$, $f_t(z) \ge (p, y - x) - \delta ||p||_*$. Letting $C = \max\{\sup_{B(y,\delta)} f - f(x), \delta ||p||_* - (p, y - x)\}$, we find that $|f_t(z)| \le C$ in $B(0, \delta)$. For $L = 4C/\delta$, we deduce that f_t is L-Lipschitz in $B(0, \delta/2)$. In particular,

$$||df(x+t(y-x))||_* = ||df_t(0)||_* \le L$$

for any t > 0, which contradicts the assumption. We could even remove the assumption that f is C^1 in the interior of the domain and assume that for (x_n, p_n) with $p_n \in \partial f(x_n)$ and $x_n \to \partial D$, $||p_n||_* \to \infty$, and would get a contradiction as well.