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1 Introduction

These lectures notes have been prepared by A. Chambolle for the M2 course “Continuous
optimization” given between Oct. and Dec. 2016 in Paris 6, in the Master “modélisation
mathématique” of Ecole Polytechnique, Université Pierre-et-Marie Curie (Paris 6) and
Ecole National des Ponts et Chaussées. Much of the material is taken from [9], or/and
inspired by famous textbooks [33, 29, 38, 15, 2]. Updated for the 2017-2018-2019 courses.
The 2020 courses will take place in Université Paris-Dauphine PSL.

The notes gather various matherial mostly on first order optimisation and iterative
algorithms for generally convex problems, including operator splitting, acceleration, etc.

2 (First order) Descent methods, rates

Most of what we describe in this section is in finite dimension, although extension to
Hilbert spaces is in general easy. We will discuss rates of convergence, in particular,
which we try to make independent on the dimension. The complexity of the itera-
tions, on the other hand, are usually very dimension-dependent, and this is the reason
for which high order descent methods are not practical for modern high dimensional
problems (imaging, data analysis...).
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2.1 Gradient descent

The main source for this section is the reference textbook of Polyak [33]. Consider the
problem of minimising

min
x∈X

f(x)

with X a finite dimensional vector step (or Hilbert) and f a real valued, C1 function (or
at least differentiable). We denote X∗ the dual of X (which can of course be represented
by X through the scalar product).

The differential df(x) ∈ X∗ is defined as the linear part of the closest affine function
to f at (x, f(x)):

f(y) = f(x) + df(x) · (y − x) + o(|x− y|).

The function f is said to be (Fréchet) differentiable at x if such an affine approximation
exists, and it is C1 in X if

df : X → X∗

x 7→ df(x)

is defined everywhere and continuous. The local inversion theorem guarantees that in
this case, near points where df(x) 6= 0, the level set {f = f(x)} is a C1 hypersurface
with tangent space Ker df(x) = {h : df(x) · h = 0}.

When X has a Euclidean or Hilbertian structure (a scalar product), then df(x)
has the (Riesz) representation df(x) · h = 〈∇f(x), h〉X (∀h), where now ∇f(x) is the
gradient of f at x (which depends on the metric structure of X). One has obviously
Ker df(x) = ∇f(x)⊥ and ∇f(x) is a normal vector to the level surface {f = f(x)} of f
at x, pointing towards the larger values.

For this reason, the most simple idea to minimize the function f is to introduce the
“gradient descent algorithm” with step τ :

xk+1 = xk − τ∇f(xk) =: Tτ (xk).

As said above, −∇f(xk) is a descent direction. Near xk, indeed,

f(x) = f(xk) +
〈
∇f(xk), x− xk

〉
+ o(x− xk)

so that
f(xk+1) = f(xk)− τ |∇f(xk)|2 + o(τ) < f(xk)

if τ > 0 is small enough and ∇f(xk) 6= 0. One can use various strategies to choose τ :

� optimal step: minτ f(xk − τ∇f(xk)) (with a “line search”, such as for instance
for the “conjugate gradient method”);

� Armijo-type rule: find i ≥ 0 such that f(xk−τρi∇f(xk)) ≤ f(xk)−cτρi|∇f(xk)|2,
ρ < 1, c < 1 fixed;

� Gradient with fixed step: τ > 0 is given, and one sees that one can interpret xk+1

as the minimizer of a quadratic approximation of f :

xk+1 = arg min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+

1

2τ
|x− xk|2.
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Observe that the latter choice has the form

min
x
f(xk) + df(xk) · (x− xk) +

1

2τ
d(x, xk)2

with the distance d(x, xk) = |x − xk| given by the Euclidean metric structure of X.
It can be natural, in some cases, to consider varying the metric (inside, or sometimes
even outside of the Euclidean framework). A particular situation (which is therefore
not anymore a “gradient descent” method in the above sense, at least in general), is the

� “Frank-Wolfe”-type method1: minx∈Xk f(xk) +
〈
∇f(xk), x− xk

〉
where Xk is

appropriately defined.

Here we replace the metric term |x − xk|2 with a constraint on x depending on the
previous iterates. For instance: Xk := {x : |x− xk| ≤ ε}, in which case τ = ε/|∇f(xk)|
(then we recover a gradient descent method). In other instances, once the minimizer x
of the above problem is found, one lets gk = xk−x and xk+1 = xk−τgk, gk playing the
role of a gradient, but with some local metric (hence the name “conditional gradient”).

Convergence analysis: if τ is too large with respect to the Lipschitz constant of ∇f ,
or ∇f is not Lipschitz, easy to build infinitely oscillating examples (ex: f(x) = ‖x‖).

xk xk − τ∇F (xk) xk+1 xk+2 = xk

etc...

Figure 1: The gradient descent may never converge if the step is too large or the function
not smooth enough

If f is C1, ∇f is L-Lipschitz, 0 < τ < 2/L, inf f > −∞ then the method converges
(in RN ) in the following sense: ∇f(xk)→ 0.

Proof:

f(xk+1) = f(xk)−
∫ τ

0

〈
∇f(xk − s∇f(xk)),∇f(xk)

〉
= f(xk)− τ‖∇f(xk)‖2 +

∫ τ

0

〈
∇f(xk)−∇f(xk − s∇f(xk)),∇f(xk)

〉
≤ f(xk)− τ(1− Lτ

2 )‖∇f(xk)‖2. (1)

(Observe that we just use here that D2f is bounded from above by LI (if f C2), or
more generally, letting x = xk and y = xk − s∇f(xk), we use

〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2

1or “conditional gradient”.
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which is a consequence of the Lipschitz property of ∇f , but is a weaker property.)
Then letting κ = τ(1− τL/2) > 0, one finds that

f(xn) + κ

n−1∑
k=0

‖∇f(xk)‖2 ≤ f(x0).

This shows the claim. If in addition f is “infinite at infinity” (coercive) then xk has
subsequences which converge, therefore to a stationary point.

Remark 2.1. If τ = 0, the iteration does nothing (and hence converges to the initial
point...). If τ = 2/L, the iteration might oscillate forever, as shows the example of the
function f(x) := L|x|2/2.

Remark 2.2. Taking x∗ a minimizer, τ = 1/L, we deduce that

1

2L
‖∇f(xk)‖2 ≤ f(xk)− f(xk+1) ≤ f(xk)− f(x∗).

The convex case Further information on the second order behaviour of f allows to
improve the analysis of the algorithm. The gradient descent method is better analysed
assuming that f is convex. One can show (i) that the iteration is a 1-Lipschitz mapping
(hence the iterates have to get closer to fixed points, or at least can not move away,
during the process), (ii) basic convergence rates (that is, a speed of convergence of f(xk)
towards its minimal value).

First, if f is convex we have the following additional property:

Theorem 2.3 (Baillon-Haddad2). If f is convex and ∇f is L-Lipschitz, then for all
x, y,

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2.

(∇f is said to be “(1/L)-co-coercive”.)

We will see later a general proof of this result based on convex analysis. In finite
dimension, if f is C2, then the proof is easy: one has 0 ≤ D2f ≤ LI (because f is
convex, and because ∇f is L-Lipschitz). Then

∇f(x)−∇f(y) =

∫ 1

0

D2f(y + s(x− y))(x− y)ds =: A(x− y).

with A =
∫ 1

0
D2f(y + s(x− y))ds symmetric with 0 ≤ A ≤ LI. Hence:

‖∇f(x)−∇f(y)‖2 = ‖A(x− y)‖2 =
〈
AA1/2(x− y), A1/2(x− y)

〉
≤

L
〈
A1/2(x− y), A1/2(x− y)

〉
≤ L 〈A(x− y), x− y〉 = L 〈∇f(x)−∇f(y), x− y〉

which is the result. If f is not C2, one could smooth f by convolution with a smooth,
compactly supported kernel, derive the result and then pass to the limit.

Lemma 2.4. If f is convex with L-Lipschitz gradient, then the mapping Tτ = I − τ∇f
is a weak contraction when 0 ≤ τ ≤ 2/L (that is, Tτ is 1-Lipschitz, or “non-expansive”).

2This is a modest corollary of a much more general result, in arbitrary topological spaces, for
operators which satisfy “cyclic monotonicity” conditions, see [1].
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Proof:

‖Tτx− Tτy‖2 = ‖x− y‖2 − 2τ 〈x− y,∇f(x)−∇f(y)〉+ τ2‖∇f(x)−∇f(y)‖2

≤ ‖x− y‖2 − 2τ

L

(
1− τL

2

)
‖∇f(x)−∇f(y)‖2.

Remark 2.5. Tτ is “averaged” for 0 < τ < 2/L, that is one can write

Tτ = θ(I − 2
L∇f) + (1− θ)I

for θ = τL/2 ∈]0, 1[. The convergence of the iterates of this class of operators will be
proved later on, see Section 3.1.

Convergence rate in the convex case. Additionally, we Then, using that, for x∗

a minimizer,
f(x∗) ≥ f(xk) +

〈
∇f(xk), x∗ − xk

〉
(we will see this is a general property of convex functions), we find

f(xk)− f(x∗)

‖x∗ − xk‖
≤ ‖∇f(xk)‖ (2)

Assuming still that 0 < τL < 2, and using Lemma 2.4 which implies that ‖xk − x∗‖ ≤
‖x0−x∗‖, it follows (f(xk)− f(x∗))/‖x0−xk‖ ≤ ‖∇f(xk)‖. Hence from (1) we derive,
letting ∆k = f(xk)− f(x∗), κ = τ(1− τL/2) ∈]0, 1/(2L)], that

∆k+1 ≤ ∆k −
κ

‖x0 − x∗‖2
∆2
k (3)

We can show the following:

Lemma 2.6. Let (ak)k be a sequence of nonnegative numbers satisfying for k ≥ 0:

ak+1 ≤ ak − c−1a2
k

Then, for all k ≥ 0,

ak ≤
c

k + 1

Proof: First observe that if we replace ak with ak/c, the property becomes ak+1 ≤
ak − a2

k: hence it is enough to prove it for c = 1. Then, as ak(1− ak) ≥ ak+1 ≥ 0, one
has 0 ≤ ak ≤ 1 for all k ≥ 0. We show the inequality by induction: for k = 0, a0 ≤ 1.
If k ≥ 1 and if kak−1 ≤ 1, then we write that

(k + 1)ak ≤ (k + 1)(ak−1 − a2
k−1)

= (k + 1)ak−1 − (k + 1)a2
k−1 = kak−1 + ak−1(1− (k + 1)ak−1)

≤ 1 + ak−1(1− (k + 1)ak)

since 0 ≤ ak ≤ ak−1? Hence (1− (k+1)ak)(1+ak−1) ≥ 0. It follows that (k+1)ak ≤ 1.
Applying this Lemma to the recursion (3) we deduce:

Theorem 2.7. The gradient descent with fixed step satisfies

∆k ≤
‖x0 − x∗‖2

κ(k + 1)
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Observe that this rate is not very good and also a bit pessimistic (it should improve
if xk → x∗ because (2) improves: but without further knowledge of f it is impossible
to guess how much). On the other hand, it does not prove, a priori, anything on the
sequence (xk) itself. Observe also, to conclude that κ = τ(1−τL/2) = (2/L)[(τL/2)(1−
τL/2)] is maximal for τL/2 = 1/2, that is, τ = 1/L. In that case, κ = 1/(2L) and the
rate is bounded by

∆k ≤ 2L
‖x0 − x∗‖2

k + 1
.

Strongly convex case. A function f is γ-strongly convex if and only if f(x)−γ‖x‖2/2
is convex: if f is C2, it is equivalent to D2f ≥ γI. We will discuss more precisely this
definition in Section 4.1. In this, case if x∗ is the minimizer (which in this case always
exists and is unique)

xk+1−x∗ = xk−x∗− τ(∇f(xk)−∇f(x∗)) =

∫ 1

0

(I− τD2f(x∗+s(xk−x∗))(xk−x∗)ds

hence (using that (1− τL)I ≤ I − τD2f ≤ (1− τγ)I)

‖xk+1 − x∗‖ ≤ max{1− τγ, τL− 1}‖xk − x∗‖.

If f is not C2 one can still show this by smoothing. The best constant is for τ = 2/(L+γ)
and gives, for q = (L− γ)/(L+ γ) ∈ [0, 1]

‖xk − x∗‖ ≤ qk‖x0 − x∗‖.

One can easily deduce the following (apparently) more general result:

Theorem 2.8. Let f be C2, x∗ be a strict local minimum of f where D2f is definite
positive. Then if x0 is close enough to x∗, the gradient descent method with optimal step
(obtained with a line search) will converge linearly. (Or with fixed step small enough.)

2.2 What can we achieve?

This paragraph contains a very elementary introduction to lower bounds and complexity.
We follow the description in [9], were we essentially give elementary variants of deeper
results found in [26, 29].)

Idea: consider a “hard problem”, for instance, for x ∈ Rn, L > 0, γ ≥ 0, 1 ≤ p ≤ n,
functions of the form:

f(x) =
L− γ

8

(
(x1 − 1)2 +

p∑
i=2

(xi − xi−1)2

)
+
γ

2
‖x‖2, (4)

which is tackled by a “first order method”, which is such that the iterates xk are
restricted to the subspace spanned by the gradients of already computed iterates, i.e.
for k ≥ 0

xk ∈ x0 +
{
∇f(x0),∇f(x1), . . . ,∇f(xk−1)

}
, (5)

where x0 is an arbitrary starting point.
Starting from an initial point x0 = 0, any first order method of the considered

class can transmit the information of the data term only at the speed of one index per
iteration. This makes such problems very hard to solve by any first order methods in the
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considered class of algorithms. Indeed if one starts from x0 = 0 in the above problem
(whose solution, for γ = 0, is given by x∗l = 1, k = 1, . . . , p, and 0 for l > p), then at
the first iteration, only the first component x1

1 will be updated (since ∂if(x0) = 0 for
i ≥ 2), and by induction one can check that at iteration k, xkl = 0 for l ≥ k + 1.

The solution satisfies ∇f = 0, therefore is characterized by

xi =
L− γ
L+ γ

xi+1 + xi−1

2
, i ≤ p− 1,

with x0 = 1 and xp = (L − γ)/(L + 3γ)xp−1. The best possible point at iteration k
satisfies this equation for i ≤ k, and xk+1 = 0. In case γ = 0 we find that this point x
is affine: xi = (1− i/(k + 1))+, and xi − xi−1 = −1/(k + 1) for i ≤ k + 1. Hence

f(x) =
L

8

k+1∑
i=1

1

(k + 1)2
=
L

8

1

k + 1

is the best possible value which can be reached at step k.
If one looks for a bound independent on the dimension with (here for homogeneity

reasons) f(xk) ∼ L‖x0 − x∗‖2ak (for a sequence (ak)), using here that x∗i = 1 for i ≤ p
and 0 for i > p, x0 = 0, and f(x∗) = 0, one obtains

f(xk)− f(x∗) ≥ L

8p(k + 1)
‖x0 − x∗‖2

(k < p) (while if k = p, xk = x∗). For k = p− 1 one finds

f(xk)− f(x∗) ≥ L

8

‖x0 − xk‖2

(k + 1)2

hence no first order method can reach a bound of the considered form which is better
than this. (It does not contradict a bound of the form f(xk) − f(x∗) = o(1/k2), for
instance!)

It follows a variant of the results in [29] (where a slightly different function is used),
see Theorems 2.1.7 and 2.1.13.

Theorem 2.9. For any n ≥ 2, any x0 ∈ Rn, L > 0, and k < n, there exists a convex,
one times continuously differentiable function f with L-Lipschitz continuous gradient,
such that for any first-order algorithm satisfying (5), it holds that

f(xk)− f(x∗) ≥ L‖x0 − x∗‖2

8(k + 1)2
, (6)

where x∗ denotes a minimiser of f .

Observe that the above lower bound is valid only if number of iterates k is less
than the problem size. We can not improve this with a quadratic function, as the
conjugate gradient method (which is a first-order method) is then known to find the
global minimiser here after at most p steps.

But practical problems are often so large that it is not possible to perform as many
iterations as the dimension of the problem, and will always fulfill similar assumptions.

If choosing γ > 0 so that the function (4) becomes γ-strongly convex, a lower bound
for first order methods is given Theorem 2.1.13 in [29]. It is hard to derive precisely for
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p finite, however in RN ' `2(N), for p = +∞, one finds that the solution is given by
x = qi, q = (

√
Q− 1)/(

√
Q+ 1) where Q = L/γ is the condition number of the problem

(q satisfies 2 = (L− γ)/(L+ γ)(q + 1/q)). If x0 = 0,

‖x0 − x∗‖2 =

∞∑
i=1

q2i =
q2

1− q2
, while

‖xk − x∗‖2 ≥
∞∑

i=k+1

q2i = q2k‖x0 − x∗‖2.

The strong convexity of f shows that

f(xk) ≥ f(x∗) +
γ

2
q2k‖x0 − x∗‖2

and it follows:

Theorem 2.10. For any x0 ∈ R∞ ' `2(N) and γ, L > 0 there exists a γ-strongly con-
vex, one times continuously differentiable function f with L-Lipschitz continuous gradi-
ent, such that for any algorithm in the class of first order algorithms defined through (5)
it holds that for all k,

f(xk)− f(x∗) ≥ γ

2

(√
Q− 1√
Q+ 1

)2k

‖x0 − x∗‖2 (7)

where Q = L/γ ≥ 1 is the condition number, and x∗ a minimiser of f .

In finite dimension, a similar result will hold for k small enough (with respect to n).
The meaning of the two results above is the following: given a first order method,

one will never be able to beat in general the rates in the theorem without additional
assumptions or properties of the function f or the space (dimension, etc).

2.3 Second order methods: Newton’s method

The idea of Newton’s method relies on using second order information to improve the
precision of the approximation of the function at step k. (In practice, one solves the
equation ∇f(x) = 0 using Newton’s standard method.) We have

f(x) = f(xk) +
〈
∇f(xk), x− xk

〉
+ 1

2

〈
D2f(xk)(x− xk), x− xk

〉
+ o(‖x− xk‖2).

If we are near a minimizer, we can assume D2f(xk) > 0 (hopefully), and hence find
xk+1 by solving

min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+ 1

2

〈
D2f(xk)(x− xk), x− xk

〉
Compare with the Gradient descent with step τ in a metric defined by a symmetric
positive definite matrix A > 0, which would be:

min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+ 1

2τ

〈
A(x− xk), x− xk

〉
hence we can see Newton’s method as a gradient descent in the metric which best
approximates the function. We find that xk+1 is given by

∇f(xk) +D2f(xk)(xk+1 − xk) = 0 ⇔ xk+1 = xk −D2f(xk)−1∇f(xk).

We have the following “quadratic” convergence rate.
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Theorem 2.11. Assume f is C2, D2f is M -Lipschitz, and D2f ≥ γ (strong convexity).
Let q = M/(2γ2)‖∇f(x0)‖ and assume x0 is close enough to the minimizer x∗, so that

q < 1. Then ‖xk − x∗‖ ≤ (2γ/M)q2k .

This is extremely fast (the precision is doubled at each iteration, this is called a
quadratic rate), but there are strong conditions, and the algorithm can be hard to
implement.

Proof: first see that

∇f(x+ h) = ∇f(x) +

∫ 1

0

D2f(x+ sh)hds

= ∇f(x) +D2f(x)h+

∫ 1

0

(D2f(x+ sh)−D2f(x))hds

so that

‖∇f(x+ h)−∇f(x)−D2f(x)h‖ ≤ M

2
‖h‖2.

Hence

‖∇f(xk+1)−

0︷ ︸︸ ︷
∇f(xk)−D2f(xk)(xk+1 − xk) ‖ ≤ M

2
‖xk+1 − xk‖2

⇒ ‖∇f(xk+1)‖ ≤ M

2
‖D2f(xk)−1‖2‖∇f(xk)‖2 ≤ M

2γ2
‖∇f(xk)‖2

Hence letting gk = ‖∇f(xk)‖, for all k one has

log gk+1 ≤ 2 log gk+log
M

2γ2
⇒ log gk ≤ 2k log g0 +(2k−1) log

M

2γ2
= 2k log q− log

M

2γ2

so that

‖∇f(xk)‖ ≤ 2γ2

M
q2k .

As f is strongly convex,
〈
∇f(xk), xk − x∗

〉
≥ γ‖xk − x∗‖2, and we can conclude.

The main issue with this is that it is very important to have q < 1, otherwise the
method could not work. The (very) “good” rate of convergence is obtained only if the
starting point is good enough.

There are quite a few very important variants of Newton’s method, which are
designed so that one does not have to explicitly evaluate D2f(xk)−1, usually called
“Quasi-Newton” type methods: one replaces D2f(xk) with a metric Hk which is im-
proved at each iteration, hoping that Hk → D2f(x∗) in the limit. The most famous
(and very efficient) variant is known as the “BFGS” method (after Broyden-Fletcher-
Goldfarb-Shanno, detailed in 4 papers of 1970) and its improvements (limited memory
“L-BFGS”) [8, 25]. This topic is covered extensively for instance in [30, Chap. 6] and
various toolboxes exist which implement this method.

2.4 Multistep first order methods

2.4.1 Heavy ball method

This description follows Polyak’s book [32] where the method is introduced. The idea
is to iterate:

xk+1 = xk − α∇f(xk) + β(xk − xk−1),
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α, β ≥ 0. This mimicks the equation ẍ = −∇f(x) − ẋ of a heavy ball in a potential
f(x) with friction, which can be discretized as (for instance):

xk+1 − 2xk + xk−1

(δt)2
+
xk+1 − xk

δt
= −∇f(xk).

The method requires that f is C2, γ-convex, with L-Lipschitz gradient (at least near
a solution x∗), that is:

γI ≤ D2f ≤ LI.
Then (see [33])

Theorem 2.12. Let x∗ be a (local) minimizer of f such that γI ≤ D2f(x∗) ≤ LI,
and choose α, β with 0 ≤ β < 1, 0 < α < 2(1 + β)/L. There exists q < 1 such that if
q < q′ < 1 and if x0, x1 are close enough to x∗, one has

‖xk − x∗‖ ≤ c(q′)q′k.

Moreover, this is almost optimal in the sense of Theorem 7: if

α =
4

(
√
L+
√
γ)2

, β =

(√
L−√γ
√
L+
√
γ

)2

then q =

√
L−√γ
√
L+
√
γ
.

Proof: this is an example of a proof where one analyses the iteration of a linearized
system near the optimum. Close enough to x∗, one has

xk+1 = xk − αD2f(x∗)(xk − x∗) + o(‖xk − x∗‖) + β(xk − xk−1),

and one can write that zk = (xk − x∗, xk−1 − x∗)T satisfies, for B = D2f(x∗),

zk+1 =

(
(1 + β)I − αB −βI

I 0

)
zk + o(zk).

We study the eigenvalues of the matrix A which appears in this iteration: We have

A

(
x
y

)
=

(
(1 + β)I − αB −βI

I 0

)(
x
y

)
= ρ

(
x
y

)
if and only if

(1 + β)x− αBx− βy = ρx, x = ρy

(and x, y 6= 0) hence if (1 + β)x− αBx− β/ρx = ρx. We find that

Bx =
1

α

(
1 + β − ρ− β

ρ

)
x

hence 1
α

(
1 + β − ρ− β

ρ

)
= µ ∈ [γ, L] is an eigenvalue of B. We derive the equation

ρ2 − (1 + β − αµ)ρ+ β = 0

which gives two eigenvalues with product β and sum 1 + β − αµ. If β ∈ [0, 1) and
−(1 + β) < 1 + β − αµ < (1 + β) (extreme cases where ±(1, β) are solutions) then
|ρ| < 1, that is, if 0 < α < (2 + β)/µ. Since µ < L one deduces that if 0 ≤ β < 1,
0 < α < (2 + β)/L, the eigenvalues of A are all in (−1, 1) (incidentally, it has 2n
eigenvalues).

We use here the following fundamental classical lemma [21]:
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Lemma 2.13. Let A be a N ×N matrix and assume that all its eigenvalues (complex
or real) have modulus ≤ ρ. Then for any ρ′ > ρ, there exists a norm ‖ · ‖∗ in CN such
that ‖A‖∗ := sup‖ξ‖∗≤1 ‖Aξ‖∗ < ρ′.

This is an important result of linear algebra. The proof is as follows: up to a change
of a basis, A is triangular: there exists P such that

P−1AP = T

with T = (ti,j)i,j , ti,i = λi, an eigenvalue, and ti,j = 0 if i > j. Then, if Ds =
diag(s, s2, s3, . . . , sN ) = (siδi,j)i,j , DsP

−1APD−1
s = (xsi,j) with

xsi,j =
∑
k,l

siδi,ktk,ls
−lδl,j = si−jti,j

and (since ti,j = 0 for i > j), xsi,j → λiδi,j as s→ +∞.
Hence, if s is large enough, denoting ‖ξ‖∞ = maxi |ξi| the ∞-norm,

max
‖ξ‖∞≤1

‖DsP
−1APD−1

s ξ‖∞ ≤ max
i

(|λi|+ (ρ′ − ρ)) ≤ ρ′

if s is large. Hence, if ‖ξ‖∗ := ‖DsP
−1ξ‖∞, one has

‖A‖∗ = sup
‖ξ‖∗≤1

‖Aξ‖∗ ≤ ρ′.

It follows, in particular, that if ρ′ < 1, ‖Ak‖∗ ≤ ‖A‖k∗ ≤ ρ′k → 0 as k → ∞.
Applying this to our problem, we see that (choosing ρ′ < 1)

‖zk+1‖∗ = ‖Azk + o(zk)‖∗ ≤ (ρ′ + ε)‖zk‖∗

if ‖zk‖∗ is small enough. Starting from z0 such that this holds for ε with ρ′+ ε < 1, we
find that it holds for all k ≥ 0 and that ‖zk+1‖∗ ≤ (ρ′ + ε)k‖z0‖∗, showing the linear
convergence.

2.4.2 The conjugate gradient method

(For this section we refer again to Polyak [33].)
The conjugate gradient is “the best” two-steps method, in the sense that it can be

defined as follows: given xk, xk−1, we let xk+1 = xk−αk∇f(xk) +βk(xk−xk−1) where
αk, βk are minimizing

min
α,β

f(xk − α∇f(xk) + β(xk − xk−1)).

In particular, we deduce that〈
∇f(xk+1),∇f(xk)

〉
= 0 and

〈
∇f(xk+1), xk − xk−1

〉
= 0 (8)

and it also follows 〈
∇f(xk+1), xk+1 − xk

〉
= 0. (9)

Notice moreover that

∇f(xk+1) = ∇f(xk)− αkD2f(xk + s(xk+1 − xk))∇f(xk)

+ βkD
2f(xk + s(xk+1 − xk))(xk − xk−1) (10)
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for some s ∈ [0, 1].
However this method is in general “conceptual”, meaning that one cannot hope to

efficiently evaluate the values αk, βk and hence the new point xk, except when f is
quadratic: f(x) = (1/2) 〈Ax, x〉−〈b, x〉+c (A symmetric). Denoting then the gradients
pk = Axk − b and the residuals rk = xk − xk−1, we find that (cf (10))

pk+1 = pk − αkApk + βkAr
k (11)

and using the orthogonality formulas (8),

0 = ‖pk‖2 − αk
〈
Apk, pk

〉
+ βk

〈
Ark, pk

〉
, 0 =

〈
pk, rk

〉
− αk

〈
Apk, rk

〉
+ βk

〈
Ark, rk

〉
we can compute explicitly the values of αk, βk (exercise).

Lemma 2.14. The gradients (pi) are all orthogonal.

Proof: we start from xk+1 = xk − αkpk + βk(xk − xk−1) and deduce (since ∇f is
affine, or simply from (11))

pk+1 = pk − αkApk + βk(pk − pk−1).

Assume that (p0, . . . , pi) are orthogonal, and that αl, l = 0, . . . , i− 1, do not vanish (or
we have found the solution, why?). Then〈

Apk, pl
〉

=
1

αk

〈
pk − pk+1 + βk(pk − pk−1), pl

〉
= 0

if l ≤ k−2, k ≤ i−1 or if i ≥ l ≥ k+2. In particular,
〈
Apk, pi

〉
= 0 if k ≤ i−2. Hence:〈

pi+1, pk
〉

=
〈
pi, pk

〉
− αk

〈
Api, pk

〉
+ βk

〈
pi − pi−1, pk

〉
= 0 (12)

if k ≤ i− 2. It remains therefore to check that
〈
pi−1, pi+1

〉
= 0 and

〈
pi, pi+1

〉
= 0. The

latter is already known (8), hence we are left with the case k = i− 1. If k = i− 1: we
use again xk+1 = xk − αkpk + βk(xk − xk−1) to derive (with r0 = 0)

rk+1 = −αkpk + βkr
k

so that ∀k, rk ∈ vect {p0, . . . , pk−1}. Knowing (8) that
〈
pi+1, ri

〉
= 0, one obtains from

the previous (for k = i− 1):

0 = −αi−1

〈
pi+1, pi−1

〉
+ βi−1

〈
pi+1, ri−1

〉
= −αi−1

〈
pi+1, pi−1

〉
,

where we have used that pi+1 ⊥ vect {p0, . . . , pi−2} 3 ri−1. This shows that
〈
pi+1, pi−1

〉
=

0. Hence (p0, . . . , pi+1) are orthogonal. This holds as long as xi+1 is not a solution (then
pi+1 = 0).

Corollary 2.15. The solution is found in k = rkA iterations.

Indeed, if pk+1 6= 0 then pi = Axi − b, i = 0, . . . , k + 1 are k + 2 orthogonal
vectors in ImA− b which is an affine space of dimension k and contains at most k + 1
independent points. One remarkable point is that also the directions ri satisfy an
orthogonality conditions: they are A-orthogonal: 〈Ari, rj〉 = 0 for all i 6= j, hence the
name “conjugate directions”.
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Variants One can show that the following rules defines the same points (for quadratic
functions) 

pk = ∇f(xk)

βk = ‖pk‖2
‖pk−1‖2 (β0 = 0)

rk = −pk + βkr
k−1

αk = arg minα≥0 f(xk + αpk), xk+1 = xk + αkp
k

A variant replaces the 2nd line with βk =
〈
pk, pk − pk−1

〉
/‖pk−1‖2. If f not quadratic,

these variants can be implemented.

Optimality The conjugate gradient computes xk as the minimum of f in the space
generated by the orthogonal gradients (p0, . . . , pk). It is then possible to prove that for
a strongly convex quadratic function, that is if γI ≤ A ≤ LI, then

‖xk − x∗‖ ≤ 2
√
Qqk‖x0 − x∗‖

with q = (
√
Q− 1)/(

√
Q+ 1), Q = L/γ the condition number. This is the same rate as

the Heavy-Ball.
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Figure 2: Comparison between accelerated vs non-accelerated gradient schemes. Top:
Comparisons of the solutions x of GD and AGD after 10000(!) iterations. Bottom:
Rate of convergence for GD, AGD together with their theoretical worst case rates,
and the lower bound for smooth optimization. For comparison we also provide the
rate of convergence for CG. Note that CG exactly touches the lower bound at k = 99
(problem (4) with γ = 0, p = n = 100)

2.4.3 Accelerated algorithm: Nesterov 83

We rapidly mention the “Accelerated Gradient Descent” (AGD) Algorithm by Yu. Nes-
terov [28].

Algorithm: x0 = x−1 given, xk+1 defined by:{
yk = xk + tk−1

tk+1
(xk − xk−1)

xk+1 = yk − τ∇f(yk)
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where τ = 1/L and for instance tk = 1 + k/2. Then,

f(xk)− f(x∗) ≤ 2L

(k + 1)2
‖x0 − x∗‖2

We will prove this later in these notes. For strongly convex problems, a variant exists
with again “optimal” rate of convergence.

2.5 Nonsmooth problems?

2.5.1 Subgradient descent

The first basic approach to tackle nonsmooth problems (or more generally problems
where the (local) Lipschitz constant of the gradient is unknown and possibly rapidly
varying) is called a “subgradient descent”. The idea, given f convex, is to iterate:

xk+1 = xk − hk
∇f(xk)

‖∇f(xk)‖
.

In practice, the gradient here can be replaced with any selection of the subgradient if f
is not differentiable at xk, see Section 4.1 for the technical details.

Then if x∗ is a solution,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2
hk

‖∇f(xk)‖
〈
∇f(xk), xk − x∗

〉
+ h2

k

≤ ‖xk − x∗‖2 − 2
hk

‖∇f(xk)‖
(f(xk)− f(x∗)) + h2

k.

We have used here a basic property of convex functions, which is that they are above
their affine approximations, so that f(x∗) ≥ f(xk) +

〈
∇f(xk), x∗ − xk

〉
.

Hence, assuming in addition f is M -Lipschitz (near x∗ at least)

min
0≤i≤k

f(xi)− f(x∗) ≤M
‖x0 − x∗‖2 +

∑k
i=0 h

2
i

2
∑k
i=0 hi

and choosing hi = C/
√
k + 1 for k iterations, we obtain

min
0≤i≤k

f(xi)− f(x∗) ≤MC2 + ‖x0 − x∗‖2

2C
√
k + 1

(the best choice is C ∼ ‖x0 − x∗‖ but this is of course unknown).
In general, one chooses steps such that

∑
i h

2
i < +∞,

∑
i hi = +∞, such as hi = 1/i.

It results in a very slowly converging algorithm which should be used only when there
is no other obvious choice.

2.5.2 Implicit descent

Consider a gradient descent where instead of using the gradient at xk, one is able to
evaluate the gradient in xk+1:

xk+1 = xk − τ∇f(xk+1).
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This is of course often “conceptual”, however we will see that in many instances it can
be computed or approximated. It says that xk+1 is a critical point of (and one can ask
that it minimises)

f(x) +
1

2τ
‖x− xk‖2.

Observe that if one lets

fτ (x) := min
y
f(y) +

1

2τ
‖y − x‖2 (13)

(this defines an “inf-convolution”) which is well-defined if f is bounded from below
(or ≥ −α‖x‖2 and τ < 1/α) and lower-semicontinuous (if not, the min has to be
replaced with an inf), then one can show that fτ is semi-concave and when differentiable,
∇fτ (x) = (x− yx)/τ where yx solves (13) (and is thus, in this case, unique).

Proof: equivalently, one may observe that:

fτ (x− h)− 2fτ (x) + fτ (x+ h)

≤ f(yx)+
1

2τ
‖x−h−yx‖2−2f(yx)− 1

τ
‖x−yx‖2 +f(yx)+

1

2τ
‖x+h−yx‖2 ≤

1

τ
‖h‖2

showing that fτ (x)− ‖x‖2/(2τ) is concave; or more directly one observes that:

fτ (x)− 1

2τ
‖x‖2 = min

y
f(y) +

1

2τ
‖y‖2 − 〈x, y〉

is a concave function as an inf of linear functions (of the variable x). This shows that
fτ is (1/τ)-“semi-concave”. Hence fτ is differentiable a.e. (even twice, Aleksandrov’s
theorem [16]), and if ∇fτ (x) exists, one has

fτ (x+ h) ≤ f(yx) +
1

2τ
‖x+ h− yx‖2, hence

fτ (x+ h)− fτ (x) ≤ 1

τ
〈x− yx, h〉+

‖h‖2

2τ
,

so that for all h,

∇fτ (x) · h ≤ 1

τ
〈x− yx, h〉

showing the claim. Then, yx = x− τ∇fτ (x).
Conversely, if yx is unique, then ∇fτ (x) exists and is (x− yx)/τ . This follows from

the observation that if xn → x and yxn is a minimizer for x, as

f(yxn) +
1

2τ
‖xn − yxn‖2 ≤ f(yx) +

1

2τ
‖xn − yx‖2

showing that (f being bounded from below) (yxn) is a bounded sequence. If (yxnk ) is a
subsequence which converges to some ȳ passing to the limit in

f(yxnk ) +
1

2τ
‖xnk − yxnk ‖

2 ≤ f(y) +
1

2τ
‖xnk − y‖2

and using the semi-continuity of f , we find that ȳ is a minimizer for x, hence ȳ = yx
and yxn → yx: the multivalued mapping x 7→ yx is thus continuous at points where the
argument is unique. Now, we can write that

fτ (x+ h) ≤ fτ (x) +
1

τ
〈x− yx, h〉+

‖h‖2

2τ
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and in the same way (exchanging x and x+ h)

fτ (x) ≤ fτ (x+ h)− 1

τ
〈x+ h− yx+h, h〉+

‖h‖2

2τ

= fτ (x+ h)− 1

τ
〈x− yx+h, h〉 −

‖h‖2

2τ

hence for t > 0, small:

1

τ
〈x− yx+th, h〉 ≤

fτ (x+ th)− fτ (x)

t
≤ 1

τ
〈x− yx, h〉+O(t)

and in the limit t→ 0 we recover the claim.
This proof is finite-dimensional, we will however see later on for convex functions in

Hilbert spaces that the same result is true.
We find that

xk+1 = xk − τ∇f(xk+1) ⇔ xk+1 = xk − τ∇fτ (xk)

hence the implicit descent is an explicit descent on fτ ! Which has the same minimisers.
It converges to critical points of fτ (as D2fτ ≤ I/τ), as before (and under the same
assumptions). These are local minimizers of f(·) + ‖ · −x‖2/(2τ).

Example 2.16 (Lasso problem). Consider:

min
x
‖x‖1 +

1

2
‖Ax− b‖2

If ‖x‖2M = 〈Mx, x〉 and M = I/τ −A∗A, τ < 1/‖A‖2, then

min
x

1

2
‖x− xk‖2M + ‖x‖1 +

1

2
‖Ax− b‖2

is solved by
xk+1 = Sτ (xk − τA∗(Axk − b))

where Sτξ is the unique minimizer of

min
x
‖x‖1 +

1

2τ
‖x− ξ‖2,

called the “shrinkage” operator. This converges with rate O(1/k) to a solution.

3 Krasnoselskii-Mann’s convergence theorem

3.1 A “general” convergence theorem

We show here a general form of a convergence theorem of Krasnoselskii and Mann for
the iterates of weak contractions (or nonexpansive operators) (it is found in all convex
optimisation books, cf for instance [4, 2]). We state first a simple form. Consider (a
priori, in a Banach space X ) an operator T : X → X which is 1-Lipschitz:

‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x, y ∈ X .

If in addition it is ρ-Lipschitz with ρ < 1, then Picard’s classical fixed point theorem
shows that the iterates xk = T kx0, k ≥ 1, form a Cauchy sequence and therefore
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converge to a fixed point, necessarily unique. This relies on the fact that the space is
complete.

However, for ρ = 1, this does not always work (ρ = 1 does not provide much
relevant information, as when T = I). For instance, if Tx = −x, there is only one
fixed point but the iterates never converge, unless x0 = 0. The simplest statement of
Krasnoselskii-Mann’s theorem shows that if T is averaged and has fixed points, then the
iterates weakly converge to a fixed point. The statement is true in Hilbert (or finite-
dimensional Euclidean) spaces, as well as in some class of reflexive Banach space. We
assume in what follows that X is Hilbert, and will mention the changes and properties
needed for the property to hold for more generality.

For θ ∈]0, 1[, we define the (θ-)averaged operator Tθ by letting

Tθx = (1− θ)x+ θTx.

We also let T0 = I, T1 = T , and F = {x ∈ X : Tx = x}. Observe that for any θ ∈]0, 1],
F is the set of fixed point of Tθ.

Theorem 3.1. Let x ∈ X , 0 < θ < 1, and assume F 6= ∅. Then (T kθ x)k≥1 weakly
converges to some point x∗ ∈ F .

The proof consists in four simple steps. We denote x0 = x, xk = T kx, k ≥ 1.

Step 1 First, since Tθ is 1-Lipschitz, then for any x∗ ∈ F , ‖Tθxk − x∗‖ ≤ ‖xk − x∗‖
and the sequence (‖xk − x∗‖)k is nonincreasing. (xk)k is said to be “Fejér-monotone”
with respect to F , see [2, Chap. 5] for details and interesting properties.

It follows that one can define m(x∗) = infk ‖xk − x∗‖ = limk ‖xk − x∗‖. If there
exists x∗ ∈ F such thatm(x∗) = 0 then the theorem is proved (with strong convergence),
otherwise we proceed to the next step. We will see later on what happens if the sequence
is “quasi-Fejér-monotone”, which happens for instance if T is computed with errors.
Hence we assume that m(x∗) > 0 for all x∗ ∈ F .

Step 2 We now show that xk+1 − xk → 0 strongly. The operator Tτ is said to be
“asymptotically regular”.

First, for X a Hilbert space, the proof is a straightforward application of the paral-
lelogram identity, to:

xk+1 − x∗ = (1− θ)(xk − x∗) + θ(T1x
k − x∗).

We find that for all k:

‖xk+1 − x∗‖2 = (1− θ)‖xk − x∗‖2 + θ‖T1x
k − x∗‖2 − θ(1− θ)‖T1x

k − xk‖2

≤ ‖xk − x∗‖2 − 1−θ
θ ‖x

k+1 − xk‖2

from which one deduces that
∑
k ‖xk+1 − xk‖2 <∞, hence the result. In addition, one

observes that the sequence (1− θ)/θ‖xk+1−xk‖2 (which is nonincreasing) is controlled
in the following way:

1−θ
θ (k + 1)‖xk+1 − xk‖2 ≤ 1−θ

θ

k∑
i=0

‖xi+1 − xi‖2 ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2.
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As xk+1−xk = θ(T1x
k−xk) we obtain a rate for the error T1x

k−xk, in the Hilbertian
setting, given by:

‖T1x
k − xk‖ ≤ ‖x0 − x∗‖√

θ(1− θ)
√
k + 1

. (14)

Now, we have to mention that the result also holds in more general spaces. It is easy
to extend in uniformly convex spaces, meaning that the unit ball satisfies the following
property:

Uniformly convex unit ball: ∀ε > 0, θ ∈ (0, 1), ∃δ > 0 such that for all x, y ∈ X
with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε,

‖θx+ (1− θ)y‖ ≤ (1− δ) max{‖x‖, ‖y‖}

Of course, the following holds:

Lemma 3.2. If X is a Hilbert space then it is uniformly convex.

Indeed the parallelogram identity yields:

‖θx+ (1− θ)y‖2 = θ2‖x‖2 + (1− θ)2‖y‖2 + 2θ(1− θ) 〈x, y〉
= θ‖x‖2 + (1− θ)‖y‖2 − θ(1− θ)‖x− y‖2

≤ max{‖x‖2, ‖y‖2} − θ(1− θ)ε2 ≤ (1− δ)2 max{‖x‖2, ‖y‖2}

for δ = 1−
√

1− θ(1− θ)ε2, where we have used, of course, that ‖x‖, ‖y‖ ≤ 1.
Yet the same property also holds in many Banach spaces (such as Lp spaces, 0 <

p < 1, etc). It is well known (as “Milman-Pettis” theorem) that such a space is reflexive
(while the converse is not true). We can prove the asymptotic regularity, that is, that
xk+1 − xk → 0, only relying on this property, as follows: We recall that we assume
m(x∗) > 0 for all x∗ ∈ F . Assume that along a subsequence, one has ‖xkl+1 − xkl‖ ≥
ε > 0. Observe that

xkl+1 − x∗ = (1− θ)(xkl − x∗) + θ(T1x
kl − x∗)

and that

(xkl − x∗)− (T1x
kl − x∗) = xkl − T1x

kl = −1

θ
(xkl+1 − xkl)

so that ‖(xkl − x∗)− (T1x
kl − x∗)‖ ≥ ε/θ > 0. Hence thanks to the uniform convexity

of the ball (remember that (xk − x∗)k is globally bounded since its norm is nonincreas-
ing), we obtain that for some δ > 0,

m(x∗) ≤ ‖xkl+1 − x∗‖ ≤ (1− δ) max{‖xkl − x∗‖, ‖T1x
kl − x∗‖}

but since ‖T1x
kl − x∗‖ ≤ ‖xkl − x∗‖, it follows

m(x∗) ≤ (1− δ)‖xkl − x∗‖.

As kl →∞, we get a contradiction if m(x∗) > 0.
The result in [11] shows that asymptotic regularity holds in any normed space.
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Step 3. Assume now that x̄ is the weak limit of some subsequence (xkl)l. Then, we
claim it is a fixed point. We use Opial’s lemma:

Lemma 3.3 ([31, Lem. 1]). If in a Hilbert space X the sequence (xn)n is weakly con-
vergent to x0 then for any x 6= x0,

lim inf
n
‖xn − x‖ > lim inf

n
‖xn − x0‖

Proof of Opial’s lemma (obvious): one has

‖xn − x‖2 = ‖xn − x0‖2 + 2 〈xn − x0, x0 − x〉+ ‖x0 − x‖2.

Since 〈xn − x0, x0 − x〉 → 0 by weak convergence, we deduce

lim inf
n
‖xn − x‖2 = lim inf

n
(‖xn − x0‖2 + ‖x0 − x‖2) = ‖x0 − x‖2 + lim inf

n
‖xn − x0‖2

and the claim follows.
Proof that x̄ is a fixed point: since Tθ is a contraction, we observe that for each k,

‖xk − x̄‖ ≥‖Tθxk − Tθx̄‖
= ‖xk+1 − xk + xk − Tθx̄‖ ≥ ‖xk − Tθx̄‖ − ‖xk+1 − xk‖

and we deduce (thanks to the previous Step 2):

lim inf
l
‖xkl − x̄‖ ≥ lim inf

l
‖xkl − Tθx̄‖.

Opial’s lemma implies that Tθx̄ = x̄.
One advantage of this approach is that it can be extended to Banach spaces [31]

where “Opial’s property” (the statement of the Lemma) holds (in the norm for which
T is a contraction). On the other hand, not all spaces satisfy this property (it is shown
that in separable Banach spaces, there is an equivalent norm for which the property is
true [44], but this is useless if T is not nonexpansive for this norm...)

Remark 3.4. Another classical approach in Hilbert spaces to prove this claim is to use
“Minty’s trick” to study the limit of “monotone” operators: Since Tθ is a contraction,
for each y ∈ X we have (thanks to Cauchy-Schwarz’s inequality)

〈(I − Tθ)xnk − (I − Tθ)y, xnk − y〉 ≥ 0

and as we have just proved that (I − Tθ)xnk → 0 (strongly), then

〈−(I − Tθ)y, x̄− y〉 ≥ 0.

Choose y = x̄+ εz for z ∈ X and ε > 0: it follows after dividing by ε that

〈(I − Tθ)(x̄+ εz), z〉 ≥ 0.

and since Tθ is Lipschitz, sending ε→ 0 we recover 〈(I − Tθ)x̄, z〉 ≥ 0 for any z, which
shows that x̄ ∈ F .

Step 4. To conclude, assume that a subsequence (xml)l of (xk)k converges weakly to
another fixed point ȳ. Then it must be that ȳ = x̄, otherwise Opial’s lemma 3.3 again
would imply both that m(x̄) < m(ȳ) and m(ȳ) < m(x̄):

m(ȳ) = lim inf
l
‖xml − ȳ‖ < lim inf

l
‖xml − x̄‖ = m(x̄).

It follows that the whole sequence (xk) must weakly converge to x̄.
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3.2 Varying steps

One can consider more generally iterations of the form

xk+1 = xk + τk(T1x
k − xk)

with varying steps τk. Then, if 0 < τ ≤ τk ≤ τ < 1, the convergence still holds, with
almost the same proof. (This is obvious in the Hilbertian setting, cf Step. 2.

Remark 3.5. A sufficient condition is that
∑
k τk(1− τk) = ∞, see [34]. In addition, a

slight improvement to the proof in Step. 2 shows that

k∑
i=0

(1− τi)τi‖T1x
i − xi‖2 ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2

so that min0≤i≤k ‖T1x
i−xi‖ ≤ ‖x0−x∗‖/

√∑k
i=0(1− τi)τi. In fact, in a general normed

space one has the estimate

‖T1x
k − xk‖ ≤ 1√

π

‖x0 − x∗‖√∑k
i=0 τi(1− τi)

which improves (14), see [11].

3.3 A variant with errors

Assume now the sequence (xk) is an inexact iteration of Tθ:

‖xk+1 − Tθxk‖ ≤ εk.

Then one has the following result:

Theorem 3.6 (Variant of Thm 3.1). If
∑
k εk <∞, then xk → x̄ a fixed point of T (if

one exists).

Proof: now, xk is “quasi-Fejér monotone”: denoting ek = xk+1 − Tθx
k so that

‖ek‖ ≤ εk,
‖xk+1 − x∗‖ = ‖Tθxk − Tθx∗ + ek‖ ≤ ‖xk − x∗‖+ εk

for all k, and any x∗ ∈ F . Hence, ‖xk+1 − x∗‖ ≤ ‖x0 − x∗‖ +
∑k
i=0 εi is bounded.

Letting ak =
∑∞
i=k εi which is finite and goes to 0 as k →∞, this can be rewritten

‖xk+1 − x∗‖+ ak+1 ≤ ‖xk − x∗‖+ ak

so that once more one can define

m(x∗) := lim
k→∞

‖xk − x∗‖ = inf
k≥0
‖xk − x∗‖+ ak

Again, if m(x∗) = 0 the theorem is proved, otherwise, one can continue the proof as
before: now,

xkl+1 − x∗ = (1− θ)(xkl − x∗ + ekl) + θ(T1x
kl − x∗ + ekl)
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while

(xkl − x∗ + ekl)− (T1x
kl − x∗ + ekl) = xkl − T1x

kl = −1

θ
(xkl+1 − xkl − ekl)

so that ‖(xkl − x∗)− (T1x
kl − x∗)‖ ≥ (ε− εkl)/θ > ε/(2θ) > 0 if l is large enough, and

one can invoke again Lemma 3.2 to find that

m(x∗) ≤ ‖xkl+1 − x∗‖ ≤ (1− δ) max{‖xkl − x∗ + ekl‖, ‖T1x
kl − x∗ + ekl‖}

≤ (1− δ)
(
‖xkl − x∗‖ + εkl

)
and again sending l → ∞ we obtain that m(x∗) ≤ (1 − δ)m(x∗), a contradiction if
m(x∗) > 0. The rest of the proof (steps 3, 4) is almost identical.

Remark 3.7. In practice, what do you think about the condition
∑
k εk <∞?

3.4 Examples

3.4.1 Gradient descent

It follows the convergence for the explicit and implicit gradient descent for convex
functions. Consider indeed the iteration xk+1 = Tτ (xk) := xk − τ∇f(xk), for f convex
with L-Lipschitz gradient. Then, Lemma 2.4 claims that

T2/L(x) = x− 2

L
∇f(x)

is a weak contraction (1-Lipschitz or “nonexpansive” operator).
We observe that if 0 < τ < 2/L, one has

Tτ (x) = x− τL

2

2

L
∇f(x) =

τL

2
T2/L(x) +

(
1− τL

2

)
x

is an averaged operator (with here θ = Lτ/2 ∈]0, 1[). Theorem 3.1 yields the conver-
gence of the iterates. Moreover, one still has convergence if one uses varying steps τk
with 0 < infk τk ≤ supk τk < 2/L. One can also consider (summable) errors. Eventually,
thanks to 14, one has the rate

‖ 2
L∇f(xk)‖ ≤ ‖x0 − x∗‖√

(1− Lτ/2)Lτ/2
√
k + 1

.

(Compare this with (2), Theorem 2.7, Remark 2.2.)
For the implicit descent, we can use the fact that it is an explicit descent on the

function fτ , which has 1/τ -Lipschitz gradient, to get a similar result: Let xk+1 =
xk − λ∇fτ (xk) = xk + (λ/τ)(yxk − xk) (where yx solves (13)) for 0 < λ < 2τ , then xk

converges (weakly) to a minimizer of fτ (which is also a minimizer of f)...

3.4.2 Composition of averaged operators

An important remark is the following: Let Tθ, Sλ be averaged operators: Tθ = (1−θ)I+
θT1, Sλ = (1−λ)I+λS1. Then Tθ ◦Sλ is also averaged: letting µ = θ+λ(1−θ) ∈]0, 1[,
one has

Tθ ◦ Sλ = (1− µ)I + µ
(1− θ)λS1 + θT1 ◦ ((1− λ)I + λS1)

θ + (1− θ)λ
.
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An important application is the following: consider the problem

min
x
f(x) + g(x) (15)

where f, g convex, lsc, f has L-Lipschitz gradient and g is such that one knows how to
compute, for all y and all τ > 0:

gτ (x) := min
y
g(y) +

1

2τ
‖x− y‖2. (16)

Then one can compose the averaged operators

Tτx := x− τ∇f(x),

0 < τ < 2/L, and
Sτx := yx

which solves (16) (and is (1/2)-averaged, as it is x − τ∇gτ (x) where ∇gτ is 1/τ -
Lipschitz). Hence, if one defines the iterates xk+1 := Sτ ◦ Tτxk, k ≥ 0, then xk ⇀ x∗

(weakly) where x∗ is a fixed point if Sτ ◦ Tτ . As Sτx satisfies

∇g(Sτx) +
1

τ
(Sτx− x) = 0,

one has

0 = ∇g(Sτ (Tτx
∗)) +

1

τ
(Sτ (Tτx

∗)− Tτx∗)

= ∇g(x∗) +
1

τ
(x∗ − (x∗ − τ∇f(x∗))) = ∇g(x∗) +∇f(x∗)

so that x∗ is a minimizer of (15). We deduce the following:

Theorem 3.8. The iterates of the “forward-backward” algorithm xk+1 := Sτ ◦ Tτxk
weakly converge to a minimizer of (15).

We will see later on that one can say much more about this approach. Compare this
with Example 2.16.

Remark 3.9. What about the “explicit-explicit” (“forward-forward”) iteration

xk+1 = xk − τ∇f(xk)− τ∇g(xk − τ∇f(xk)) ,

with τ < min{2/Lf , 2/Lg} where Lf , Lg are the Lipschitz constants of the gradients of
f, g, respectively?

We will see later on other useful examples of composition of averaged operators.

4 An introduction to convex analysis and monotone
operators

Most of this section is in Hilbert spaces, though many results are also valid in more
general vector spaces, but often with more involved proofs.
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4.1 Convexity

See for instance: [38, 15] for a general introduction. We discuss here the following no-
tions: Convex function; Subgradients; Inf-convolution; Sums of subgradients; Convex
Conjugate (Legendre-Fenchel); Fenchel-Rockafellar duality; Moreau-Yosida’s regular-
ization (inf-convolution); Moreau’s identity.

4.1.1 Convex functions

An extended-valued function f : X → [−∞,+∞] is said to be convex if and only if its
epigraph

epi f := {(x, λ) ∈ X × R : λ ≥ f(x)}

is a convex set, that is, if when λ ≥ f(x), µ ≥ f(y), and t ∈ [0, 1], one has tλ+(1−t)µ ≥
f(tx+ (1− t)y).3 It is proper if it is not identically +∞ and nowhere −∞: in this case,
it is convex if and only if for all x, y ∈ X and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

It is strictly convex if the above inequality is strict whenever x 6= y and 0 < t < 1. It is
strongly convex (or µ-convex) if in addition, there exists µ > 0 such that for all x, y ∈ X
and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µt(1− t)
2
‖x− y‖2.

Thanks to the parallelogram identity, in the Hilbertian setting, one easily checks that
this is equivalent to require that x 7→ f(x)−µ/2‖x‖2 is still convex. The function is also
said to be, in this case, “µ-convex”. The archetypical example of a µ-convex function
is a quadratic plus affine function µ‖x‖2/2 + 〈b, x〉+ c.

The domain of a proper convex function f is the set dom f = {x ∈ X : f(x) < +∞}.
It is obviously a convex set.

We say that f is lower semi-continuous (l.s.c.) if for all x ∈ X , if xn → x, then

f(x) ≤ lim inf
n→∞

f(xn).

It is easy to see that f is l.s.c. if and only if epi f is closed.
A trivial but important example is the characteristic function or indicator function

of a set C:

δC(x) =

{
0 if x ∈ C,
+∞ else,

which is convex, l.s.c., and proper as soon as C is convex, closed and nonempty. The
minimisation of such functions will allow to easily model convex constraints in our
problems.

One can show the following result:

Lemma 4.1. If there exists B ⊂ dom f an open ball where the proper convex function
f is bounded from above, then f is locally Lipschitz in the interior of dom f . In finite
dimension, a proper convex function f is locally Lipschitz in the relative interior of
dom f , ri dom f .

3This definition avoids the embarrassing expression (+∞) + (−∞), see for instance [38, Sec. 4].
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In finite dimension, the relative interior is defined as the interior of dom f in the
space x + vect (dom f − x) for any x ∈ dom f ; this is never empty (but may have, in
extreme cases, dimension zero).

Proof of the lemma: we assume that B = B(0, δ), δ > 0, and let M = supB f <∞.
Observe also that for x ∈ B, by convexity f(x) ≥ 2f(0)− f(−x) ≥ 2f(0)−M so that
|f | ≤M +2|f(0)|. We prove that f is Lipschitz in B(0, δ/2): indeed, if x, y ∈ B(0, δ/2),
there is z ∈ B(0, δ) such that y = (1− t)x+ tz for some t ∈ [0, 1], and ‖z−x‖ ≥ δ/2. In
particular by convexity, f(y)−f(x) ≤ t(f(z)−f(x)) ≤ t2(M−f(0)). Now, t(z−x) = y−
x so that t ≤ ‖y−x‖/‖z−x‖ ≤ 2‖y−x‖/δ hence: f(y)−f(x) ≤

(
4(M−f(0))/δ

)
‖y−x‖

which shows the claim (one could show in fact in the same way that f is Lipschitz in
any ball contained in B(0, δ)).

Now, let x̄ in the interior of dom f . Observe that for some λ > 1, λx̄ ∈ dom f
and as a consequence B′ = 1/λ(λx̄) + (1 − 1/λ)B(0, δ) = B(x̄, δ(1 − 1/λ)) ⊂ dom f ;
moreover, if x ∈ B′, x = 1/λ(λx̄) + (1 − 1/λ)z for some z with f(z) ≤ M hence
f(x) ≤ 1/λf(λx̄) + (1− 1/λ)M , so that supB′ f <∞. Hence as before f is Lipschitz in
a smaller ball.

In finite dimension, assume 0 ∈ dom f and let d be the dimension of vect dom f . It
means there exist x1, . . . , xd independent points in dom f . Now, the d-dimensional set
{
∑
i tixi : ti > 0,

∑
i ti ≤ 1} (the interior of the convex envelope of {0, x1, . . . , xd}) is an

open set in vect dom f , moreover if x =
∑
i tixi, f(x) ≤

∑
i tif(xi) + (1−

∑
i ti)f(0) ≤

M := max{f(0), f(x1), . . . , f(xd)}. Hence we can apply the first part of the theorem,
and f is locally Lipschitz in the relative interior of the domain.

Remark 4.2. Note that in infinite dimension one can possibly find noncontinuous linear
forms4 hence noncontinuous convex functions. However, one can show that a convex
proper lower semi-continuous function is always locally bounded in the interior of its
domain, and therefore locally Lipschitz (as if 0 is an interior point and one considers
the convex closed set C = {x : f(x) ≤ 1 + f(0)}, one can check that ∪n≥1nC = X , as

if x ∈ X , t 7→ f(tx) is locally Lipschitz near t = 0. Hence C̊ 6= ∅ by Baire’s property: it
follows that there is an open ball where f is bounded, as requested), cf [15, Cor. 2.5].

4.1.2 Separation of convex sets

In this section we establish two important “separation” theorems for convex sets, which
are geometric variants of Hahn-Banach’s theorem, in the particular setting of Hilbert
spaces. In this setting, unlike in the general case, these are quite obvious results.

Theorem 4.3. Let X be a (real) Hilbert space, C ⊂ X a closed, convex set and x 6∈ C.
Then there exists a closed hyperplane which “separates” strictly x and C: precisely, in
the Hilbertian setting, one can find v ∈ X,α ∈ R such that

〈v, x〉 > α ≥ 〈v, y〉 ∀ y ∈ C

Proof: introduce the projection z = ΠC(x) defined by ‖x − z‖ = miny∈C ‖x − y‖
(existence is classically shown by proving that any minimizing sequence is a Cauchy
sequence, thanks to the parallelogram identity [or strong convexity of ‖x − ·‖2]). The
first order optimality condition for z is found by writing that for any y ∈ C, ‖x− z‖2 ≤
‖x− (z + t(y − z))‖2 for t ∈ (0, 1] and then sending t→ 0. We find

〈x− z, y − z〉 ≤ 0 ∀ y ∈ C.
4the typical example is a linear function defined by f(en) = n where (en)n≥1 is an independent

family, which is then completed into a basis B, then, one lets f(e) = 0 if e ∈ B \ {en : n ≥ 1}.
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It follows that if v = x− z 6= 0, y ∈ C,

〈v, x〉 = 〈x− z, x〉 = ‖x− z‖2 + 〈x− z, z〉 ≥ ‖x− z‖2 + 〈x− z, y〉 = ‖v‖2 + 〈v, y〉 .

The result follows (letting for instance α = ‖v‖2/2 + supy∈C 〈v, y〉). The proof can
easily be extended to the situation where {x} is replaced with a compact convex set not
intersecting C.

Corollary 4.4. In a real Hilbert space X , a closed convex set C is weakly closed.

Indeed, if x 6∈ C, one finds v, α with 〈v, x〉 > α ≥ 〈v, y〉 for all y ∈ C and this defines
a neighborhood {〈v, ·〉 > α} of x for the weak topology which does not intersect C.

Theorem 4.5. Let X be a (real) Hilbert space, C ⊂ X an open convex set and C ′ ⊂ X
a convex set with C ′ ∩ C = ∅. Then Then there exists a closed hyperplane which
“separates” C and C ′: precisely, in the Hilbertian setting, one can find v ∈ X,α ∈ R,
v 6= 0, such that

〈v, x〉 ≥ α ≥ 〈v, y〉 ∀ x ∈ C, y ∈ C ′

Proof: first assume that C ′ = {x̄} is a singleton. The difficult case is whenever
x̄ ∈ C \ C, otherwise we can apply Theorem 4.3 to separate (strictly) x̄ and C. By
assumption, there exists a ball B = B(y, δ) ⊂ C. Let xn = y + (1 + 1/n)(x̄− y), which
is such that xn → x̄ as n→∞. Since

x̄ = n
n+1xn + 1

n+1y,

one has xn 6∈ C, otherwise by convexity one would deduce that B(x̄, δ/(n+ 1)) ⊂ C̄ so
that x̄ ∈ C, a contradiction.

By Theorem 4.3 there exists vn such that for all x ∈ C,

〈vn, xn〉 ≤ 〈vn, x〉

and we can assume ‖vn‖ = 1. Up to a subsequence, we may then assume that vn ⇀ v
weakly in X . In the limit, (using that xn → x̄ strongly) we obtain 〈v, x̄〉 ≤ 〈v, x〉
∀ x ∈ C, which is our claim if v 6= 0.

Using again the ball B(y, δ) ⊂ C, one has for any ‖z‖ ≤ 1

〈vn, xn〉 ≤ 〈vn, y − δz〉

so that 〈vn, y − xn〉 ≥ δ 〈vn, z〉: and taking the supremum over all possible z we find
〈vn, y − xn〉 ≥ δ. In the limit we deduce 〈v, y − x̄〉 ≥ δ which shows that v 6= 0.

Now, to show the general case, one lets A = C ′ − C = {y − x : y ∈ C ′, x ∈ C}: this
is an open convex set and by assumption, 0 6∈ A. Hence by the previous part, there
exists v 6= 0 such that 〈v, y − x〉 ≤ 〈v, 0〉 = 0 for all y ∈ C ′, x ∈ C, which is the thesis
of the Theorem.

These simple examples of separation theorems are geometric versions of the Hahn-
Banach theorem and are valid in fact in a much more general setting, see [7, 15].
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4.1.3 Subgradient

Given a convex, extended valued, f : X →] −∞,+∞], its subgradient at a point x is
defined as the set

∂f(x) := {p ∈ X : f(y) ≥ f(x) + 〈p, y − x〉 ∀y ∈ X}.

This is a closed, convex set.
If f is (Fréchet-)differentiable at x, then it is easy to see that ∂f(x) = {∇f(x)}: one

has
f(y) = f(x) + 〈∇f(x), y − x〉+ o(|y − x|)

so that if p ∈ ∂f(x),
〈∇f(x)− p, y − x〉+ o(|y − x|) ≥ 0.

Taking y = x + th, for h ∈ X and t > 0 small, we find after dividing by t and sending
t → 0 that 〈∇f(x)− p, h〉 ≥ 0. Hence p = ∇f(x). We leave to the reader the proof
that ∇f(x) ∈ ∂f(x) (hence ∇f(x) 6= ∅), which follows from convexity.

A converse? Now we want to understand better the structure of the subgradient in
relationship to the behaviour of f at a point x, and in particular what can be said
whenever ∂f(x) = {p} is a singleton. First, we observe that if x ∈ dom f , v ∈ X ,
t > s > 0 one has

f(x+ sv) = f((s/t)(x+ tv) + (1− s/t)x) ≤ s
t f(x+ tv) + (1− s

t )f(x)

so that
f(x+ sv)− f(x)

s
≤ f(x+ tv)− f(x)

t
.

It follows that

f ′(x; v) := lim
t↓0+

f(x+ tv)− f(x)

t
= inf
t>0

f(x+ tv)− f(x)

t
(17)

is well defined (in [−∞,∞]), and < +∞ as soon as {x + tv : t > 0} ∩ dom f 6= ∅. If

x ∈
˚︷ ︸︸ ︷

dom f , then f ′(x; v) < ∞ for all v, moreover as f ′(x; 0) = 0 ≤ f ′(x; v) + f ′(x;−v)
it is not −∞ either. In fact, f ′(x; ·) is a limit of convex functions, and hence convex,
moreover, it is clearly positively 1-homogeneous: f ′(x;λv) = λf ′(x; v) for all λ ≥ 0 and
all v.

If this quantity is finite, then the function has a Gateaux derivative in the direction
v (however, usual definitions of Gateaux differentiability require that this derivative be
a continuous linear form of v).

By definition, one easily sees that f ′(x; v) ≥ 〈p, v〉 if and only if p ∈ ∂f(x).
(f ′(x; v) ≥ 〈p, v〉 ⇒ f(x + tv) − f(x) ≥ t 〈p, v〉 for all t > 0, v ∈ X .) This means
that

∂f ′(x; ·)(0) = ∂f(x). (18)

If in addition, f is locally bounded near x ∈
˚︷ ︸︸ ︷

dom f (for this, as we have seen in
Lemma 4.1, it is enough that f be locally bounded near one point of the domain, or
that f be lsc, cf Remark 4.2), then one can easily deduce that also f ′(x; ·) is, and in
particular it is Lipschitz (globally, as it is 1-homogeneous).
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(In addition, in finite dimension, the convergence in (17) is uniform for ‖v‖ ≤ 1
because of Ascoli-Arzelà’s theorem: In fact, if t ≤ t0 small enough and ‖v‖ ≤ 2,

htx(v) :=
f(x+ tv)− f(x)

t
≤ f(x+ t0v)− f(x)

t0
≤M

for some M and the proof of Lemma 4.1 shows that the htx are uniformly Lipschitz in
B(0, 1).)

We will see later on (Sections 4.2, 4.2.2) that since in these cases, f ′(x; ·) is contin-
uous, f ′(x; v) = supp∈∂f(x;·)(0) 〈p, x〉, so that f ′(x; ·) is the support function of ∂f(x)
which in particular cannot be empty.

Moreover, we deduce that if ∂f(x) = {p} is a singleton, then f ′(x; v) = 〈p, x〉. In
finite dimension (as the convergence htx → f ′(x; ·) is uniform) we deduce that f is
differentiable at x. In infinite dimension, we deduce that f is Gateaux-differentiable. It
is not necessarily Fréchet-differentiable: for instance in `2(N), the convex function

f(x) = sup
i≥0

(√
1
i+1 + x2

i −
√

1
i+1

)
which is bounded near 0 (‖x‖ ≤ 1 ⇔

∑
i |xi|2 ≤ 1 ⇒ |xi| ≤ 1 ∀ i ≥ 0) satisfies

∂f(0) = {0}, however if v = ei = (δi,j)j≥0, then

f(0 + tv)− f(0)

t
=

1

t

(√
1
i+1 + t2 −

√
1
i+1

)
=
√

2− 1

if t = 1/
√
i+ 1, showing that the differentiability is only Gateaux. (It is, as for any v

and t > 0,
f(tv)− f(0)

t
= sup

i≥0

1

t

(√
1
i+1 + t2v2

i −
√

1
i+1

)
and for each i, the quantity in the sup is less than |vi|. Given ε, one can find i0 such
that |vi| ≤ ε for i > i0, while for i = 0, . . . , i0, if t is small enough one can make the
quantity below the sup less than ε. Hence the Gateaux derivative exists and is zero.)

Using Lemma 4.1, we can deduce the following two results:

Lemma 4.6. Let f be proper, convex. Assume it is lsc, or continuous in one point.
Then, in the interior of the domain, ∂f(x) 6= ∅. In finite dimension, f has a nonempty
subdifferential everywhere in ri dom f .

Lemma 4.7. Let f be proper, convex. Then if f is Gateaux-differentiable at x, ∂f(x) =
{∇f(x)}. Conversely if x is in the interior of dom f and f is continuous at some point5,
then if ∂f(x) is a singleton, f is Gateaux-differentiable at x.

In finite dimension, ∂f is a singleton if and only if f is differentiable at x.

Minimality condition An obvious remark which stems from the definition of a sub-
gradient is that this notion allows to generalise the Euler-Lagrange stationary conditions
(∇f(x) = 0 if x is a minimiser of f) to nonsmooth convex functions: we have indeed

x ∈ X is a global minimiser of f if and only if 0 ∈ ∂f(x). (19)

In the same way, one has:

5for instance if it is lsc, cf Rem. 4.2 and Lemma 4.1.
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Lemma 4.8. if x ∈ dom f is a local minimiser of f + g, f convex, g C1 near x, then
for all y ∈ X ,

f(y) ≥ f(x)− 〈∇g(x), y − x〉

and −∇g(x) ∈ ∂f(x).

Indeed, one just writes that for t > 0 small enough,

f(x) + g(x) ≤ f(x+ t(y−x)) + g(x+ t(y−x)) ≤ f(x) + t(f(y)− f(x)) + g(x+ t(y−x))

so that
g(x)− g(x+ t(y − x))

t
≤ f(y)− f(x)

and we recover the claim in the limit t→ 0.

Subgradient of a strongly convex function If the function f is strongly convex or
“µ-convex” and p ∈ ∂f(x), then x is by definition a minimiser of y 7→ f(y)− 〈p, y − x〉
which is also µ-convex. In particular, letting h(y) = f(y)−〈p, y − x〉−µ‖y−x‖2/2, one
has that x is a minimizer of h(y) +µ‖y−x‖2/2 and h is convex. Hence, by Lemma 4.8,

0 = −∇
(µ

2
‖ · −x‖2

)
(x) ∈ ∂h(x).

Hence, h(y) ≥ h(x) for all y ∈ X , that is

f(y)− 〈p, y − x〉 − µ‖y − x‖2/2 ≥ f(x).

We deduce that for any x, y ∈ X and p ∈ ∂f(x):

f(y) ≥ f(x) + 〈p, y − x〉+
µ

2
‖y − x‖2 (20)

An equivalent (but important) remark is that if f is strongly convex and x is a minimiser,
then one has (since 0 ∈ ∂f(x))

f(y) ≥ f(x) +
µ

2
‖y − x‖2 (21)

for all y ∈ X .

Domain The domain of ∂f is the set dom ∂f = {x ∈ X : ∂f(x) 6= ∅}. Clearly,
dom ∂f ⊂ dom f , in fact if f is convex, l.s.c. and proper, we will see later on (see
Prop 4.22 or [15]) that dom ∂f is dense in dom f (even when dom f has empty interior,
as for instance when f(u) =

∫
Ω
|∇u|2dx for u ∈ L2(Ω)). The fact it is not empty will

also follow.
In finite dimension, one has seen that for a proper convex function, dom ∂f contains

at least the relative interior of dom f (that is, the interior in the vector subspace which
is generated by dom f).

4.1.4 Subdifferential calculus

Theorem 4.9. Assume f, g are convex, proper. Then for all x, ∂f(x) +∂g(x) ⊂ ∂(f +
g)(x). Moreover if there exists x̄ ∈ dom f where g is continuous, then ∂f(x) + ∂g(x) =
∂(f + g)(x). In finite dimension, if ri dom g ∩ ri dom f 6= ∅, this is also true.
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Proof: the inclusion is obvious from the definition. For the reverse inclusion, we
assume p ∈ ∂(f + g)(x) and want to show that it can be decomposed as q + r with q ∈
∂f(x) and r ∈ ∂g(x). By definition, we have that f(y)+g(y) ≥ f(x)+g(x)+ 〈p, y − x〉.

Thanks to the assumption that g is continuous at x̄, epi (g(·)−〈p, ·〉) contains a ball
B centered at (x̄, g(x̄)− 〈p, x̄〉+ 1) and has non empty interior. Denote E this interior,
and F the following translation/flip of epi f :

F = {(y, t) : −t ≥ f(y)− [f(x) + g(x)− 〈p, x〉]},

which is convex. For (y, t) ∈ F , one has −t ≥ f(y)− [f(x) + g(x)− 〈p, x〉] ≥ −[g(y)−
〈p, y〉], that is t ≤ [g(y)− 〈p, y〉] so that (y, t) 6∈ E. Hence by Theorem 4.5 there exists
(q, λ) 6= (0, 0), such that for all (y, t) ∈ E, (y′, t′) ∈ F ,

〈q, y〉+ λt ≥ 〈q, y′〉+ λt′.

As t′ can be sent to −∞ (or t to +∞), λ ≥ 0. Moreover since x̄ is in dom f , if λ = 0
one finds that 〈q, y − x̄〉 ≤ 0 for all y ∈ dom g which contains a ball centered in x̄, so
that q = 0, which is a contradiction. Hence λ > 0 so that without loss of generality we
can assume λ = 1.

In particular choosing t′ = f(x) + g(x)− 〈p, x〉 − f(y′),

〈q, y〉+ t ≥ 〈q, y′〉+ f(x) + g(x)− 〈p, x〉 − f(y′).

for all (y, t) ∈ E. The closure of E contains epi (g(·) − 〈p, ·〉): indeed any (y, t) ∈
epi (g(·)− 〈p, ·〉) is on the boundary of the set {ty + (1− t)B : 0 < t < 1} ⊂ epi (g(·)−
〈p, ·〉). Hence it follows that for all y, y′,

〈q, y〉+ g(y)− 〈p, y〉 ≥ 〈q, y′〉+ f(x) + g(x)− 〈p, x〉 − f(y′)

⇔ f(y′) + g(y) ≥ f(x) + g(x) + 〈p, y − x〉+ 〈q, y′ − y〉
= f(x) + g(x) + 〈p− q, y − x〉+ 〈q, y′ − x〉

showing that q ∈ ∂f(x) and r = p− q ∈ ∂g(x), as requested.

In finite dimension, the proof relies on the previous result and the fact that subgradi-
ents, for points in the relative interior of a convex function, are the sum of a subgradient
of a Lipschitz function and a vector orthogonal to the domain, which is a consequence
of the following easy fact (actually valid for X Hilbert):

Lemma 4.10. Let f : X → R ∪ {+∞} be convex, proper and let W ⊂ X be an affine,
closed subspace with dom f ⊂W . Then for any x ∈W ,

∂f(x) = ∂(f |W )(x) +W⊥.

We denote W0 the vector space {x− y : (x, y) ∈W 2}. If p ∈ ∂f(x) and y ∈W , one
has

f(y)− f(x) ≥ 〈p, y − x〉 = 〈ΠW0
(p), y − x〉

since y − x ∈ W0, so that ΠW0(p) ∈ ∂(f |W )(x). Conversely, if p̃ ∈ W0 is an element of
∂(f |W )(x), obviously for any y ∈ X and q ∈W⊥,

f(y) ≥ f(x) + 〈p̃+ q, y − x〉
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since either y 6∈ W and f(y) = +∞, or y ∈ W and 〈q, y − x〉 = 0. This shows the
lemma.

In particular, one sees that for any x ∈ W , ∂δW (x) = W⊥ (where we recall δW is
the indicator or characteristic function of W ); also, in finite dimension, if one chooses
W = vect dom f , we remark that for a.e. point (for the Lebesgue measure in W ) in
ri dom f , then ∂f(x) = {∇f |W (x)}+W⊥.

We now show that, when X is finite dimensional, then if ri dom f ∩ ri dom g 6= ∅,
∂(f + g) = ∂f + ∂g. We deduce this from the previous result (which we refer as
Theorem 4.9) and from Lemma 4.10; a direct proof is found in [38, Thm 23.8], it is
actually not much simpler.

First, up to a translation, we may assume 0 ∈ ri dom g ∩ ri dom f so that ri dom g
is the interior of dom g in V = vect dom g and ri dom f is the interior of dom f in
W = vect dom f .

If x 6∈W ∩V , f(x)+g(x) = +∞ and ∂f(x)+∂g(x) = ∂(f+g)(x) = ∅, so we assume
x ∈W ∩ V . From the Lemma we have that

∂(f + g)(x) = ∂((f + g)|W )(x) +W⊥

since dom (f + g) ⊂ W . Now since f |W is continuous at all points of ri dom f , and by
assumption one of such points is in dom g|W , we deduce from Theorem 4.9 that

∂((f + g)|W )(x) +W⊥ = ∂(f |W )(x) + ∂(g|W )(x) +W⊥ = ∂f(x) + ∂(g|W )(x) +W⊥

where in the last equality we have used again that ∂f = ∂(f |W ) + W⊥. On the other
hand still because of Lemma 4.10,

∂(g|W )(x) +W⊥ = ∂(g+ δW )(x) = ∂((g+ δW )|V )(x) + V ⊥ = ∂(g|V + δW∩V )(x) + V ⊥.

Now, using the fact that g|V is continuous at some point of W (again, from the assump-
tion ri dom f ∩ ri dom g 6= ∅), we can use Theorem 4.9 again to deduce that

∂(g|V + δW∩V )(x) = ∂(g|V )(x) + ∂δW∩V (x)

Since we have assumed x ∈ W ∩ V , one has6 ∂δW∩V (x) = (W ∩ V )⊥ = W⊥ + V ⊥ so
that, using Lemma 4.10 once more:

∂(g|W )(x) +W⊥ = ∂(g|V )(x) + ∂δW∩V (x) + V ⊥ = ∂g(x) +W⊥.

We deduce that ∂(f + g)(x) = ∂f(x) + ∂g(x).

Theorem 4.11. Let A : X → Y be a continuous operator between two Hilbert spaces
and f a proper, convex function on Y. Let g = f(Ax), then if there is x̄ such that f
is continuous at Ax̄, ∂g(x) = A∗∂f(Ax). In finite dimension, one can just require that
Ax̄ ∈ ri dom f .

Proof: A∗∂f(Ax) ⊂ ∂g(x) is easy. If p ∈ ∂g(x), one has for all z,

f(Az) ≥ f(Ax) + 〈p, z − x〉 . (22)

Hence
˚︷︸︸︷

epi f (which is non empty because f is continuous at some point) and

E = {(Az, f(Ax) + 〈p, z − x〉) : z ∈ X} ⊂ Y × R
6We use here that (V ∩ W )⊥ = V ⊥ + W⊥ which easily follows from the obvious relationship

(A + B)⊥ = A⊥ ∩B⊥ and (V ⊥)⊥ = V — which is elementary duality.
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have no common point: if (y, t) ∈ E, then by (22) t ≤ f(y). Then there exists by
Theorem 4.5 (q, λ) such that

−〈q, y〉+ λt ≥ −〈q, y′〉+ λt′

for all (y, t) ∈ epi f and (y′, t′) ∈ E. Again, λ ≥ 0, and if λ = 0 one can find a
contradiction as in the previous proof. Then, assuming λ = 1, one obtains for all z ∈ X ,
y ∈ Y,

−〈q, y〉+ f(y) ≥ −〈q,Az〉+ f(Ax) + 〈p, z − x〉 = f(Ax) + 〈p−A∗q, z〉 − 〈p, x〉 .

This is possible only if p = A∗q, otherwise one can send the right-hand side to +∞.
Hence, p = A∗q, 〈p, x〉 = 〈q, Ax〉 and

f(y) ≥ f(Ax) + 〈q, y −Ax〉

for all y, so that q ∈ ∂f(Ax).
In finite dimension, we leave the proof to the reader (see also [38, Thm 23.9]).

4.1.5 Remark: KKT’s theorem

Theorem 4.12 (Karush-Kuhn-Tucker). Let f, gi, i = 1, . . . ,m be C1, convex and
assume

∃ x̄, (gi(x̄) < 0 ∀ i = 1, . . . ,m) (Slater’s condition)

Then x∗ is a solution of
min

gi(x)≤0,i=1,...,m
f(x)

if and only if there exists (λi)
m
i=1, λi ≥ 0 such that

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0 (23)

and for all i = 1, . . . ,m:

λigi(x
∗) = 0 (complementary slackness condition)

Proof: first, if (23) holds together with the complementary slackness condition, then
it is easy to show that x∗, which is a minimizer of the convex function f +

∑
i λigi, is

a solution of the constrained problem: if x satisfies the constraints, then

f(x) ≥ f(x) +
∑
i

λigi(x) ≥ f(x∗) +
∑
i

λigi(x
∗) = f(x∗).

Conversely, consider for all i the function

δi(x) =

{
0 if gi(x) ≤ 0,

+∞ else.,

then the problem is equivalent to minx f(x) +
∑
i δi(x). By Slater’s condition, we know

that there exists x̄ where all functions f, δi are continuous. Hence by Thm. 4.9,

0 ∈ ∂(f +
∑
i

δi)(x
∗) = ∇f(x∗) +

m∑
i=1

∂δi(x
∗).
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It remains to characterize ∂δi(x
∗): if gi(x

∗) < 0 then it is negative in a neighborhood
of x∗ and ∂δi(x

∗) = {0}. If gi(x
∗) = 0, then we need to characterize the vectors p such

that for all y with gi(y) ≤ 0,
0 ≥ 〈p, y − x∗〉 .

Let v ⊥ ∇gi(x∗), and consider y = x∗ − t(∇gi(x∗) + v): then

gi(y) = −t 〈∇gi(x∗),∇gi(x∗) + v〉+ o(t) = −t‖∇gi(x∗)‖2 + o(t) < 0

if t > 0 is small enough, hence

0 ≤ 〈p,∇gi(x∗) + v〉 .

We easily deduce that we must have p = λi∇gi(x∗), for some λi ≥ 0 (in other words,
∂δi(x

∗) = R+∇gi(x∗)). The theorem follows.

Remark 4.13. The standard KKT theorem suggests also the possibility of some affine
equality constraints hi(x) = 0, i = 1, . . . ,m′, and the Slater condition just assumes
hi(x̄) = 0. The proof above needs to be tuned a little to address this case. In practice,
one can observe that when solving, for some i ∈ 1, . . . ,m′ the problem with either the
constraint +hi ≤ 0 or −hi ≤ 0, one finds two solutions x± with value m± and: either
m+ < m−, in which case one easily shows that −hi(x−) = 0 (otherwise one could find a
better value for m− in the interval [x+, x−]), or m+ > m− and hi(x

+) = 0, or m+ = m−

and the problem is equivalent when removing the constraint hi = 0. As a result, the
initial problem is shown to be equivalent to

min
x
{f(x) : gi(x) ≤ 0, i = 1, . . . ,m ; εihi(x) ≤ 0, i = 1, . . . ,m′}

where εi ∈ {−1, 0, 1}, and the standard KKT conditions follow by applying the Theorem
to this new problem, observing that one can perturb slightly x̄ to find a new point x̄′

with εihi(x̄
′) < 0 for all i with εi 6= 0.

4.2 Convex duality

4.2.1 Legendre-Fenchel conjugate

Given a function f : X → R ∪ {+∞}, we introduce the Legendre-Fenchel conjugate

f∗(y) := sup
x∈X
〈y, x〉 − f(x)

which is defined for all p ∈ X , as a supremum of continuous linear forms: in particular,
it is obviously a convex, lsc function. Observe that here we rely on the Riesz theorem
to define the conjugate, in a more general vector space E, the proper definition should
be as a function defined in a dual space E′, see for instance [15].

Obviously for all x, y,
f∗(y) + f(x) ≥ 〈y, x〉

and in particular f(x) ≥ 〈y, x〉 − f∗(y). Thus, the biconjugate f∗∗, defined as f∗ by
f∗∗(y) = supx∈X 〈y, x〉 − f∗(y), clearly satisfies

f∗∗ ≤ f.

The following is the most important result about the Legendre-Fenchel conjugate (it is
also elementary in our Hilbertian setting):
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Theorem 4.14. If f has no affine minorant, f∗ ≡ +∞ and f∗∗ ≡ −∞. Otherwise, f∗∗

is the largest convex lsc function below f , called the convex lsc envelope of f (sometimes
also the Γ-regularization, or the convex relaxation). In this case then either f ≡ +∞,
or f∗, f∗∗ are proper.

This is a consequence of the separation theorem. Observe that the convex lsc en-
velope of a function f is always well defined as the sup of all the convex lsc functions
below f , or −∞ if there is none. Observe also that it is the function whose epigraph
is the closed convex envelope of epi f . The special case of a function with no affine
minorant is very specific: for instance, a function f equal to −∞ in B(0, 1) and +∞
else, despite being convex lsc, is such that f∗ ≡ +∞ and f∗∗ ≡ −∞.

Proof: if f ≡ +∞ then f∗ ≡ −∞ and f∗∗ ≡ +∞: the theorem is trivial. So we
assume there exists x with f(x) < +∞. As we have seen, f∗∗ ≤ f is a convex lsc below
f . Either it is −∞ everywhere, or it is proper and there exists an affine function a such
that f ≥ f∗∗ ≥ a. Indeed, choosing (x, t) with t < f∗∗(x) ≤ f(x) < +∞, the separation
Theorem 4.3 applied to the closed convex set epi f∗∗ and (x, t) 6∈ epi f∗∗ shows the
existence of (p, λ, α) with

−〈p, x〉+ λt < α ≤ −〈p, y〉+ λs

for any (y, s) ∈ epi f∗∗. As usual λ ≥ 0 (sending s → ∞), moreover λ 6= 0 otherwise
choosing y = x yields a contradiction. Hence one may assume λ = 1 and one obtains
f(y) ≥ f∗∗(y) ≥ t + 〈p, y − x〉 =: a(y), which shows the claim. By definition, one has
of course in this case that f∗(p) ≤ 〈p, x〉 − t <∞ and f∗∗(y) ≥ 〈p, y〉 − f∗(p) ∀ y.

One sees that if f has no affine minorant, then f∗ ≡ +∞ and f∗∗ ≡ −∞; while in
the other case f∗ and f∗∗ are proper as soon as f 6≡ +∞.

Assuming that we are in the latter case, let g be convex, lsc with g ≤ f . To show
that f∗∗ is maximal among such functions, we must show that g ≤ f∗∗. Since g ≤ f ,
then f∗ ≤ g∗, so that g∗∗ ≤ f∗∗. Hence it is enough to show that g∗∗ = g. As before,
considering p with f∗(p) < +∞ one has f∗∗ ≥ 〈p, · 〉 − f∗(p), so that it is enough
to consider only functions g with g(x) ≥ 〈p, x〉 − f∗(p) ∀x (otherwise replace g with
x 7→ max{g(x), 〈p, x〉 − f∗(p)}).

The next (not essential) simplification consists in replacing f with f ′(x) = f(x) −
〈p, x〉+ f∗(p) ≥ 0. Indeed,

(f ′)∗(y) = sup
x
〈y, x〉 − f(x) + 〈p, x〉 − f∗(p)

= −f∗(p) + sup
y
〈y + p, x〉 − f(x) = f∗(y + p)− f∗(p),

so that

(f ′)∗∗(x) = sup
y
〈y, x〉 − f∗(y + p) + f∗(p)

= f∗(p)− 〈p, x〉+ sup
y
〈y + p, x〉 − f∗(y + p) = f∗∗(x)− 〈p, x〉+ f∗(p).

Hence f = f∗∗ ⇔ f ′ = (f ′)∗∗ and it is enough to show the result for nonnegative
functions.

Assume therefore that f is convex, lsc, with 0 ≤ f 6≡ +∞. If f∗∗ 6= f , then there
exists x with f∗∗(x) < f(x). That is, (x, f∗∗(x)) 6∈ epi f and from Theorem 4.3, there
exists p, λ, α with

〈p, x〉 − λf∗∗(x) > α ≥ 〈p, y〉 − λs
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for all y ∈ dom f and s ≥ f(y). In particular, as dom f 6= ∅, letting s → +∞ we see
that λ ≥ 0.
Case 1: λ > 0: then we can divide the inequality and assume that λ = 1. It follows
that f∗∗(x) < −α + 〈p, x〉, while α ≥ 〈p, y〉 − f(y) for all y, hence taking the sup over
y, α ≥ f∗(p). Hence, f∗∗(x) < 〈p, x〉 − f∗(p), a contradiction.
Case 2: λ = 0: then 〈p, x〉 > α ≥ 〈p, y〉 for all y ∈ dom f . Observe then that for t > 0,
using that f ≥ 0 in dom f and f = +∞ outside,

f∗(tp) = sup
y
t 〈p, y〉 − f(y) ≤ t sup

y∈dom f
〈p, y〉 ≤ tα,

so that

f∗∗(x) = sup
q
〈q, x〉 − f∗(q) ≥ sup

t>0
〈tp, x〉 − f∗(tp) ≥ sup

t>0
t(〈p, x〉 − α) = +∞

which is again a contradiction.

Remark 4.15 (Legendre-Fenchel Identity). If x realizes the sup in f∗(y) = supx 〈y, x〉−
f(x) then for all z,

〈y, x〉 − f(x) ≥ 〈y, z〉 − f(z) ⇔ f(z) ≥ f(x) + 〈y, z − x〉

which means that y ∈ ∂f(x). Conversely if y ∈ ∂f(x), by definition one easily deduces
that f∗(y) ≤ 〈y, x〉 − f(x), and moreover that f∗∗(x) = f(x), y ∈ ∂f∗∗(x), and f is
lsc at x. In particular we see that ∂f∗∗(x) ⊇ ∂f(x) for all x.

One derives the celebrated Legendre-Fenchel identity :

y ∈ ∂f(x)⇔ 〈x, y〉 = f(x) + f∗(y)⇒ x ∈ ∂f∗(y), (24)

the latter being also an equivalence if f is lsc, convex (if f = f∗∗).
One also can check that conversely, if the convex function f is lsc at x, then f∗∗(x) =

f(x). This is true because f∗∗ is the lsc envelope of f (since it is convex), which can be
defined by z 7→ infzn→z lim infn f(zn).

One can derive as a corollary the following variant of Theorem 4.14, which may be
useful (see Sec. 4.3.2).

Corollary 4.16. Let f : X → R ∪ {+∞} be convex, proper and assume that f is
lower-semicontinuous at x ∈ X . Then f∗∗(x) = f(x).

To prove this, observe that the lower semicontinuity assumption implies that for any
t < f(x), there exists δ > 0 such that f(y) ≥ t for all y ∈ B(x, δ), the open ball of
center x and radius δ. In other words,

epi f ∩B(x, δ)×(−∞, t) = ∅

Since the second set is open, also epi f does not intersect it. Since f is convex, epi f =
epi f∗∗ (thanks to Theorem 4.14) and one deduces that t ≤ f∗∗(x), which proves the
claim.

4.2.2 Examples

1. f(x) = ‖x‖2/(2α), α > 0: f∗(y) = α‖y‖2/2;

35



2. f(x) = |x|p/p: f∗(y) = |y|p′/p′, 1/p+ 1/p′ = 1;

3. F (f) = ‖f‖pLp/p: F ∗(g) = ‖g‖p
′

Lp′
/p′ (the duality is in L2, however this is also

true in the (Lp, Lp
′
) duality, see [15]);

4. f(x) = δB(0,1)(x) = 0 if x ∈ B(0, 1), +∞ else: f∗(p) = |p|.

The last example is a particular case of the following situation: if f is convex,
1-homogeneous, then

f∗(y) = sup
x
〈y, x〉 − f(x) = sup

t>0
sup
x
〈y, tx〉 − f(tx) = sup

t>0
tf∗(y) ∈ {0,+∞}

and precisely

f∗(y) =

{
0 if 〈y, x〉 ≤ f(x) ∀x ∈ X ,
+∞ if ∃x ∈ X , 〈y, x〉 > f(x).

Letting C = {y : 〈y, x〉 ≤ f(x) ∀x ∈ X} = ∂f(0), one has f∗ = δC (C is clearly closed
and convex, and f∗ convex lsc). Eventually, observe that if f is lsc, then f∗∗ = f which
shows that in this case

f(x) = sup
y∈∂f(0)

〈y, x〉 .

Observe in particular that ∂f(x) = {y ∈ ∂f(0) : 〈y, x〉 = f(x)}.
This example, in turn, is a particular case of the following: if f is β-homogeneous,

β > 1, then

f∗(ty) = sup
x
〈ty, x〉 − f(x) = tα sup

x

〈
y, t1−αx

〉
− f(t−α/βx) = tαf∗(y)

if 1− α = −α/β, hence if 1/α+ 1/β = 1.

4.2.3 Relationship between the growth of f and f∗

Lemma 4.17. If f is finite everywhere, then f∗(tp)/t→ +∞ as t→ +∞ for all p ∈ X
(f∗ is superlinear). The converse is true in finite dimension if f is convex, lsc.

Proof: if f∗ is not superlinear, there exists p, c < ∞, such that f∗(tp) ≤ ct for all
t > 0: hence f∗∗(x) ≥ supt≥0 t 〈p, x〉 − f∗(tp) ≥ supt≥0 t(〈p, x〉 − c) = +∞ as soon as x
is such that 〈p, x〉 > c. Of course then, f(x) ≥ f∗∗(x) = +∞.

Conversely, in finite dimension, let f be convex, lsc and assume that there is x
with f(x) = +∞. We can assume without loss of generality that f ≥ 0 (cf proof of
Thm 4.14).

Then, since dom f 6= X (in finite dimension only, in infinite dimension dom f could
be dense, for instance think of f(u) =

∫
|∇u|2dx for u ∈ L2) one can consider x 6∈ dom f .

Then, there exists by Theorem 4.3 p, α with 〈p, x〉 > α ≥ 〈p, y〉 ∀y ∈ dom f . We have

f∗(tp) = sup
y
〈tp, y〉 − f∗(y) ≤ sup

y∈dom f
t 〈p, y〉 ≤ tα

for t > 0, so that f∗(tp)/t ≤ α and f∗ is not superlinear.

Remark 4.18. In infinite dimension, one needs to strengthen a bit the assumption, for
instance if f ≥ g(|p|) with g superlinear then f∗ is finite everywhere.
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Proposition 4.19. Let f a convex, lsc function: then f is µ-convex if and only if f∗

has (1/µ)-Lipschitz gradient.

Proof: observe that if f is µ-convex one has in particular, given x ∈ dom ∂f , for
p ∈ ∂f(x), that (20) holds:

f(y) ≥ f(x) + 〈p, y − x〉+
µ

2
‖y − x‖2 (20)

for all y, hence taking the conjugate (cf Example 1 in the previous Section), we find
for all q:

f∗(q) ≤ sup
y
〈q, y〉 − f(x)− 〈p, y − x〉 − µ

2
‖y − x‖2

= 〈q, x〉 − f(x) + sup
y
〈q − p, y − x〉 − µ

2
‖y − x‖2 = 〈q, x〉 − f(x) +

1

2µ
‖q − p‖2

= 〈p, x〉 − f(x) + 〈q − p, x〉+
1

2µ
‖q − p‖2 = f∗(p) + 〈q − p, x〉+

1

2µ
‖q − p‖2. (25)

We have used that 〈p, x〉 − f(x) = f∗(p) which follows from (24). In particular we
see that f∗ has at most a quadratic growth, and we deduce that it is locally Lips-
chitz (Lemma 4.1), and its subgradient is not empty everywhere. Moreover, we deduce
from (25) that when x ∈ ∂f∗(p)⇔ p ∈ ∂f(x) (cf (24)),

f∗(p) + 〈q − p, x〉 ≤ f∗(q) ≤ f∗(p) + 〈q − p, x〉+
1

2µ
‖q − p‖2,

in other words, f∗(q) = f∗(p) + 〈q − p, x〉+ o(q − p) which shows that f∗ is (Fréchet)-
differentiable and x = ∇f∗(p).

Eventually, given p, q ∈ X and x = ∇f∗(p), y = ∇f∗(q), one has by (24) that
p ∈ ∂f(x), q ∈ ∂f(y) and by strong convexity, using (20) and the same with x, y
switched and p replaced with q, and summing, we find

〈q − p, y − x〉 ≥ µ‖y − x‖2

so that in particular, ‖∇f∗(q)−∇f∗(p)‖ ≤ (1/µ)‖q − p‖: ∇f∗ is (1/µ)-Lipschitz. In
fact, we see that

〈q − p,∇f∗(q)−∇f∗(p)〉 ≥ µ‖∇f∗(q)−∇f∗(p)‖2,

which expresses that ∇f∗ is “µ-co-coercive”, a property which is stronger than being
(1/µ)-Lipschitz.

Conversely, if f∗ has (1/µ)-Lipschitz gradient, let us show that f is µ-convex. Ob-
serve that

f∗(q) = f∗(p) +

∫ 1

0

〈∇f∗(p+ s(q − p)), q − p〉 ds

= f∗(p) + 〈∇f∗(p), q − p〉+

∫ 1

0

〈∇f∗(p+ s(q − p))−∇f∗(p), q − p〉 ds

≤ f∗(p) + 〈∇f∗(p), q − p〉+ 1
µ‖q − p‖

2

∫ 1

0

sds.
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If p ∈ ∂f(x), so that x = ∇f∗(p), we deduce

f∗(q) ≤ f∗(p) + 〈q − p, x〉+
1

2µ
‖q − p‖2.

Hence taking the conjugate:

f(y) = f∗∗(y) ≥ sup
q
〈q, y〉 −

(
f∗(p) + 〈q − p, x〉+

1

2µ
‖q − p‖2

)
= 〈p, x〉 − f∗(p) + sup

q
〈p− q, x− y〉 − 1

2µ
‖q − p‖2 = 〈p, y〉 − f∗(p) +

µ

2
‖x− y‖2.

By (24), 〈p, x〉 − f∗(p) = f(x) (as f is convex lsc), and we find

f(y) ≥ f(x) + 〈p, y − x〉+
µ

2
‖x− y‖2,

showing that f is strongly convex. Notice in particular that we have found another
proof of Theorem 2.3, valid also in Hilbert spaces for convex lsc functions.

4.2.4 The conjugate of a sum: Inf-convolutions

A natural question, given two convex functions f and g, is whether one can derive an
expression for the conjugate (f+g)∗. The answer is given by a particular “convolution”
formula, called the “inf-convolution”. Letting f, g be convex, lsc functions it is defined
as follows:

f�g(x) = inf
y
f(x− y) + g(y). (26)

It is easy to show that this defines a convex function (more generally, given G(x, y)
convex in (x, y), we let the reader show that x 7→ infy G(x, y) is also convex. One can
show in addition the following result:

Lemma 4.20. We assume f, g are convex, lsc. If there is p ∈ X where f∗ is continuous
and g∗ is finite, then the inf is reached in (26) and f�g is convex, lsc. In finite
dimension, it is enough to have p ∈ ri dom f∗ ∩ ri dom g∗.

Proof: consider indeed xn → x and yn such that

f�g(xn) ≥ f(xn − yn) + g(yn)− 1

n
.

Consider a subsequence with

lim
k
f(xnk − ynk) + g(ynk) = lim inf

n
f(xn − yn) + g(yn) ≤ lim inf

n
f�g(xn)

Observe that if f∗ is continuous at p, then it means that there is a constant c such that

f∗(q) ≤ c+ δB(0,ε)(q − p)

(where δC is the characteristic function of C which is zero in C and +∞ elsewhere)
while g∗(p) < +∞: so that for all z

f(z) = f∗∗(z) ≥ 〈p, z〉 − c+ ε‖z‖, g(z) ≥ 〈p, z〉 − g∗(p).

38



Hence,

f(xnk − ynk) + g(ynk) ≥ 〈p, xnk − ynk〉 − c+ ε‖xnk − ynk‖ + 〈p, ynk〉 − g∗(p)
= 〈p, xnk〉+ ε‖xnk − ynk‖ − (c+ g∗(p))

so that (xnk − ynk)k is a bounded sequence, hence there exists y and a subsequence of
(ynk) (not relabelled) with ynk ⇀ y. In the limit (as, f, g are weakly lsc),

f�g(x) ≤ lim inf
k

f(xnk − ynk) + g(ynk) ≤ lim inf
n

f�g(xn).

Eventually, we observe that if the sequence xn ≡ x, then this proves that there is a
minimizer y in (26). We can derive a second, more precise variant of Theorem 4.9:

Corollary 4.21. Let f, g be convex, lsc: if there exists x ∈ dom f ∩ dom g such that f
is continuous at x (in finite dimension, x ∈ ri dom f ∩ ri dom g), then

� (f + g)∗ = f∗�g∗,

� ∂(f + g) = ∂f + ∂g.

The first point is clear: as by our assumption, f∗�g∗ is lsc, and:

(f∗�g∗)∗(x) = sup
p,q
〈x, p〉 − f∗(q)− g∗(p− q)

= sup
p,q
〈x, q〉 − f∗(q) + 〈x, p− q〉 − g∗(p− q) = f(x) + g(x).

The second point is because if p ∈ ∂(f + g)(x), using that x ∈ ∂(f∗�g∗)(p) and

f∗�g∗(p) = f∗(q) + g∗(p− q)

for some q, one obtains letting p− q = r:

f∗(s) + g∗(t) ≥ f∗�g∗(s+ t) ≥ f∗�g∗(p) + 〈x, s+ t− p〉
≥ f∗(q) + 〈x, s− q〉+ g∗(r) + 〈x, t− r〉

for all s, t. Hence x ∈ ∂f∗(q) ∩ ∂g∗(r), which shows that p = q + r ∈ ∂f(x) + ∂g(x).

4.3 Example: the proximity operator

(Also known as Proximal map.) Given f convex lsc, proper, observe that for any τ > 0,
x ∈ X , y 7→ f(y) + ‖y − x‖2/(2τ) is strongly convex and hence has a unique minimizer.
We define

fτ (x) := min
y∈X

f(y) +
1

2τ
‖y − x‖2 (27)

as the inf-convolution of f and ‖ · ‖2/(2τ). It is clearly a convex, lsc function thanks
to Lemma 4.20 (and the “min” is reached, but this is also because we are minimizing a
strongly convex, lsc function in a Hilbert or Euclidean space). As we have seen before
(Lemma 4.8), one has at the minimizer yx

∂f(yx) +
1

τ
(yx − x) 3 0. (28)
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This characterizes the unique minimizer of (27) and in particular it means that the
following operator is uniquely defined:

yx = (I + τ∂f)−1(x) =: proxτf (x).

As already shown, (x − yx)/τ = ∇fτ (x). Actually, in the convex case, there is a
direct proof: one has, letting η = proxτf (y) and ξ = proxτf (x),

fτ (y) = f(η) +
‖η−y‖2

2τ = f(η) +
‖(η−x)+(x−y)‖2

2τ

= f(η) +
‖η−x‖2

2τ +
〈
x−η
τ , y − x

〉
+
‖x−y‖2

2τ

≥ f(ξ) +
‖ξ−x‖2

2τ +
‖η−ξ‖2

2τ +
〈
x−ξ
τ , y − x

〉
+
〈
ξ−η
τ , y − x

〉
+
‖x−y‖2

2τ

= fτ (x) +
〈
x−ξ
τ , y − x

〉
+ τ

2‖
y−η
τ −

x−ξ
τ ‖

2.

In the third line, we have used the fact that ξ is the minimiser of a (1/τ)-strongly convex
problem, so that f(η) + ‖η − x‖2/(2τ) ≥ f(ξ) + ‖η − x‖2/(2τ) + ‖η − ξ‖2/(2τ) for all
η. We deduce from the inequality

fτ (y) ≥ fτ (x) +
〈
x−ξ
τ , y − x

〉
+ τ

2‖
y−η
τ −

x−ξ
τ ‖

2

both that (x−ξ)/τ is a subgradient of fτ at x, and that the map x 7→ (x−proxτf (x))/τ
is τ -co-coercive, hence (1/τ)-Lipschitz: indeed, writing the same inequality after having
swapped x and y, and summing the two inequalities, we obtain〈

y−η
τ −

x−ξ
τ , y − x

〉
≥ τ‖y−ητ −

x−ξ
τ ‖

2.

In particular, fτ is C1. Also, we find that

proxτf (x) = x− τ∇fτ (x)

is a (1/2)-averaged operator (it is (1/2)I + (1/2)(x− 2τ∇fτ (x)), see Lemma 2.4).

Moreau’s identity Thanks to (24), (28) yields

yx ∈ ∂f∗(x−yxτ )⇔ x−yx
τ + 1

τ ∂f
∗(x−yxτ ) 3 x

τ ⇔
x−yx
τ = (I + 1

τ ∂f
∗)−1(xτ ).

We deduce Moreau’s Identity, valid for any convex, lsc, proper function f :

x = proxτf (x) + τprox 1
τ f
∗(xτ ) (29)

One also can show the following:

Proposition 4.22. Let f be proper, convex, lsc: then dom ∂f is dense in domF .

Indeed, let x ∈ dom f : then fτ (x) ≤ f(x). In particular, denoting xτ = proxτf (x),

fτ (x) = f(xτ ) +
1

2τ
‖x− xτ‖2 ≤ f(x).

We use again that f , being proper, is larger than some affine function: hence there is p, c
such that 〈p, xτ 〉+c+ 1

2τ ‖x−xτ‖
2 ≤ f(x) from which it follows that ‖xτ−x‖ ≤ c′

√
τ for

some constant c′ > 0. Hence xτ → x. Now, ∂f(xτ ) 3 (x−xτ )/τ 6= ∅ hence xτ ∈ dom f ,
which shows the proposition. As a by-product of the proof, one sees that:

Proposition 4.23. Let f be proper, lsc, convex and fτ defined by (27). Then for all
x, fτ (x)→ f(x) as τ → 0.

(We leave to the reader the proof that if f(x) = +∞, fτ (x) → +∞, which is easy
using that f is lsc.)
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Examples: f(x) = ‖x‖1 =
∑
i |xi|, x ∈ Rd:

proxτf (x) = ((|xi| − τ)+sign (xi))
d
i=1.

If f(x) = δ|xi|≤1, proxτf (x) = (max{−1,min{1, xi}})di=1.
If f(x) = ‖x‖2/2, proxτf (x) = x/(1 + τ).

4.3.1 A useful variant of inf-convolutions

Consider now the modified inf-convolution problem

h(x) = inf
y∈Y

f(x−Ky) + g(y)

where K : Y → X is a continuous operator and f, g are convex, lsc, proper. Then one
can show similarly that if there exists p such that f∗(p) < +∞ and g∗ is continuous at
K∗p, h is lsc and since

h∗(q) = sup
x∈X ,y∈Y

〈q, x〉 − f(x−Ky)− g(y)

= sup
x∈X ,y∈Y

〈q, x−Ky〉+ 〈K∗q, y〉 − f(x−Ky)− g(y) = f∗(q) + g∗(K∗q)

it follows that h = [f∗(·) + g∗(K∗·)]∗.
The proof is exactly as the proof of Lemma 4.20, but now one uses that g∗ ≤

a + δB(K∗p,ε) for some a ∈ R and ε > 0, so that g(y) ≥ −a + 〈p,Ky〉 + ε‖y‖ and
f∗(p) ∈ R so that f(x) ≥ 〈p, x〉 − f∗(p).

Then, if xn → x and yn is such that f(xn − Kyn) + g(yn) ≤ h(xn) + 1/n, and if
lim infn h(xn) < +∞, one find that along a subsequence ‖yn‖ is bounded, hence we may
assume it converges weakly to some y (and as a consequence Kyn converges weakly to
Ky). Hence

h(x) ≤ f(x−Ky) + g(y) ≤ lim inf
n

f(xn −Kyn) + g(yn) ≤ lim inf
n

h(xn)

and the semicontinuity follows. In addition, we deduce that the “inf” is in fact a “min”.
A useful application is the following: let g be convex, lsc and proper and K a

continuous operator, and define

gK(x) := inf
y:Ky=x

g(y).

Then, if there exists p where g∗ is continuous at K∗p, gK is lsc and gK = [g∗(K∗·)]∗.
It is enough to apply the previous result with f = δ{0}, so that f∗ ≡ 0 and p ∈ dom f∗.

4.3.2 Fenchel-Rockafellar duality

Consider now a minimization problem of the form

min
x∈X

f(Kx) + g(x) (30)

where K : X → Y is a continuous linear map and f, g are convex, lsc. Then, clearly

(P) = min
x
f(Kx) + g(x) = min

x
sup
y
〈y,Kx〉 − f∗(y) + g(x)

≥ sup
y

inf
x
〈K∗y, x〉+ g(x)− f∗(y) = sup

y
− (g∗(−K∗y) + f∗(y)) = (D)
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A natural question is when there is equality: this is true under various criteria: we will
give a simple example below.

The problem “(P)” is usually called the primal problem and “(D)” the dual problem
(observe though that there is a symmetry between these problems...) Notice that the
primal-dual gap

G(x, y) = f(Kx) + g(x) + g∗(−K∗y) + f∗(y)

is a measure of optimality. If it vanishes at (x∗, y∗), then (P) = (D), and (x∗, y∗) is a
saddle point of the Lagrangian

L(x, y) = 〈y,Kx〉 − f∗(y) + g(x), (31)

as one has
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) (32)

for all x ∈ X , y ∈ Y. [Indeed, for all y, x, L(x∗, y) ≤ f(Kx∗) + g(x∗) = −f∗(y∗) −
g∗(−K∗y∗) ≤ L(x, y∗).]

Theorem 4.24. If there exists x̄ ∈ dom g with f continuous at Kx̄, then (P) = (D).
Moreover under these assumptions, (D) has a solution.

We show the result following a classical approach, see [15, (4.21)] for more general
variants. In finite dimension, it is shown in [38, Cor 31.2.1] that equality holds if there
exists x ∈ ri dom g with Kx ∈ ri dom f , or even more generally that 0 ∈ ri (dom f −
Kdom g) (the proof works as below).

Proof: the method is called the “perturbation method”: We introduce, for z ∈ Y,

Φ(z) := inf
x∈X

f(Kx+ z) + g(x).

Assume Φ(0) > −∞ (otherwise there is nothing to prove), then by assumption, one
can find M and ε such that for |z| < ε, Φ(z) ≤ f(Kx̄ + z) + g(x̄) ≤ M < +∞. Being
Φ convex, we deduce that it is locally Lipschitz near 0 and in particular thanks to
Corollary 4.16, Φ(0) = Φ∗∗(0) = supy −Φ∗(y). We compute:

Φ∗(y) = sup
z∈Y
〈y, z〉 − inf

x∈X
(f(Kx+ z) + g(x))

= sup
x,z
〈y, z +Kx〉 − 〈K∗y, x〉 − f(Kx+ z)− g(x) = f∗(y) + g∗(−K∗y).

The claim follows. Moreover, since Φ is Lipschitz near 0 it is also subdifferentiable:
there exists y ∈ ∂Φ(0). This subdifferential provides a solution to the “dual” problem
maxy −Φ∗(y).
Exercise: show the result in finite dimension if 0 ∈ ri (dom f −Kdom g) (one needs to
show again that Φ is lsc at 0).

Observe that one has by optimality in (32) that Kx∗−∂f∗(y∗) 3 0, K∗y∗+∂g(x∗) 3
0, which may be written

0 ∈
(
∂g(x)
∂f∗(y)

)
+

(
0 K∗

−K 0

)(
x
y

)
(33)

meaning the solution is found by finding the “zero” of the sum of two monotone operators
(see Section 4.4).
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Example Consider the problem

min
x
λ‖Dx‖1 +

1

2
‖x− x0‖2

where D : Rn → Rm is a continuous operator, x0 ∈ Rn, ‖·‖1 is the `1-norm. One has

f = λ‖·‖1, K = D, g =
1

2
‖· − x0‖2.

Then the Lagrangian is

L(x, y) = 〈y,Dx〉 − f∗(y) + g(x)

where f∗(y) = 0 if |yi| ≤ λ for i = 1, . . . , n, and +∞ else. To find the dual problem, we
compute g∗(z) =

〈
z, x0

〉
+ ‖z‖2/2, and we obtain

max

{〈
D∗y, x0

〉
− 1

2
‖D∗y‖2 : |yi| ≤ λ, i = 1, . . . , n

}
.

This can be rewritten as a projection problem:

min
|yi|≤λ

‖D∗y − x0‖2.

4.4 Generalization: Elements of monotone operators theory

For more results, see [6]. We mostly mention the main properties, which extend the
properties shown so far for subgradients.

Observe that if f is convex, one has for all x, y, p ∈ ∂f(x), q ∈ ∂f(y)

f(y) ≥ f(x) + 〈p, y − x〉 , f(x) ≥ f(y) + 〈q, x− y〉

so that, summing,
〈p− q, x− y〉 ≥ 0.

This leads to introduce the class of operators which satisfy such an inequality, which
share many properties with subgradients. Consider in the Hilbert space X a multi-
valued operator A : X → P(X ). By a slight abuse of notation, we will also denote A
the graph {(x, y) : x ∈ X , y ∈ Ax}.

We introduce the following definitions:

Definition 1. The operator A is said monotone if for all x, y ∈ X , p ∈ Ax, q ∈ Ay,

〈p− q, x− y〉 ≥ 0.

It is (µ-)strongly monotone if

〈p− q, x− y〉 ≥ µ‖x− y‖2.

It is (µ-)co-coercive if
〈p− q, x− y〉 ≥ µ‖p− q‖2.

It is maximal if the graph {(x, p) : p ∈ Ax} ⊂ X × X is maximal with respect to
inclusion, among all the graphs of monotone operators.
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In dimension 1, monotone graphs are graphs of nondecreasing functions. Obviously
then, they also coincide with (sub)gradients of convex functions. In higher dimension,
this is not true anymore (example: an antisymmetric linear mapping in Rd, d ≥ 2).

One sees that the subgradient of a convex function f is monotone, strongly monotone
if f is strongly convex, co-coercive if ∇f is Lipschitz (cf Theorem 2.3).

A subgradient is maximal if and only it is the subgradient of a lower-semicontinuous
function. A simple proof is due to Rockafellar: if f is lsc, to show that ∂f is maximal
we must show that if x ∈ X and p 6∈ ∂f(x) then one can find y and q ∈ ∂f(y) with
〈p− q, x− y〉 < 0. Replacing f with f(x) − 〈p, x〉 we can assume that p = 0. Saying
that 0 6∈ ∂f(x) is precisely saying that x is not a minimizer, that is, there exists y ∈ X
with f(y) < f(x).

Consider now y = proxf (x), the minimizer of f(y) + ‖y − x‖2/2. As we have seen,
q = x− y ∈ ∂f(y). One has

〈p− q, x− y〉 = 〈−q, x− y〉 = −‖x− y‖2 < 0,

unless y = x. But y = x would imply that q = 0 ∈ ∂f(x), a contradiction. Hence ∂f is
maximal. (The proof can be extended to non-Hilbert spaces, see [39].)

Conversely if ∂f is maximal, since ∂f∗∗ ⊃ ∂f , then this operator is also the subgra-
dient of the convex, lsc function f∗∗. We are not proving here that f = f∗∗, only that
∂f is also the subgradient of the convex, lsc function f∗∗.

A monotone operator is not necessarily a subgradient: for instance, in R2, the linear
operator

A =

(
0 1
−1 0

)
is monotone but not the subgradient of a convex function. In order for a monotone
operator to be (included in) the subgradient of a convex function, it needs to be cyclically
monotone [37, 1]: for any x0, x1 . . . , xn = x0 and pi ∈ Axi, p0 = pn,

n−1∑
i=0

〈pi, xi+1 − xi〉 ≤ 0.

An important case of monotone operator is obtained from nonexpansive (1-Lipschitz
mappings) T , as in Section 3. Indeed, it is obvious to check that I − T is maximal
monotone:

〈(x− Tx)− (x− Ty), x− y〉 = ‖x− y‖2 − 〈Tx− Ty, x− y〉 ≥ 0

thanks to Cauchy-Schwartz inequality and the fact T is 1-Lipschitz.
Given A a monotone operator, its inverse is simply A−1 : p 7→ {x : Ax 3 p}, with

graph {(p, x) : p ∈ Ax}. It is therefore maximal if A is maximal, co-coercive if A is
strongly monotone (cf Prop. 4.19). Clearly, (∂f)−1 = ∂f∗ (see (24)).

Theorem 4.25 (Minty [24]). The resolvent of a maximal-monotone operator A, defined
by

x 7→ y = (I +A)−1x =: JAx⇔ y +Ay 3 x

is a well (everywhere) defined single-valued nonexpansive mapping. (Conversely, for a
monotone operator A if (I +A) is surjective then A is maximal.)
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One will see that the resolvent is also a (1/2)-averaged operator (and any (1/2)-
averaged operator has this form).

Proof: Let us introduce the graph G = {(y + x, y − x) : x ∈ X , y ∈ Ax}. If (a, b),
(a′, b′) ∈ G, with a = y + x, b = y − x and a′ = y′ + x′, b = y′ − x′, then

‖b− b′‖2 = ‖y − y′‖2 − 2 〈y − y′, x− x′〉+ ‖y + y′‖2

= ‖a− a′‖2 − 4 〈y − y′, x− x′〉 ≤ ‖a− a′‖2

showing that G is the graph of a 1-Lipschitz function. Moreover, if G′ ⊇ G is also the
graph of a 1-Lipschitz function, then defining A′ = {((a− b)/2, (a+ b)/2) : (a, b) ∈ G′}
the same computation shows that A′ ⊇ A is the graph of a monotone operator, hence
A′ = A if A is maximal. (Conversely, if G is defined for all a then clearly G and therefore
A are maximal, as being 1-Lipschitz G is necessarily single-valued.)

So the theorem is equivalent to the question whether a 1-Lipschitz function which
is not defined in the whole of X can be extended. This result (which is true only in
Hilbert spaces) is known as Kirszbraun-Valentine’s theorem (1935). [The proof we give
is derived from [17, 2.10.43].]

The basic brick is the following extension from n to n+ 1 points:

Lemma 4.26. If (xi)
n
i=1, (yi)

n
i=1 are points in Hilbert spaces respectively X ,Y such that

∀i, j , ‖yi − yj‖ ≤ ‖xi − xj‖, then for any x ∈ X there exists y ∈ Y with ‖yi − y‖ ≤
‖xi − x‖ for all i = 1, . . . , n.

It is enough to prove this for x = 0: we need to find a common point to B̄(yi, ‖xi‖).
There is nothing to prove if x = xi for some i, so we assume xi 6= 0, i = 1, . . . , n. We
define

c̄ = min

{
c ≥ 0 :

n⋂
i=1

B̄(yi, c‖xi‖) 6= ∅

}
> 0

(if the yi are distinct, which we may also assume). This is a min because the closed balls
are weakly compact, and we can consider y such that ‖y − yi‖ ≤ c̄‖xi‖, i = 1, . . . , n.
Then we observe that y must be a convex combination of the points (yi)i∈I such that
‖y − yi‖ = c̄‖xi‖. Indeed, if not, let y′ be the projection of y onto co {yi : i ∈ I}. As
for any i ∈ I, 〈yi − y′, y − y′〉 ≤ 0 one has, letting yt = (1− t)y+ ty′, that for any i ∈ I:

‖yi − yt‖2 = ‖yi − y + t(y − y′)‖2 = ‖yi − y‖2 + 2t 〈yi − y, y − y′〉+ t2‖y − y′‖2

= ‖yi − y‖2 + 2t 〈yi − y′, y − y′〉 − 2t‖y − y′‖2 + t2‖y − y′‖2

≤ ‖yi − y‖2 − t(2− t)‖y − y′‖2 < ‖yi − y‖2

if t ∈ (0, 2). Hence if t > 0 is small enough, one sees that ‖yi − yt‖ < ‖yi − y‖ = c̄‖xi‖
for i ∈ I, while since for i 6∈ I, ‖yi − y‖ < c̄‖xi‖, one can still guarantee the same strict
inequality for yt if t is small enough. But this contradicts the definition of c̄, since then
there would exists c < c̄ such that yt ∈

⋂n
i=1 B̄(yi, c‖xi‖).

We therefore can write y =
∑
i∈I θiyi as a convex combination (θi ∈ [0, 1],

∑
i∈I θi =
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1). Then since 2 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2,

0 = ‖
∑
i∈I

θiyi − y‖2 =
∑
i,j∈I

θiθj 〈yi − y, yj − y〉

=
1

2

∑
i,j∈I

θiθj
(
‖yi − y‖2 + ‖yj − y‖2 − ‖yi − yj‖2

)
≥ 1

2

∑
i,j∈I

θiθj
(
c̄2‖xi‖2 + c̄2‖xj‖2 − ‖xi − xj‖2

)
= c̄2

∑
i,j∈I

θiθj 〈xi, xj〉 −
1− c̄2

2
‖xi − xj‖2

which shows that

(1− c̄2)
∑
i,j∈I

θiθj‖xi − xj‖2 ≥ 2c̄2‖
∑
i∈I

θixi‖2

so that c̄ ≤ 1. Hence, y satisfies ‖y−yi‖ ≤ ‖xi‖, as requested, which shows Lemma 4.26.
We can conclude the proof of Theorem 4.25: if there exists x ∈ X such that {x} ×

X ∩G = ∅, consider the set

K =
⋂

(a,b)∈G

B̄(b, ‖x− a‖)

which is an intersection of weakly compact sets.
We show that because the compact sets defining K have the “finite intersection

property”, K can not be empty: Choosing (a0, b0) ∈ G, if B̄0 = B̄(b0, ‖x− b0‖), we see
that

K = B̄0 ∩

 ⋂
(a,b)∈G

B̄(b, ‖x− a‖)


hence B̄0 \ K = B̄0 ∩

⋃
(a,b)∈G B̄(b, ‖x− a‖)c. If this is B̄0, by compactness one can

extract a finite covering
⋃n
i=1 B̄(bi, ‖x− ai‖)c for (ai, bi) ∈ G, i = 1, . . . , n. We find

that

B̄0 ∩
n⋃
i=1

B̄(bi, ‖x− ai‖)c = B̄0

or equivalently that

B̄0 ∩
n⋂
i=1

B̄(bi, ‖x− ai‖) = ∅

which contradicts Lemma 4.26. Hence, B̄0\K 6= B̄0 which means that K 6= ∅. Choosing
y ∈ K, we find that G ∪ {(x, y)} is the graph of a 1-Lipschitz function and is strictly
larger than G, which contradicts the maximality of A.

The non-expansiveness of (I + A)−1 follows from, if y + Ay 3 x, y′ + Ay′ 3 x′,
p = x− y ∈ Ay, p′ = x′ − y′ ∈ Ay′:

‖x− x′‖2 = ‖y − y′‖2 + 2 〈p− p′, y − y′〉+ ‖p− p′‖2 ≥ ‖y − y′‖2 + ‖p− p′‖2,

that is, for T = (I +A)−1:

‖Tx− Tx′‖2 + ‖(I − T )x− (I − T )x′‖2 ≤ ‖x− x′‖2. (34)
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An operator which satisfies (34) is firmly non-expansive.

Let us now consider the “reflexion operator”

RA = 2JA − I = 2(I +A)−1 − I (35)

Lemma 4.27. RA is nonexpansive, and in particular, JA = I/2 + RA/2 is (1/2)-
averaged.

More generally we prove the following: An operator T is firmly non-expansive if
and only if it is 1/2-averaged, that is, R = 2T − I is non-expansive (so that indeed
T = I/2 +R/2 is 1/2-averaged).

It follows in an obvious way from the parallelogram identity, since for any x, x′,

‖Rx−Rx′‖2 = ‖(Tx− x)− (Tx′ − x′) + Tx− Tx′‖2

= 2‖(I − T )x− (I − T )x′‖2 + 2‖Tx− Tx′‖2 − ‖x− x′‖2 ≤ ‖x− x′‖2

⇔ ‖(I − T )(x)− (I − T )(x′)‖2 + ‖Tx− Tx′‖2 ≤ ‖x− x′‖2.

We have shown that if A is maximal monotone, then JA = (I + A)−1 is defined
everywhere and single-valued, then that it is firmly non-expansive, and eventually that
an operator is firmly non-expansive if and only if it is (1/2)-averaged. We conclude by
showing that if an operator T = I/2+R/2 is (1/2)-averaged (R is non-expansive), then
there exists a maximal monotone operator A such that T = JA.

The proof follows by the same (or reverse) construction as in the beginning of the
proof of Minty’s theorem: we consider the graph

G = {((x+ y)/2, (x− y)/2) : x ∈ X , y = Rx} = {(Tx, (I − T )x) : x ∈ X}

and denote by A the corresponding operator (y ∈ Ax ⇔ (x, y) ∈ G). Then A is
monotone: if (ξ, η), (ξ′, η′) ∈ G, then for some x, x′ ∈ X , ξ = (x+Rx)/2, η = (x−Rx)/2,
etc., and we find:

〈ξ − ξ′, η − η′〉 =
1

4
〈x+Rx− x′ −Rx′, x−Rx− x′ +Rx′〉

=
1

4

(
‖x− x′‖2 − ‖Rx−Rx′‖2

)
≥ 0.

Moreover, A is maximal, if not, one could build as before from A′ ⊃ A a non-expansive
graph {(ξ + η, ξ − η) : η ∈ A′ξ} strictly larger than the graph {(x,Rx) : x ∈ X}, which
is of course impossible. By construction, ATx 3 (I − T )x for all x, hence (I +A)Tx 3
x⇔ Tx = (I +A)−1x.

To sum up, we have shown the following result:

Theorem 4.28. Let T be an operator, then the following are equivalent:

� T = (I +A)−1 for some maximal operator A;

� T is firmly non-expansive;

� T is (1/2)-averaged (2T − I is nonexpansive).
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A consequence is that if x0 ∈ X and xk+1 = (I+A)−1xk, k ≥ 0, then xk ⇀ x where
x is a fixed point of (I + A)−1, that is, Ax = 0, if such a point exists (Theorem 3.1).
We will return soon to these iterations.

Another way to interpret Theorem 4.25 is to observe that it says that a strongly
monotone maximal operator has a well-defined single-valued inverse everywhere. Indeed,
if A is maximal µ-monotone, then A′ = A/µ− I is maximal monotone hence I + A′ is
surjective with single-valued inverse, and so is A. From

〈p− q, x− y〉 ≥ µ‖x− y‖2, p ∈ Ax, q ∈ Ay

we deduce if B = A−1 that

〈p− q,Bp−Bq〉 ≥ µ‖Bp−Bq‖2,

showing that B is co-coercive and (1/µ)-Lipschitz.
The maximal monotone operator Aτ = [x − (I + τA)−1x]/τ is called a Yosida ap-

proximation of A: it is a (1/τ)-Lipschitz-continuous mapping, with full domain (in case
A = ∂f , Aτ = ∇fτ ). τAτ is firmly non-expansive, since I−τAτ is. It has very important
properties, see in particular Brézis’ book [6]. We mention in particular Theorems 2.2,
Prop. 2.5, and Cor. 2.7 in that book: the first two say that for a maximal monotone op-
erator A, C = domA is convex and limτ→0 JτAx is the orthogonal projection of x onto
C, in addition if x ∈ domA, Aτx→ A0x, the element of Ax with minimal norm, while
if not, |Aτx| → ∞. The last shows that if for A,B two maximal monotone operators

˚︷ ︸︸ ︷
domA∩domB 6= ∅, then also A+B is maximal monotone. The Yosida approximation is
used in [6] to show the existence of solutions to ẋ+Ax 3 0 for A maximal-monotone, by
showing it is obtained as the limit of the solutions of ẋ+Aτx 3 0 (which trivially exist
because of Cauchy-Lipschitz’s theorem). This allows to define properly the “gradient
flow” of a convex lsc function, which is the time-continuous equivalent of the gradient
descent algorithms. An exhaustive study of maximal monotone operators in Hilbert
spaces is found in [2].

We will use the generalization of Moreau’s identity (29):

x = (I + τA)−1(x) + τ(I + 1
τA
−1)−1(xτ ). (36)

which is proved exactly in the same way as (29).

5 Algorithms. Operator splitting

We introduce here the “Forward-Backward splitting” technique. We discuss conver-
gence rates and introduce acceleration, in particular the famous “FISTA / Nesterov
acceleration”.

We also introduce other splitting: Douglas-Rachford (DR), Alternating directions
method of multipliers (ADMM), Primal-Dual.

5.1 Abstract algorithms for monotone operators

In this section, we describe rapidly general algorithms for solving the equations

0 ∈ Ax or 0 ∈ Ax+Bx

where A,B are maximal monotone operators (sometimes subgradients, sometimes not).
The idea is to generalise algorithms already seen, and then to have at hand general
results which will be useful for studying more concrete algorithms.
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5.1.1 Explicit algorithm

Let us first consider the equivalent of the “gradient descent”:

xk+1 = xk − τpk , pk ∈ Axk.

Even if A is single-valued and continuous, then this might not converge. For instance,

if A =

(
0 −1
1 0

)
then

xk =

(
1 −τ
τ 1

)k
x0.

But the eigenvalues of this matrix are 1 +±τi and have modulus
√

1 + τ2, so that the
iteration always diverges.

So one needs to require a further condition on A. We recall (Baillon-Haddad) that
the gradient descent works for convex functions with Lipschitz gradient, whose gradient
is a co-coercive monotone operator. We can show here the same:

Theorem 5.1. Let A maximal monotone be µ-co-coercive (in particular, single-valued):

〈Ax−Ay, x− y〉 ≥ µ‖Ax−Ay‖2.

Assume there exists a solution to Ax = 0. Then the iteration xk+1 = xk − τAxk

converges to x∗ with Ax∗ = 0 if 0 < τ < 2µ.

For the proof we just show that I − τA is an averaged operator. Let us compute

‖(I − τA)x− (I − τA)y‖2 + ‖τAx− τAy‖2

= ‖x− y‖2 − 2τ 〈x− y,Ax−Ay〉+ 2τ2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2τ(µ− τ)‖Ax−Ay‖2.

This shows that if 0 ≤ τ ≤ µ, τA and (I − τA) are firmly non-expansive hence (1/2)-
averaged. It follows that for 0 ≤ τ < 2µ, (I − τA) is averaged. Hence by Theorem 3.1
the iterates weakly converge, as k → ∞, to a fixed point of (I − τA) (if it exists). If
τ = 0 this is not interesting, if 0 < τ < 2µ, then it is a zero of A, which exists by
assumption.

5.1.2 Proximal point algorithm

Then we consider the “implicit descent” xk+1 ∈ xk− τAxk+1. This is precisely which is
solved by xk+1 = (I+τA)−1xk, which is well-posed if A is maximal monotone (Th. 4.25).
The corresponding iteration

xk+1 = (I + τA)−1xk

is known as the proximal point algorithm. It obviously converges to a fixed point as
the operator is (1/2)-averaged (if the fixed point, that is a point with Ax = 0, exists).
Moreover, as we have seen, one can consider more generally, if RτA = 2(I + τA)−1 − I,

xk+1 = (1− θk)xk + θkRτAx
k = xk + 2θk

(
(I + τA)−1xk − xk

)
= xk − 2θkτAτx

k,

for 0 < θ ≤ θk ≤ θ < 1 and still get convergence. More generally, we prove:
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Theorem 5.2 (PPA Algorithm). Let x0 ∈ X , τk ≥ τ > 0, 0 ≤ λ ≤ λk ≤ λ ≤ 2, and let

xk+1 = xk + λk((I + τkA)−1xk − xk). (37)

If there exists x with Ax 3 0, then xk weakly converges to a zero of A.

Proof. The proof follows the lines of the proof of Thm 3.1.
A first remark is that one obviously has ‖xk+1 − x‖2 ≤ ‖xk − x‖2 for each x with

Ax 3 0, which is a fixed point of JτA for any τ , as in that case (37) is iterating an
averaged operator with same fixed point. But we can be more precise. We have:

‖xk+1 − x‖2 = ‖xk − x‖2 + λ2
k‖JτkAxk − xk‖2 + 2λk

〈
xk − x, JτkAxk − xk

〉
= ‖xk − x‖2 + λ2

k‖JτkAxk − xk‖2

+ λk
(
‖JτkAxk − x‖2 − ‖xk − x‖2 − ‖JτkAxk − xk‖2

)
.

Now, as JτkA is firmly non-expansive,

‖JτkAxk − x‖2 + ‖(I − JτkA)xk − (I − JτkA)x‖2 ≤ ‖xk − x‖2

where in addition (I − JτkA)x = 0. Hence:

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + λ2
k‖JτkAxk − xk‖2 − 2λk‖JτkAxk − xk‖2

= ‖xk − x‖2 − λk(2− λk)‖JτkAxk − xk‖2.

Letting c = λ(2 − λ) > 0, we deduce that (xk)k is Fejér-monotone with respect to
{x : Ax 3 0} and that

c

n∑
k=0

‖JτkAxk − xk‖2 + ‖xn+1 − x‖2 ≤ ‖x0 − x‖2

for all n ≥ 0, in particular ‖JτkAxk − xk‖ → 0, as well as, by the scheme, xk+1 − xk.
We want to conclude as in the proof of Theorem 3.1. However with varying τk, it
is not obvious that a limit point x̄ of a subsequence xkl is such that Ax 3 0. To
see this one can use the maximal-monotonicity of A. If x′ 3 X , y′ ∈ Ax′, denoting
ek := JτkAx

k − xk → 0 we have:

A(xk + ek) 3 ek
τk
,

so that 〈
y′ − ek

τk
, x′ − xk − ek

〉
≥ 0.

In the limit along the subsequence xkl , we find 〈y′, x′ − x̄〉 ≥ 0, so that Ax̄ 3 0. The
rest of the proof relies on Opial’s lemma and is as in the proof of Theorem 3.1.

We could also consider (summable) errors. See [2] for variants, [14] for a similar
proof with errors.

5.1.3 Forward-Backward splitting

We now consider a mixture of the two previous, namely the “forward-backward” split-
ting

xk+1 = (I + τA)−1(I − τB)xk (38)

50



where A is maximal monotone and B µ-co-coercive. Then, as before, if 0 < τ < 2µ, the
algorithm is the composition of two averaged operator and converges weakly to a fixed
point if it exists. We see that

(I + τA)−1(I − τB)x = x⇔ x− τBx ∈ x+ τAx⇔ Ax+Bx 3 0.

As B is continuous, this is equivalent to (A+B)x 3 0. Hence, if A+B has a zero, this
algorithm converges to a zero of A+B.

5.1.4 Douglas-Rachford splitting

This method was introduced under the following form in a paper of Lions and Mercier
(79):

xk+1 = JτA(2JτB − I)xk + (I − JτB)xk (39)

Theorem 5.3. Let x0 ∈ X . Then if xk defined by (39), xk ⇀ x such that w = JτBx is
a solution of Aw +Bw 3 0 (if it exists).

Proof: we use
JτA = 1

2I + 1
2RτA, JτB = 1

2I + 1
2RτB .

Hence the operator in the algorithm is

1
2RτB + 1

2RτA ◦RτB + ( 1
2I −

1
2RτB) = 1

2I + 1
2RτA ◦RτB

so that it is (1/2)-averaged (and hence a resolvent). We deduce from Thm 3.1 that the
iterations converge to a fixed point, if it exists, of RτA ◦RτB . One has

RτA ◦RτBx = x⇔ 2JτA(2JτBx− x)− (2JτBx− x) = x⇔ JτA(2JτBx− x) = JτBx

⇔ 2JτBx− x ∈ JτBx+ τA(JτBx)⇔ JτBx ∈ x+ τA(JτBx).

Letting w = JτBx, we see that w satisfies

w ∈ w + τBw + τAw

hence Aw+Bw = 0. Conversely, if w satisfies this equation and x = w+Bw = w−Aw,
we see that x is a fixed point. We know, then, by Theorem 3.1, that xk ⇀ x. Then
w = JτBx is a solution of Aw + Bw 3 0. Further conditions on A,B ensuring that
JτBx

k converges to a solution are found in [23], variants with errors in [14].
The iterations xk+1 = RτARτBx

k are known as the Peaceman-Rachford splitting
algorithm and converge under some conditions to the same point.

5.1.5 Three-operators splitting

This approach, introduced in [12], generalizes the two previous methods. Given A,B,C
three maximal-monotone operators with C co-coercive: for all x, y ∈ X :

〈Cx− Cy, x− y〉 ≥ γ‖x− y‖2,

one wants to find ξ ∈ X such that Aξ +Bξ +Cξ 3 0, and we assume there is at least a
solution. One introduces for τ > 0:

Tτ := I − JτB + JτA ◦ (2JτB − I − τC ◦ JτB).

We observe that if A or B is 0, Tτ is similar to a forward-backward algorithm, while
if C = 0, it reduces to the previous Douglas-Rachford operator.

The following is easy:
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Lemma 5.4. A point x is a fixed point of Tτ if and only if ξ = JτBx satisfies Aξ +
Bξ + Cξ 3 0.

Hence, given ξ which solves A+ B + C 3 0, any point x ∈ ξ + τBξ is a fixed point
of Tτ . The main result in [12] is then the following:

Theorem 5.5. For 0 < τ < 2γ, Tτ is averaged.

As a consequence, for such values of τ , the algorithm given by x0 ∈ X , xk+1 = Tτx
k,

k ≥ 0, produces a sequence which weakly converges to a fixed point x, such that Jτx
solves the problem.
Proof of the theorem: First, we have seen already that if τ < 2γ, (I − γC) is averaged,
and more precisely there exists S nonexpansive such that

I − γC = (1− θ)I + θS =: Sθ

for θ = τ/(2γ). In addition, one can write JτB = (I +RτB)/2 and JτA = (I +RτA)/2.
Hence,

Tτ = I − JτB + JτA ◦ (JτB − I + Sθ ◦ JτB )

=
1

2
(I − JτB + SθJτB) +

1

2
RτA ◦ (JτB − I + SθJτB) .

This can be written:

Tτ = 1−θ
2 I + θ

2 (I − JτB + SJτB) + 1
2RτA ((1− θ)RτB + θ(JτB − I + SJτB))

= (1− 1+θ
2 )I + 1+θ

2 T̃

with

T̃ = θ
1+θ (I − JτB + SJτB) + 1

1+θRτA ((1− θ)RτB + θ(JτB − I + SJτB)) .

Then, for x, y ∈ X we have:

‖T̃ x− T̃ y‖2 ≤ θ
1+θ‖(I − JτB + SJτB)x− (I − JτB + SJτB)y‖2

+ 1
1+θ‖RτA((1− θ)RτB + θ(JτB − I + SJτB))x−RτA((1− θ)RτB + θ(JτB − I + SJτB))y‖2

≤ θ
1+θ‖(I − JτB + SJτB)x− (I − JτB + SJτB)y‖2

+ 1
1+θ‖((1− θ)RτB + θ(JτB − I + SJτB))x− ((1− θ)RτB + θ(JτB − I + SJτB))y‖2

where we have used that RτA is 1-Lipschitz. In addition,

‖((1− θ)RτB + θ(JτB − I + SJτB))x− ((1− θ)RτB + θ(JτB − I + SJτB))y‖2

≤ (1− θ)‖RτBx−RτBy‖2 + θ‖(JτB − I + SJτB)x− (JτB − I + SJτB)y‖2

≤ (1− θ)‖x− y‖2 + θ‖(JτB − I + SJτB)x− (JτB − I + SJτB)y‖2

using now that RτB is 1-Lipschitz. In the end we obtain:

‖T̃ x− T̃ y‖2 ≤ θ
1+θ‖(I − JτB + SJτB)x− (I − JτB + SJτB)y‖2

+ θ
1+θ‖(JτB − I + SJτB)x− (JτB − I + SJτB)y‖2 + 1−θ

1+θ‖x− y‖
2
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We conclude with the parallelogram identity which shows that

‖(I − JτB + SJτB)x− (I − JτB + SJτB)y‖2

+ ‖(JτB − I + SJτB)x− (JτB − I + SJτB)y‖2

= 2
(
‖(I − JτB)x− (I − JτB)y‖2 + ‖SJτBx− SJτBy‖2

)
≤ 2

(
‖(I − JτB)x− (I − JτB)y‖2 + ‖JτBx− JτBy‖2

)
≤ 2‖x− y‖2

since S is 1-Lipschitz and since JτB is firmly non expansive. Hence,

‖T̃ x− T̃ y‖2 ≤ 2θ
1+θ‖x− y‖

2 + 1−θ
1+θ‖x− y‖

2 = ‖x− y‖2

showing that Tτ is (1 + θ)/2-averaged.

Remark 5.6. The averaging here is not as good as the one found in [12], which is
1/(2− θ).

5.2 Descent algorithms, acceleration, “FISTA”

5.2.1 Forward-Backward descent

In case A = ∂g and B = ∇f , algorithm (38), which aims at finding a point x where
∂g(x) +∇f(x) 3 0, or equivalently a minimizer of

min
x∈X

F (x) := f(x) + g(x) (40)

where g is, a “simple” convex lsc function and f is a convex function with Lipschitz
gradient. The basic idea of the Forward-Backward splitting scheme (FBS) is to combine
an explicit step of descent in the smooth part f with a implicit step of descent in g. It
iterates the operator:

x̄ 7→ x̂ = Tτ x̄ := proxτg(x̄− τ∇f(x̄)) = (I + τ∂g)−1(x̄− τ∇f(x̄)). (41)

Another name found in the literature [27] is the “composite gradient” descent, as one
may see here (x̂− x̄)/τ as a generalised gradient for F at x̄. The essential reason why
all this is reasonable is that clearly, a fixed point x̂ = x̄ will satisfy the Euler Lagrange
equations ∇f(x̄) + ∂g(x̄) 3 0 of (40). Observe that in the particular case where g = δC
is the characteristic function of a closed, convex set C, then proxτg(x) reduces to ΠC(x)
(the orthogonal projection onto C) and the mapping Tτ defines a projected gradient
descent method.

Algorithm 1 Forward-Backward descent with fixed step

Choose x0 ∈ X
for all k ≥ 0 do

xk+1 = Tτx
k = proxτg(x

k − τ∇f(xk)). (42)

end for

The theoretical convergence rate of the plain FBS descent is not very good, as one can
merely show the same as for the gradient descent:
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Theorem 5.7. Let x0 ∈ X and xk be recursively defined by (42), with τ ≤ 1/L. Then
not only xk converges to a minimiser, but one has the rates

F (xk)− F (x∗) ≤ 1
2τk‖x

∗ − x0‖2 (43)

where x∗ is any minimiser of f . If in addition f of g are strongly convex with parameters
µf , µg (with µ = µf + µg > 0), one has

F (xk)− F (x∗) +
1+τµg

2τ ‖x
k − x∗‖2 ≤ ωk 1+τµg

2τ ‖x
0 − x∗‖2. (44)

where ω = (1− τµf )/(1 + τµg).

However, its behaviour is improved if the objective is smoother than actually known,
moreover, it is quite robust to perturbations and can be overrelaxed, see in particu-
lar [10].

5.2.2 FISTA

An “optimal” accelerated version is also available for this method, cf Section 2.4.3. This
is well described in [29], [27], although a somewhat simpler proof is found in [3], where
the algorithm, in the cases where µ = µf + µg = 0, is called “FISTA”. The general
iteration takes the form:

Algorithm 2 FISTA with fixed step

Choose x0 = x−1 ∈ X and t0 ≥ 0
for all k ≥ 0 do

yk = xk + βk(xk − xk−1) (45)

xk+1 = Tτy
k = proxτg(y

k − τ∇f(yk)) (46)

where, in case µ = 0,

tk+1 =
1+
√

1+4t2k
2 ≥ k+1

2 , (47)

βk = tk−1
tk+1

, (48)

and if µ = µf + µg > 0,

tk+1 =
1−qt2k+

√
(1−qt2k)2+4t2k

2 , (49)

βk = tk−1
tk+1

1+τµg−tk+1τµ
1−τµf , (50)

where q = τµ/(1 + τµg) < 1.
end for

In the latter case, we assume L > µf , otherwise f is quadratic and the problem is
trivial. The following result is then true:

Theorem 5.8. Assume t0 = 0 and let xk be generated by the algorithm, in either case
µ = 0 or µ > 0. Then, one has the decay rate

F (xk)− F (x∗) ≤ min
{

(1 +
√
q)(1−√q)k, 4

(k+1)2

}
1+τµg

2τ ‖x
0 − x∗‖2.

54



It must be mentioned that in the case µ = 0, a classical choice for tk is also tk =
(k + 1)/2, which gives essentially the same rate. An important issue is the stability of
these rates when the proximal operators can be only evaluated inexactly — the situation
here is worse than for the nonaccelerated algorithm, which has been addressed in several
papers.

The proof of of both Theorems 5.7 and 5.8 rely on the following essential but straight-
forward descent rule: let x̂ = Tτ x̄, then for all x ∈ X ,

F (x) + (1− τµf )
‖x− x̄‖2

2τ
≥ 1− τL

τ

‖x̂− x̄‖2

2
+ F (x̂) + (1 + τµg)

‖x− x̂‖2

2τ
. (51)

In particular, if τL ≤ 1,

F (x) + (1− τµf )
‖x− x̄‖2

2τ
≥ F (x̂) + (1 + τµg)

‖x− x̂‖2

2τ
. (52)

The proof is elementary: by definition, x̂ is the minimiser of the (µg + (1/τ))-strongly
convex function

x 7→ g(x) + f(x̄) + 〈∇f(x̄), x− x̄〉+
‖x− x̄‖2

2τ
.

It follows that for all x (cf (20)):

F (x) + (1− τµf )
‖x− x̄‖2

2τ

≥ g(x) + f(x̄) + 〈∇f(x̄), x− x̄〉+
‖x− x̄‖2

2τ

≥ g(x̂) + f(x̄) + 〈∇f(x̄), x̂− x̄〉+
‖x̂− x̄‖2

2τ
+ (1 + τµg)

‖x− x̂‖2

2τ
.

But since ∇f is L-Lipschitz, f(x̄) + 〈∇f(x̄), x̂− x̄〉 ≥ f(x̂) − (L/2)‖x̂− x̄‖2 so that
equation (51) follows.

Remark 5.9. One can more precisely deduce from this computation that

F (x)+(1−τµf )
‖x− x̄‖2

2τ
≥ F (x̂)+(1+τµg)

‖x− x̂‖2

2τ
+

(
‖x̂− x̄‖2

2τ
−Df (x̂, x̄)

)
. (53)

where Df (x, y) := f(x) − f(y) − 〈∇f(y), x− y〉 ≤ (L/2)‖x− y‖2 is the “Bregman f -
distance” from y to x [5]. In particular, (52) holds as soon as

Df (x̂, x̄) ≤ ‖x̂− x̄‖
2

2τ

which is always true if τ ≤ 1/L but might also occur in other situations, and in par-
ticular, be tested “on the fly” during the iterations. This allows to implement efficient
backtracking strategies ‘à la’ Armijo for the algorithms described in this section when
the Lipschitz constant of f is not a priori known.

Remark 5.10. Observe that if X ⊂ X is a closed convex set containing the domain of
F , and on which the projection ΠX can be computed, then the same inequality (52)
holds if x̂ = TτΠX x̄ (requiring only that ∇f is Lipschitz on X). This means that the
same rates are valid if one replaces (45) with

yk = ΠX(xk + βk(xk − xk−1))

which is feasible if X is the domain of F .
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5.2.3 Convergence rates

Unaccelerated scheme We start with the rates of the unaccelerated FB descent
scheme and prove Theorem 5.7.

First, if µf = µg = 0: we start from inequality (52), letting, for k ≥ 0, x̄ = xk and
x̂ = xk+1. It follows that for any x:

F (x) +
‖x− xk‖2

2τ
≥ F (xk+1) +

‖x− xk+1‖2

2τ
.

Choosing x = xk shows that F (xk) is nonincreasing. Summing then these inequalities
from k = 0 to n− 1, n ≥ 1 yields

n∑
k=1

(F (xk)− F (x)) +

n∑
k=1

1
2τ ‖x− x

k‖2 ≤
n−1∑
k=0

1
2τ ‖x− x

k‖2.

After cancellations and using F (xk) ≥ F (xn) for k = 0, . . . , n, it remains just

n(F (xn)− F (x)) + 1
2τ ‖x− x

n‖2 ≤ 1
2τ ‖x− x

0‖2

so that, in particular F (xn)− F (x∗) ≤ ‖x∗ − x0‖2/(2nτ).
Now, if µf > 0 or µg > 0 we can improve this computation: we now have for any x:

F (x) + (1− τµf )
‖x− xk‖2

2τ
≥ F (xk+1) + (1 + τµg)

‖x− xk+1‖2

2τ
.

Choosing x = xk shows that F (xk) is nonincreasing. Letting

ω =
1− τµf
1 + τµg

≤ 1, (54)

and summing these inequalities from k = 0 to n − 1, n ≥ 1, after multiplication by
ω−k−1, yields

n∑
k=1

ω−k(F (xk)− F (x)) +

n∑
k=1

ω−k
1+τµg

2τ ‖x− x
k‖2 ≤

n−1∑
k=0

ω−k−1 1−τµf
2τ ‖x− x

k‖2.

After cancellations and using F (xk) ≥ F (xn) for k = 0, . . . , n, we get

ω−n

(
n−1∑
k=0

ωk

)
(F (xn)− F (x)) + ω−n

1+τµg
2τ ‖x− x

n‖2 ≤ 1+τµg
2τ ‖x− x

0‖2.

We deduce, in case µ = µf + µg > 0 so that ω < 1,

F (xk)− F (x∗) +
1+τµg

2τ ‖x
k − x∗‖2 ≤ ωk 1+τµg

2τ ‖x
0 − x∗‖2. (55)

which is a “linear convergence rate” (however we will see that one can do better).

Convergence rates for FISTA Now we show the accelerated convergence rates. The
basic idea consists in first choosing in (52) a generic point of the form ((t− 1)xk +x)/t,
t ≥ 1, which is a convex combination of the iterate xk and another generic point (in
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practice a minimizer) x. We find after some calculation (systematically using the strong
convexity inequalities when possible)

t(t− 1)(F (xk)− F (x))− µt− 1

2
‖x− xk‖2

+ (1− τµf )
‖(t− 1)xk + x− tyk‖2

2τ

≥ t2(F (xk+1)− F (x)) + (1 + τµg)
‖(t− 1)xk + x− txk+1‖2

2τ
. (56)

Consider first the case where µ = µf + µg = 0. Then we have

t2(F (xk+1)− F (x)) +
‖(t− 1)xk + x− txk+1‖2

2τ

≤ t(t− 1)(F (xk)− F (x)) +
‖(t− 1)xk + x− tyk‖2

2τ
.

We see that the term F (xk)− F (x) is “shrunk” at each step by a factor (t− 1)/t < 1,
while the other term is not. How can we exploit this?

The basic idea in the proof is to use a variable parameter t = tk+1, and choose yk

to ensure that the term (tk+1 − 1)xk + x− tk+1y
k in the right hand side is the same as

the term (tk+1 − 1)xk + x− tk+1x
k+1 of the left hand side at the previous iterate, that

is,
(tk+1 − 1)xk + x− tk+1y

k = (tk − 1)xk−1 + x− tkxk

so that if we sum the inequalities for k = 0, . . . , n the norms will cancel. Hence, we
choose:

� tk+1(tk+1 − 1) = t2k ;

� yk = xk + βk(xk − xk−1) with βk = (tk − 1)/tk+1;

we obtain the recursion

t2k+1(F (xk+1)− F (x)) +
‖(tk+1 − 1)xk + x− tk+1x

k+1‖2

2τ

≤ t2k(F (xk)− F (x)) +
‖(tk − 1)xk−1 + x− tkxk‖2

2τ
.

which we can sum from k = 0, . . . , n− 1 to obtain

F (xn)− F (x) +
1

2t2nτ
‖(tk+1 − 1)xk + x− tk+1x

k+1‖2 ≤ 1

2t2nτ
‖x0 − x‖2.

Observe that t2k+1 − tk+1 − t2k = 0 yields tk+1 = (1 +
√

1 + 4t2k)/2 (one can choose
t0 = 0, t1 = 1), and in particular tk+1 ≥ 1/2 + tk ≥ (k + 1)/2 for k ≥ 1, by induction.
Therefore, choosing x = x∗,

F (xn)− F (x∗) ≤ 2

2(n+ 1)2τ
‖x0 − x‖2. (57)

An important remark is that, if one takes x = x∗, F (xk)−F (x∗) ≥ 0 so that in fact
one can get the same inequalities if one only ensures tk+1(tk+1 − 1) ≤ t2k, and not =.
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For instance, the sequence t0 = 0, tk = (k + 1)/2 for k ≥ 1 is admissible and yields the
same rate.

It can be interesting to take slightly smaller tk, such as (k + 1)/α for α > 2. One
can show in particular the convergence of the iterates (xk) to a solution in this case,
while it is still an open problem for α = 2. It has been even observed by Charles Dossal
(U. Bordeaux) that in that case, one can show that

F (xn)− F (x∗) = o

(
1

n2

)
which does not contradict the lower bound (6).

Convergence rates for FISTA, strongly convex case We start again from (56)
but now we assume that µ = µf + µg > 0. Then, we observe that

−µt− 1

2
‖x− xk‖2 + (1− τµf )

‖x− xk + t(xk − yk)‖2

2τ

= (1− τµf − µτ(t− 1))
‖x− xk‖2

2τ
+

1− τµf
τ

t
〈
x− xk, xk − yk

〉
+ t2(1− τµf )

‖xk − yk‖2

2τ

=
(1 + τµg − tµτ)

2τ
‖x− xk + t

1−τµf
1+τµg−tµτ (xk − yk)‖2 + t2(1− τµf )

(
1− 1−τµf

1+τµg−tµτ

) ‖xk − yk‖2
2τ

=
(1 + τµg − tµτ)

2τ
‖x− xk + t

1−τµf
1+τµg−tµτ (xk − yk)‖2 − t2(t− 1)

τµ(1− τµf )

1 + τµg − tµτ
‖xk − yk‖2

2τ
.

It follows that for any x ∈ X ,

t(t− 1)(F (xk)− F (x)) + (1 + τµg − tµτ)
‖x− xk − t 1−τµf

1+τµg−tµτ (yk − xk)‖2

2τ

≥ t2(F (xk+1)− F (x)) + (1 + τµg)
‖x− xk+1 − (t− 1)(xk+1 − xk)‖2

2τ

+ t2(t− 1)
τµ(1− τµf )

1 + τµg − tµτ
‖xk − yk‖2

2τ
. (58)

We let t = tk+1 above, then we can get a useful recursion if we let

ωk =
1 + τµg − tk+1µτ

1 + τµg
= 1− tk+1

µτ

1 + τµg
∈ [0, 1] (59)

tk+1(tk+1 − 1) ≤ ωkt2k, (60)

βk =
tk − 1

tk+1

1 + τµg − tk+1µτ

1− τµf
= ωk

tk − 1

tk+1

1 + τµg
1− τµf

, (61)

yk = xk + βk(xk − xk−1) (62)

Denoting αk = 1/tk and

q =
τµ

1 + τµg
=
τµf + τµg

1 + τµg
< 1, (63)

one finds the same rules as in formula (2.2.9), p. 80 in [29] (with the minor difference
that here we may chose t0 = 0, t1 = 1, and we have shifted the numbering of the
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sequences (xk), (yk)). In this case, we find

t2k+1(F (xk+1)− F (x)) +
1 + τµg

2τ
‖x− xk+1 − (tk+1 − 1)(xk+1 − xk)‖2

≤ ωk
(
t2k(F (xk)− F (x)) +

1 + τµg
2τ

‖x− xk − (tk − 1)(xk − xk−1)‖2
)

so that

t2k(F (xk)− F (x)) +
1 + τµg

2τ
‖x− xk − (t− 1)(xk − xk−1)‖2

≤

(
k−1∏
n=0

ωn

)[
t20(F (x0)− F (x)) +

1 + τµg
2τ

‖x− x0‖2
]

(64)

The update rule for tk reads

tk+1(tk+1 − 1) = (1− qtk+1)t2k, (65)

so that,

tk+1 =
1− qt2k +

√
(1− qt2k)2 + 4t2k
2

. (66)

We need to make sure that qtk+1 ≤ 1 so that (59) holds. This is proved exactly as
in the proof of Lemma 2.2.4 in [29]. Assuming (as in [29]) that

√
qtk ≤ 1, we observe

that (65) yields
qt2k+1 = qtk+1 + (1− qtk+1)qt2k.

If qtk+1 ≥ 1, it yields qt2k+1 ≤ qtk+1 hence qtk+1 ≤ q < 1, a contradiction. Hence
qtk+1 < 1 and we obtain that qt2k+1 is a convex combination of 1 and qt2k, so that√
qtk+1 ≤ 1. We have shown that as soon as

√
qt0 ≤ 1 (which we will now assume),√

qtk ≤ 1 for all k. Eventually, we also observe that

t2k+1 = (1− qt2k)tk+1 + t2k

showing that tk is an increasing sequence. It remains to estimate the factor

θk = t−2
k

k−1∏
n=0

ωn (k ≥ 1).

From (60) (with an equality) we find

1− 1

tk+1
= ωk

t2k
t2k+1

so that

t20θk =
t20
t2k

k−1∏
n=0

ωn =

k∏
n=1

(
1− 1

tk

)
≤ (1−√q)k

since 1/tk ≥
√
q. If t0 ≥ 1 it shows θk ≤ (1−√q)k/t20. If t0 ∈ [0, 1[, we rather write

θk =
ω0

t2k

k−1∏
n=1

ωn =
ω0

t21

k∏
n=2

(
1− 1

tk

)
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and observe that (66) yields (using 2− q ≥ 1 ≥ q)

t1 =
1− qt20 +

√
1 + 2(2− q)t20 + q2t40

2
≥ 1.

Also, ω0 ≤ 1− q (from (59)), so that

θk ≤ (1 +
√
q)(1−√q)k.

The next step is to bound also θk by O1/k2. We exactly follow Lemma 2.2.4 in [29]. In
our notation, it reads

1√
θk+1

− 1√
θk

=
θk − θk+1√

θkθk+1(
√
θk +

√
θk+1)

≥ θk(1− (1− 1/tk+1))

2θk
√
θk+1

since θk is nonincreasing. It follows

1√
θk+1

− 1√
θk
≥ 1

2tk+1

√
θk+1

=
1

2

1√∏k
n=0 ωn

≥ 1

2
,

showing that 1/
√
θk ≥ (k − 1)/2 + t1/

√
ω0 ≥ (k + 1)/2. Hence, provided

√
qt0 ≤ 1, we

also find:

θk ≤
4

(k + 1)2
. (67)

We have shown the following result, due to Nesterov and stated, with a different
proof, in [29]:

Theorem 5.11. If
√
qt0 ≤ 1, t0 ≥ 0, then the sequence (xk) produced by iterations

xk = Tτy
k with (66), (59), (61), (62) satisfies

F (xk)−F (x∗) ≤ min

{
(1−√q)k

t20
,

4

(k + 1)2

}(
t20(F (x0)− F (x∗)) +

1 + τµg
2τ

‖x0 − x∗‖2
)

(68)
if t0 ≥ 1, and

F (xk)− F (x∗) ≤

min

{
(1 +

√
q)(1−√q)k, 4

(k + 1)2

}(
t20(F (x0)− F (x∗)) +

1 + τµg
2τ

‖x0 − x∗‖2
)

(69)

if t0 ∈ [0, 1], where x∗ is a minimiser of F .

Theorem 5.8 is a particular case of this result, for t0 = 0.

Remark 5.12. (Constant steps.) In case µ > 0 (which is q > 0), then an admissible
choice which satisfies (59),(60), (61), is to take t = 1/

√
q, ω = 1−√q,

β = ω2 1 + τµg
1− τµf

=

√
1 + τµg −

√
τµ√

1 + τµg +
√
τµ
.

Then, (68) becomes

F (xk)− F (x∗) ≤ (1−√q)k
(
F (x0)− F (x∗) + µ

‖x0 − x∗‖2

2

)
.

Remark 5.13. (Monotone “FISTA”, monotone algorithms.) The algorithms studied
here are not necessarily “monotone” in the sense that the objective F is not always
nonincreasing. A workaround implemented in various papers [43, 3] consists in choosing
for xk+1 any point with F (xk+1) ≤ F (Tτy

k)7, which will not change much (56) except

7this makes sense only if the evaluation of F is easy and does not take too much time.

60



that in the last term, xk+1 should be replaced with Tτy
k. Then, the same computations

carry on, and it is enough to replace the update rule (62) for yk with

yk = xk + βk(xk − xk−1) + ωk
tk
tk+1

1+τµg
1−τµf (Tτy

k−1 − xk)

= xk + βk

(
(xk − xk−1) + tk

tk−1 (Tτy
k−1 − xk)

) (62′)

to obtain the same rates of convergence. The most sensible choice for xk+1 is to take
Tτy

k if F (Tτy
k) ≤ F (xk), and xk else, in which case one of the two terms (xk − xk−1

or Tτy
k−1 − xk) vanishes in (62’).

Conclusion: compare the geometric rate (54) with ω = 1 − √q for q given by (63),
what do we observe?

5.3 ADMM, Douglas-Rachford splitting

We now consider a class of method which solves another kind of problem, namely of the
form

min
Ax+By=ζ

f(x) + g(y) (70)

where in practice one will ask that the convex, lsc functions f, g are “simple” (and even
more than this).

Observe that if f∗ is continuous at some point A∗p and if g∗ is continuous at some
point B∗q, cf Section. 4.3.1 (or, in finite dimension, if A∗p ∈ ri dom f∗, B∗q ∈ ri dom g∗),
we can define

f̃(ξ) = min
Ax=ξ

f(x), g̃(η) = min
By=η

g(y),

moreover the min is reached in both cases.
Then, one has f̃∗(p) = f(A∗p), g̃∗(q) = g(B∗q) and the problem reads

min
ξ
f̃(ξ) + g̃(ζ − ξ);

it can be seen as an inf-convolution problem. Moreover Corollary 4.21 shows that the
value of (70) is also

sup
p
〈ζ, p〉 − f∗(A∗p)− g∗(B∗p) (71)

which gives a dual form for (70).

An “augmented Lagrangian” approach for (70) consists in introducing the constraint
in the form

min
x,y

sup
z
f(x) + g(y)− 〈z,Ax+By − ζ〉+

γ

2
‖Ax+By − ζ‖2

which we observe is equivalent (as the sup is +∞ if Ax+By 6= ζ).
If we introduce the function

D(z) = inf
x,y

f(x) + g(y)− 〈z,Ax+By − ζ〉+
γ

2
‖Ax+By − ζ‖2
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we find that, denoting x̄, ȳ the solution of the problem for z and x̄h, ȳh the solution for
z + h (the min is reached, why?),

D(z) = f(x̄) + g(ȳ)− 〈z + h,Ax̄+Bȳ − ζ〉+
γ

2
‖Ax̄+Bȳ − ζ‖2 + 〈h,Ax̄+Bȳ − ζ〉

≥ f(x̄h) + g(ȳh)− 〈z + h,Ax̄h +Bȳh − ζ〉+
γ

2
‖Ax̄h +Bȳh − ζ‖2

+
γ

2
‖A(x̄− x̄h) +B(ȳ − ȳh)‖2 + 〈h,Ax̄+Bȳ − ζ〉

where we have used the strong convexity of the norm with respect to Ax+By. We find

D(z)− 〈h,Ax̄+Bȳ − ζ〉 ≥ D(z + h) +
γ

2
‖(Ax̄+Bȳ − ζ)− (Ax̄h +Bȳh − ζ)‖2

which shows that ζ −Ax̄−Bȳ ∈ ∂+D(z) (the super-gradient of the concave function D
at z) and that z 7→ Ax̄+Bȳ − ζ is γ-co-coercive, and (1/γ)-Lipschitz. Hence a natural
algorithm, known as “augmented Lagrangian”, consists in iteratively solving{

(xk+1, yk+1) = arg minx,y f(x) + g(y)−
〈
zk, Ax+By − ζ

〉
+ γ

2 ‖Ax+By − ζ‖2 ,
zk+1 = zk + γ(ζ −Axk+1 −Byk+1) :

(72)
it is precisely a gradient ascent with fixed step for the concave function D, and will
converge (it should be shown then that also xk, yk converge to a solution).

Unfortunately, this algorithm is usually not implementable, as the joint minimization
step cannot in general be performed. This is why it was proposed [20, 19] to perform
these minimizations alternatively instead than simultaneously, see Algorithm 3

Algorithm 3 ADMM

Choose γ > 0, y0, z0.
for all k ≥ 0 do

Find xk+1 by minimising x 7→ f(x)−
〈
zk, Ax

〉
+ γ

2 ‖ζ −Ax−By
k‖2,

Find yk+1 by minimising y 7→ g(y)−
〈
zk, By

〉
+ γ

2 ‖ζ −Ax
k+1 −By‖2,

Update zk+1 = zk + γ(ζ −Axk+1 −Byk+1).
end for

We will relate this approach to other known converging algorithms. Then in a next
section, we will show how we can derive rates of convergence for this approach. A
classical reference for the convergence is [14], see also http://stanford.edu/~boyd/

admm.html.
Let us observe that in terms of the functions f̃ , g̃, the algorithm computes, letting

ξk = Axk, ηk = Byk:

ξk+1 = arg min
ξ
f̃(ξ)−

〈
zk, ξ

〉
+
γ

2
‖ζ − ξ − ηk‖2 = proxf̃/γ(ζ + 1

γ z
k − ηk); (73)

ηk+1 = arg min
η
g̃(η)−

〈
zk, η

〉
+
γ

2
‖ζ − ξk+1 − η‖2 = proxg̃/γ(ζ + 1

γ z
k − ξk+1). (74)

Thanks to Moreau’s identity (29),

proxγf̃∗(z
k + γ(ζ − ηk)) = zk + γ(ζ − ηk)− γξk+1, (75)
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proxγg̃∗(z
k + γ(ζ − ξk+1)) = zk + γ(ζ − ξk+1)− γηk+1 = zk+1. (76)

Letting f̃∗ζ (p) := f̃∗(p)− 〈ζ, p〉 = f∗(A∗p)− 〈ζ, p〉, the first line can also be rewritten

γ(ξk+1 − ζ) = zk − γηk − proxγf̃∗ζ
(zk − γηk). (77)

If we let uk = zk − γηk, vk+1 = zk + γ(ζ − ξk+1), we find that

γηk+1 = zk + γ(ζ − ξk+1)− proxγg̃∗(z
k + γ(ζ − ξk+1)) = vk+1 − proxγg̃∗(v

k+1).

and
uk+1 = zk+1 − γηk+1 = 2proxγg̃∗(v

k+1)− vk+1.

On the other hand, (77) gives

proxγf̃∗ζ
(uk) + γηk = zk + γ(ζ − ξk+1) = vk+1.

Hence the iteration reads

vk+1 = proxγf̃∗ζ
(2proxγg̃∗(v

k)− vk) + vk − proxγg̃∗(v
k),

which is precisely a Douglas-Rachford iteration for the problem

0 ∈ ∂g̃∗ + ∂f̃∗ζ

which is the equation for (71).
The theory seen up to now shows that vk ⇀ v a fixed point of the iteration, which

is such that proxγg̃∗(v) is a solution of the dual problem. In practice, zk will converge

to a Lagrange Multiplier for (72), and xk, yk to a solution, as soon as there is enough
coercivity (in particular, in finite dimension).

5.4 Other saddle-point algorithms: Primal-dual algorithm

We remark that thanks to (76) and (73), one has

zk − zk−1

γ
= ζ − ξk − ηk

hence
ξk+1 = proxf̃/γ(ξk + 1

γ (2zk − zk−1))

while as before
zk+1 = proxγg̃∗(z

k − γ(ξk+1 − ζ)).

This is the form of a primal-dual algorithm (of “Arrow-Hurwicz” type) which aims at
solving a fixed point problem of the form (letting τ = 1/γ):

ξ + τ∂f̃(ξ) 3 ξ + τz, z + γ∂g̃∗(z) 3 z − γ(ξ − ζ).

More generally, for a problem in the standard form

min
x
f(Kx) + g(x) = min

x
sup
y
〈Kx, y〉+ g(x)− f∗(y),

one can implement the Algorithm 4 described below.
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Algorithm 4 PDHG

Input: initial pair of primal and dual points (x0, y0), steps τ, σ > 0.
for all k ≥ 0 do

find (xk+1, yk+1) by solving

xk+1 = proxτg(x
k − τK∗yk) (78)

yk+1 = proxσf∗(y
k + σK(2xk+1 − xk)). (79)

end for

Let us write now the iterates as follows:{
xk+1−xk

τ + ∂g(xk+1) 3 −K∗yk = K∗(yk+1 − yk)−K∗yk+1

yk+1−yk
σ + ∂f∗(yk+1) 3 K(xk+1 − xk) +Kxk+1,

that is(
1
τ I −K∗
−K 1

σ I

)(
xk+1 − xk
yk+1 − yk

)
+

(
∂g(xk+1)
∂f∗(yk+1)

)
+

(
0 K∗

−K 0

)(
xk+1

yk+1

)
3 0. (80)

We find that this algorithm is a proximal point algorithm for the variable zk =
(xk, yk)T , the monotone operator which is the sum of the subgradient of the convex

function (x, y) 7→ (g(x) + f∗(y)) and the antisymmetric linear operator

(
0 K∗

−K 0

)
,

in the metric

Mτ,σ :=

(
1
τ I −K∗
−K 1

σ I

)
if this metric is positive definite. To see this we observe that if A is a monotone operator
and M a symmetric positive definite operator, M−1A defines a monotone operator in
the scalar product 〈·, ·〉M = 〈M ·, ·〉: if p ∈M−1Ax, q ∈M−1Ay,

〈p− q, x− y〉M = 〈M(p− q), x− y〉 ≥ 0

as Mp ∈ Ax, Mq ∈ Ay. Hence, in this metric, the resolvent JMA is given by y =
(I+M−1A)−1x, which satisfies the equation y+M−1Ay 3 x, that is, M(y−x)+Ay 3 0.

When is the matrix Mτ,σ positive definite? We have〈
Mτ,σ

(
ξ
η

)
,

(
ξ
η

)〉
= 1

τ ‖ξ‖
2 + 1

σ‖η‖
2 − 2 〈Kξ, η〉

which is positive if and only if for any X,Y ≥ 0

sup
‖ξ‖≤X,‖η‖≤Y

2 〈Kξ, η〉 = 2‖K‖XY <
X2

τ
+
Y 2

σ

if and only if

2‖K‖ < min
X≥0,Y≥0

X

τY
+

Y

σX
=

2√
τσ

if and only if
τσ‖K‖2 < 1. (81)

We deduce:

Theorem 5.14. If (81) is satisfied, then zk = (xk, yk)T defined by Algorithm 4 con-
verges to a fixed point (x, y)T of the operator, that is, a solution of (33) (if one exists).
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5.4.1 Rate

To find a rate, we do as follows. Taking the scalar product of (80) with zk+1− z where
z is an arbitrary point, we find

〈
zk+1 − zk, zk+1 − z

〉
Mτ,σ

+

〈(
0 K∗

−K 0

)(
xk+1

yk+1

)
,

(
xk+1 − x
yk+1 − y

)〉
+ g(xk+1) + f∗(yk+1) ≤ g(x) + f∗(y)

The scalar product is
−
〈
K∗yk+1, x

〉
+
〈
Kxk+1, y

〉
while〈
zk+1 − zk, zk+1 − z

〉
Mτ,σ

= 1
2‖z

k+1 − zk‖2Mτ,σ
+ 1

2‖z
k+1 − z‖2Mτ,σ

− 1
2‖z

k − z‖2Mτ,σ
.

Therefore, introducing the Lagrangian of (31), as

L(xk+1, y)−L(x, yk+1) = g(xk+1)+
〈
y,Kxk+1

〉
−f∗(y)−g(x)−

〈
yk+1,Kx

〉
+f∗(yk+1)

we obtain for any z = (x, y)T :

L(xk+1, y)− L(x, yk+1) + 1
2‖z

k+1 − zk‖2Mτ,σ
+ 1

2‖z
k+1 − z‖2Mτ,σ

≤ 1
2‖z

k − z‖2Mτ,σ
.

Summing from k = 0 to n − 1 and using the convexity of (ξ, η)T 7→ L(ξ, y) − L(x, η),
we find if we let Zn = (Xn, Y n)T = (

∑n
k=1 z

n)/n that

L(Xn, y)− L(x, Y n) ≤ 1

2n
‖z0 − z‖2Mτ,σ

. (82)

This is a weak form of a rate (as it depends on (x, y)), and there is still some work
to convert it into a true rate for the energy. The simplest case is when dom f∗,dom g
are bounded, then one can take the sup in x, y to find that

G(Xn, Y n) ≤ C

2n

where C = sup{‖z0 − z‖2Mτ,σ
: z = (x, y), x ∈ dom g, y ∈ dom f∗}.

5.4.2 Extensions

We present here an extension of Algorithm 4 due to Condat and in a generalized form
to Vu (referred usually as Condat-Vu’s primal-dual algorithm). A first observation (cf
Vu, Bot) is that one can replace ∂g and ∂f∗ with monotone operators, and get similar
results.

A second observation, due to Condat, is that one can iterate the operator with
an explicit step of a co-coercive operator. Typically, if h is a convex function with
Lh-Lipschitz gradient, one can replace (80) with(

1
τ I −K∗
−K 1

σ I

)(
xk+1 − xk
yk+1 − yk

)
+

(
∂g(xk+1)
∂f∗(yk+1)

)
+

(
0 K∗

−K 0

)(
xk+1

yk+1

)
3
(
−∇h(xk)

0

)
.

This iteration is of the form (38) and will converge if the operator

C = M−1
τ,σ

(
∇h(x)

0

)
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is µ-co-coercive with µ > 1/2, in the metric Mτ,σ. That is, if for all z, z′:

〈Mτ,σ(z − z′), Cz − Cz′〉 ≥ µ‖Cz − Cz′‖2Mτ,σ
.

Note that

‖Cz − Cz′‖2Mτ,σ
=

〈
M−1
τ,σ

(
∇h(x)−∇h(x′)

0

)
,

(
∇h(x)−∇h(x′)

0

)〉
and that

Mτ,σ

(
ξ
η

)
=

(
∇h(x)−∇h(x′)

0

)
⇒ ξ = (I − στK∗K)−1(τ(∇h(x)−∇h(x′))),

hence (using also the 1/Lh-co-coercivity of ∇h):

‖Cz − Cz′‖2Mτ,σ
= 〈ξ,∇h(x)−∇h(x′)〉 ≤ τ

1− στL2
‖∇h(x)−∇h(x′)‖2

≤ τLh
1− στL2

〈x− x′,∇h(x)−∇h(x′)〉

=
τLh

1− στL2
〈Mτ,σ(z − z′), Cz − Cz′〉 .

Here, L = ‖K‖ (the operator norm). Hence C is µ-co-coercive for µ = (1−στL2)/(τLh)
and one deduces the algorithm converges provided

1

σ

(
1

τ
− Lh

2

)
> L2.

In this case again we get the convergence of the Vu-Condat algorithm, which reads:

Algorithm 5 PDHG with explicit step

Input: initial pair of primal and dual points (x0, y0), steps τ, σ > 0.
for all k ≥ 0 do

find (xk+1, yk+1) by solving

xk+1 = proxτg(x
k − τ(K∗yk +∇h(xk))) (83)

yk+1 = proxσf∗(y
k + σK(2xk+1 − xk)). (84)

end for

Exercise: Show that a fixed point of these iterations solves

min
x
f(Kx) + g(x) + h(x) = min

x
sup
y
〈y,Kx〉 − f∗(y) + g(x) + h(x).

6 “Large scale” optimization

In this lecture, we only mention rapidly two techniques currently used to avoid com-
puting full gradients. Such approaches are useful for solving very large dimensional
problems.
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6.1 Coordinate descent and stochastic coordinate descent

6.1.1 Does coordinate descent / alternating minimization work?

Assume one wants to solve
min

x1,...,xn
f(x1, . . . , xn)

and one knows how to solve, for any i = 1, . . . , n and given (xj)j 6=i

min
ξ
f(x1, . . . , xi−1, ξ, xi+1, . . . , xn).

Then, it is natural to consider the following algorithm: (x0) being given, one computes
for k ≥ 0, i = 1, . . . , n:

xk+1
i ∈ arg min

ξ
f(xk+1

1 , . . . , xk+1
i−1 , ξ, x

k
i+1, . . . , x

k
n). (85)

Denoting x = (x1, . . . , xn), does this converge? It depends. The following straightfor-
ward (classical) example shows that it is easily not the case.

Consider, for x = (x1, x2) ∈ R2, f(x1, x2) = x2
1/2 + |x1 − x2|, which is min-

imal for (x1, x2) = (0, 0). From (xk1 , x
k
2), the algorithm will first produce xk+1

1 =
max{−1,min{xk2 , 1}} and then xk+1

2 = xk+1
1 . Hence, one has xk1 = xk2 = x1

2 for any
k ≥ 1 and unless x0

2 = 0, one never converges to the minimizer.
On the other hand, assume f is C1, bounded from below, coercive (infinite at infinity,

so that the sequence (xk) is bounded), and we are in finite dimension. A first remark is
that by construction, f(xk) is decreasing, and converges to some value f∗. In addition,
one has (with obvious notation, and without assuming particularly that the xi are
one-dimensional scalars):

∂if(xk+1
1 , xk+1

i , xki+1, . . . , x
k
n)

∂xi
= 0.

If (xk)k converges, then one easily deduces that ∇f(xk) = 0, hence xk is a critical point
with value f(xk) = f∗. But (xk) could have subsequences converging to different limits.

In case f is convex, one can show that these limits are minimizers. Indeed, assume
liml x

kl
i = xi and let also x′i = liml x

kl+1
i (possibly passing to another subsequence).

Clearly, one has f(x) = f(x′) = f∗ = f(x′1, . . . , x
′
i−1, xi, . . . , xn) for any i, and one also

easily finds that x′i is a minimizer of f(x′1, . . . , x
′
i−1, •, xi+1, . . . , xn), as well as xi since

f has the same value at all these points. In particular,

∂f(x′1, . . . , x
′
i, xi+1, . . . , xn)

∂xi
=
∂f(x′1, . . . , x

′
i−1, xi, . . . , xn)

∂xi
= 0. (86)

We show by induction that ∇f(x′) = 0. To start with, from (86) for i = 1, 2 we
deduce that (x′1, x2) is a minimizer the convex function f(•, •, x3, . . . , xn). But since
f(x′1, x

′
2, x3, . . . , xn) = f(x′1, x2, . . . , xn) = f∗, also (x′1, x

′
2) is a minimizer and in par-

ticular, the gradients of f with respect to x1 and x2 vanish at this point. By induc-
tion, if we assume that the gradient of f with respect to xj , j = 1, . . . ,m vanishes in
(x′1, . . . , x

′
m, xm+1, . . . , xn), using (86) for i = m and i = m+ 1 we find that (x′m, xm+1)

is a minimizer of the convex function f(x′1, . . . , x
′
m−1, •, •, xm+2, . . . , xn), and using the

induction assumption, we have that (x′1, . . . , x
′
m, xm+1) is a minimizer of the convex

function f(•, . . . , •, xm+2, . . . , xn). As the value is f∗, also (x′1, . . . , x
′
m+1) is a mini-

mizer and the (m+ 1) first gradients of f vanish at this point. By induction we deduce
that ∇f(x′) = 0 and that x′ (hence also x) is a minimizer. A similar proof in a more
complex situation (with a convex, separable nonsmooth term) is found in [42] (Tseng).
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6.1.2 Block coordinate descent

Instead of finding the minimizer of f with respect to one variable, one could perform
a step of gradient descent. In particular, if f has Lipschitz gradients, one could rather
replace (85) with

xk+1
i = xki − τi∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n). (87)

Here, ∇i := ∂/∂xi. Assume that ∂if is Li-Lipschitz (uniformly). Then one has as usual
(see (1))

f(xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n) ≤ f(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)

− τi(1− Liτi
2 )‖∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)‖2

Choosing for instance τi = 1
Li

, we deduce

f(xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n) +

1

2Li
‖∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)‖2

≤ f(xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
n)

and in particular, one can reproduce the same proof as before in the convex case and
show that any limit point is a minimizer. One interesting point here is that in general,
the Lipschitz constant with respect to one variable is smaller than with respect to all
the variables (think for instance to (x1, x2) 7→ (x1 + x2)2: its gradient is

√
2-Lipschitz,

while its partial gradients are 1-Lipschitz), so that the steps performed in the coordinate
descent method are longer than for a gradient descent.

Up to now, we have considered alternating minimizations or block coordinate descent
with a cyclic rule, where each coordinate is optimized in ascending order. This is a bit
arbitrary. Let us now show that (on average) one can obtain good performances with a
random update. This is our first example of a stochastic algorithm.

6.1.3 Random coordinate descent

We consider the following algorithm, with a notation slightly differing from the previous
sections: we pick x0. At iteration k ≥ 0, we consider xk. We pick randomly a coordinate
i with some probability pi (

∑n
i=1 pi = 1, pi > 0), and let ik := i. Then we let xk+1

j = xkj
for j 6= ik, and

xk+1
ik

= xkik − τik∇ikf(xk). (88)

As before, we have

f(xk+1) ≤ f(xk)− τik(1− Likτik
2 )‖∇ikf(xk)‖2 (89)

As a consequence, knowing the point xk, the expectation E(f(xk+1)|xk) satisfies

E(f(xk+1)|xk) ≤ f(xk)−
n∑
i=1

piτi(1− Liτi
2 )‖∇if(xk)‖2.

We can pick for instance τi = 1/Li and pi = Li/(
∑
j Lj), meaning that we pick more

often the coordinates with larger Lipschitz constants. In this case, the previous estimate
becomes

E(f(xk+1)|xk) ≤ f(xk)− 1

2
∑
j Lj

n∑
i=1

‖∇if(xk)‖2 = f(xk)− 1

2
∑
j Lj
‖∇f(xk)‖2. (90)
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Computing then the expectation with respect to xk, we obtain

E(f(xk+1)) ≤ E(f(xk))− 1

2
∑
j Lj

E(‖∇f(xk)‖2). (91)

In particular, this is a decreasing sequence, and one has

1

2
∑
j Lj

∞∑
k=0

E(‖∇f(xk)‖2) ≤ f(x0) <∞

which shows that E(‖∇f(xk)‖2)→ 0 (∇f(xk)→ 0 almost surely, up to subsequences)).
More generally, we pick τi = θ/Li for θ ∈]0, 2[ and introduce the norm ‖g‖2M :=∑n
i=1mi|gi|2, for mi := pi/Li. Then the same computation as above yields

E(f(xk+1)|xk) ≤ f(xk)−
n∑
i=1

θ(2− θ)pi
Li

‖∇if(xk)‖2 = f(xk)− θ(2− θ)
2

‖∇f(xk)‖2M .

We assume that there exists a minimizer x∗ and let ∆k := f(xk)− f(x∗), and show
the following result:

Lemma 6.1. Assume {f ≤ f(x0)} is bounded. Then

E(∆k) ≤ 2C2

θ(2− θ)
1

k + 1
(92)

where C ≥ supf(x)≤f(x0) ‖x− x∗‖M−1 .

Proof. By convexity, we observe that

f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉 ≤ ‖∇f(x)‖M‖x∗ − x‖M−1 ,

which is ≤ C‖∇f(x)‖ if f(x) ≤ f(x0) and C is as in the statement. Hence using (90),
we find that

E(f(xk+1)− f(x∗)|xk) ≤ f(xk)− f(x∗)− θ(2− θ)
2

(f(xk)− f(x∗))2

C2
.

Now, by convexity (from Jensen’s inequality), we know that E(∆k)2 ≤ E(∆2
k) so that

E(∆k+1) ≤ E(∆k)− θ(2− θ)
2C2

E(∆2
k) ≤ E(∆k)− θ(2− θ)

2C2
E(∆k)2.

Inequality (92) follows then from Lemma 2.6.

One sees here that it might be interesting to use non-uniform probabilities to improve
the process, however it is not obvious how (one should minimize the “diameter” C, which
is given by C2 = supf(x)≤f(x0)

∑
i Li|xi − x∗i |2/pi).

To compare with a standard gradient descent, one can use the choice already men-
tioned above, θ = 1 and pi = Li/

∑
j Lj , for which mi = 1/

∑
j Lj . The rate becomes

E(∆nk) ≤

 2

n

n∑
j=1

Lj

 supf(x)≤f(x0) ‖x− x∗‖2

k + 1/n
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after k “epochs” (i.e., passes over all the data, at least on average: we consider that it
requires n iterations to approximate one step of a full gradient descent). This is to be
compared to the rate in Theorem 2.7:

∆k ≤ 2L
‖x0 − x∗‖2

k + 1

at the kth iteration of a gradient descent, where now L is the global Lipschitz constant
of f .

So the relevant question here is: which is smallest of L and 1
n

∑
j Lj? One always

have

max
j
Lj ≤ L ≤

√√√√ n∑
j=1

L2
j , (93)

hence
1

n

∑
j

Lj ≤ L,

whereas the upper bound in (93) satisfies

1

n

∑
j

Lj ≤
1√
n

√√√√ n∑
j=1

L2
j .

Hence, in the worst case, the complexity of the random coordinate descent is similar to
the gradient descent, while if L is closer to the upper bound in (93), the complexity is
smaller by a factor 1/

√
n, where n is the number of coordinates.

This approach has of course many extensions. It was first extended to the (separable)
non-smooth case in [35]: it is shown that for an objective of the form f(x)+

∑n
i=1 ψi(xi)

one can replace the kth iteration (88) with the proximal iteration

xk+1
ik

= (I + τik∂ψi)
−1(xik − τik∇ikf(xk))

with τik = 1/Lik , and obtain essentially the same rate. Acceleration has been proposed
shortly after, for a very complete variant (including non differentiable separable terms,
parallel updates, and Nesterov-type acceleration...) see in particular [18].

6.2 Stochastic gradient descent

6.3 SGD for learning problems

We now consider a different problem, arising for instance in statistical learning, when
one has to minimize (for large n ≥ 1) a sum of convex functions of the form

min
x

1

n

∑
i

fi(x) + ψ(x) (94)

Note that if ψ is strongly convex, one can derive a dual problem

max
y1,...,yn

− 1

n
f∗i (yi)− ψ∗(− 1

n

∑
i

yi)
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where now ψ∗ has Lipschitz gradient, and tackle the problem by a proximal variant of
the (random) coordinate descent algorithm (such as in [42, 35, 18]), as mentioned in the
last section. See also the variant termed “stochastic dual coordinate ascent” [40, 41].

We will focus on a direct gradient descent approach for the objective function f(x) :=
(1/n)

∑
i fi(x) (and hence the case ψ = 0, to simplify), considering however that if n is

too large, it might not be a good idea to evaluate ∇f at each iteration. We assume here
that each fi is convex with Li-Lipschitz gradient. We study the following “stochastic
gradient” algorithm: starting from x0, for each k ≥ 1, we

� pick ik = i ∈ {1, . . . , n} with probability 1/n;

� let xk+1 = xk − τ∇fik(xk), for some τ > 0.

We observe immediately that E(xk+1|xk) = xk−τ
∑
i

1
n∇fi(x

k) = xk−τ∇f(xk), so
that this corresponds to a stochastic gradient descent where the gradient of f is replaced
by a random variable with expectation ∇f(x) (and one could indeed consider this more
general situation).

As usual, one can write that for j = 1, . . . , n, if ik = i,

fj(x
k+1) ≤ fj(xk)− τ

〈
∇fj(xk),∇fi(xk)

〉
+
Ljτ

2

2
‖∇fi(xk)‖2

and summing, we find that

f(xk+1) ≤ f(xk)− τ
〈
∇f(xk),∇fi(xk)

〉
+
τ2

2

 1
n

n∑
j=1

Lj

 ‖∇fi(xk)‖2.

We denote L̄ := (
∑
j Lj)/n the average Lipschitz constant. Hence, knowing xk, one has

(using that each i appears with probability 1/n)

E(f(xk+1|xk) ≤ f(xk)− τ‖∇f(xk)‖2 +
τ2

2
L̄

(
1

n

n∑
i=1

‖∇fi(xk)‖2
)

≤ f(xk)− τ(1− τL̄
2 )‖∇f(xk)‖2 +

τ2

2
L̄

(
1

n

n∑
i=1

‖∇fi(xk)−∇f(xk)‖2
)

One sees that now, there is a problem: for τ < 2/L̄, one can expect that E(f(xk))
will decrease, until E(‖∇f(xk)‖2) (which is of the order of ‖xk − xk+1‖2) becomes
comparable to E( 1

n

∑n
i=1 ‖∇fi(xk) − ∇f(xk)‖2), which is the variance of the random

gradient ∇fi, averaged on the random point xk.
Hence, with constant step size, one cannot expect this to converge. The only hope

is that the “bad” variance term is of second order in τ . So that the standard solution
is to replace τ in the iteration with a variable τk, with τk → 0. To simplify, we make
also the assumption that the “variance” is globally bounded

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ σ2

for all x (or all x in some set, provided we can show that the iterates xk will remain not
too far from x∗: this is the case for instance if we assume that all the gradients −∇fi(x)
point rougthly towards x∗ (or the origin) for large |x|, in the sense 〈−∇fi(x), x− x∗〉 ≥
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θ|∇fi(x)||x− x∗| for some θ ∈ (0, 1), for all i and for |x| large enough). Assuming also
τk ≤ 1/L̄, one has then for n ≥ 1(

n−1∑
k=0

τk

)
min

k=0,...,n−1
E(‖∇f(xk)‖2) ≤ f(x0) +

L̄

2
σ2

n−1∑
k=0

τ2
k

so that

min
k=0,...,n−1

E(‖∇f(xk)‖2) ≤
f(x0) + L̄

2 σ
2
∑n−1
k=0 τ

2
k∑n−1

k=0 τk
.

One obtains a rate which is governed by the ratio∑n−1
k=0 τ

2
k∑n−1

k=0 τk
.

for instance for τk ∼ 1/k, this is like C/ log n, while for 1/
√
k, it is like log n/

√
n.

The latter choice is nearly optimal, indeed, if one knows all the parameters of the
problem and fixes the number of iterations in advance, one can use a fixed step τ : in
this case, the best choice is to let L̄σ2nτ2/2 = f(x0), yielding

min
k=0,...,n−1

E(‖∇f(xk)‖2) ≤
f(x0) + L̄

2 σ
2nτ2

nτ
=

√
2L̄f(x0)√

n
σ

This approach is originally due Robbins and Monro [36].

6.3.1 Improvements of SGD

We only refer here to some recent improvements developed in the machine learning lit-
erature. The basic idea is to “reduce” along the iterations the variance of the gradient
estimate, so that one does not have to send the step τ to zero to compensate. Starting
from the early 2010’s, a few variants have been proposed, called for instance “SVRG”
(stochastic variances-reduced gradient algorithm) [45], “SAG” (stochastic average gra-
dient) [22], or “SAGA” [13].

For instance, the latter addresses problems of the form (94), where all fi are supposed
to have L-Lipschitz gradient, in the following way: assuming at iteration k one knows
xk and the values ∇fi(yki ), i = 1, . . . , n, at k + 1 one does:

1. pick randomly an index i ∈ {1, . . . , n} with uniform probability distribution;

2. let yk+1
i = xi, and for j 6= i, let yk+1

j = ykj . Store ∇fi(yk+1
i ) = ∇fi(xk) in memory

(points y need not be recorded, only the gradients are needed);

3. set

zk+1 = zk − τ

∇fi(yk+1
i )−∇fi(yki ) +

1

n

n∑
j=1

∇fj(ykj )


xk+1 = proxτψ(zk+1).

Then, the results reported in [13] show that:
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� If the fi’s are µ-convex with L-Lipschitz gradient (L > µ > 0), then if τ =
1/(2µn+ L) one has

E(‖xk − x∗‖2) ≤
(

1− µ

2(µn+ L)

)k [
‖x∗ − x0‖2 +

n

µn+ L
Df (x0, x∗)

]
while for τ = 1/(3L) (not depending on µ), one has:

E(‖xk − x∗‖2) ≤
(

1−min

{
1

4n
,
µ

3L

})k [
‖x∗ − x0‖2 +

2n

3L
Df (x0, x∗)

]
� If the fi’s have L-Lipschitz gradient, then again for τ = 1/(3L) one has, introduc-

ing the averages x̄k := (1/k)
∑k
t=1 x

t,

E(F (x̄k)− F (x∗)) ≤ 4n

k

[
2L

n
‖x0 − x∗‖2 +Df (x0, x∗)

]
where F is the global objective in (94). Here, Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉
is the f -“Bregman distance” of x to y cf Remark 5.9 in Section 5.2.2.
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