We prove here the following: let $f: X \rightarrow(-\infty,+\infty]$ be a proper, lower semicontinuous convex function and D its domain, and we assume that D has non empty interior, $f \in C^{1}(\operatorname{int}(D)), \lim _{n \rightarrow \infty}\left\|d f\left(x_{n}\right)\right\|_{*} \rightarrow \infty$ for any sequence $x_{n} \rightarrow \partial D$. Then $\partial f(x)=\emptyset$ for any $x \in \partial D$. (In finite dimension, one can replace "interior" by "relative interior" and the same is true.)

Proof: We first observe that f is locally bounded from above in the interior of the domain, because we have assumed it is C^{1}. (If we want to relax this assumption, it also relies on Baires's theorem, using that for y in the interior we have $D=\cup_{n \geq 1} y+n[\{x: f(x) \leq f(y)+1\}-y]$ so that the set $\{f(x) \leq f(y)+1\}$ contains a ball, then one can show that f is bounded in some ball around y.)

We consider y, δ with $B(y, \delta) \subset \operatorname{int}(D)$ and $\sup _{B(y, \delta)} f<+\infty$. We let for $x \in D, t \in] 0,1[,|z|<\delta$,

$$
f_{t}(z)=\frac{1}{t}(f((1-t) x+t(y+z))-f(x))
$$

By convexity, $f_{t}(z) \leq f(y+z)-f(x) \leq \sup _{B(y, \delta)} f-f(x)<+\infty$.
Assume $x \in \partial D$ with $\partial f(x) \neq \emptyset$. Then if $p \in \partial f(x)$,

$$
f((1-t) x+t(y+z))-f(x) \geq(p,(1-t) x+t(y+z)-x)=t(p, y+z-x)
$$

so that for $|z|<\delta, f_{t}(z) \geq(p, y-x)-\delta\|p\|_{*}$. Letting $C=\max \left\{\sup _{B(y, \delta)} f-\right.$ $\left.f(x), \delta\|p\|_{*}-(p, y-x)\right\}$, we find that $\left|f_{t}(z)\right| \leq C$ in $B(0, \delta)$. For $L=4 C / \delta$, we deduce that f_{t} is L-Lipschitz in $B(0, \delta / 2)$. In particular,

$$
\|d f(x+t(y-x))\|_{*}=\left\|d f_{t}(0)\right\|_{*} \leq L
$$

for any $t>0$, which contradicts the assumption. We could even remove the assumption that f is C^{1} in the interior of the domain and assume that for $\left(x_{n}, p_{n}\right)$ with $p_{n} \in \partial f\left(x_{n}\right)$ and $x_{n} \rightarrow \partial D,\left\|p_{n}\right\|_{*} \rightarrow \infty$, and would get a contradiction as well.

