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Some resources:

Boris Polyak: Introduction to optimization, (1987).

J.-B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms (1993).

Yurii Nesterov: Introductory lectures on convex optimization, 2004

Jorge Nocedal and Stephen J. Wright: Numerical Optimization, 2006.

Dimitri Bertsekas: Convex Optimization Algorithms. Athena Scientific 2015.

Amir Beck: First-Order Methods In Optimization, 2019.

R. Tyrell Rockafellar: Convex analysis, 1970 (1997).

H. Bauschke and P.L. Combettes: Convex analysis and monotone operator theory in Hilbert spaces
(Springer 2011)

Ivar Ekeland and Roger Temam: Convex analysis and variational problems, 1999.

Juan Peypouquet: Convex Optimization in Normed Spaces.
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Gradient descent

Problem:

min
x∈X

f (x)

X is a vector space, f a real valued function.

(Very elementary) Algorithm:

xk+1 = xk − “a descent direction”.
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Gradient descent

Algorithm:
xk+1 = xk − “a descent direction”.

Simplest descent direction: linearize f at xk (→ “first order” method):

f (y) = f (xk) + df (xk) · (y − xk) + o(|y − xk |)

and then find a direction “which points on the good side of ker df ” which is
tangent to the level set {f = f (xk)}.

△! df (xk) ∈ X ∗ and “xk+1 = xk − τdf (xk)” does not make any sense.

One would need a mapping J : X ∗ → X which can be linear or non-linear and converts df into (−) a
descent direction, and then we may write xk+1 = xk − τJ(df (xk)). We first start with the simplest case.
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Gradient descent

In most of the lectures X is a Hilbert or finite-dimensional Euclidean space. In
which case, one can define a gradient thanks to the scalar product (and “Riesz’
representation theorem”).

Definition
The gradient of f :X → R at x is the vector p = ∇f (x)∈X such that for all y ∈X ,

df (x) · y = ⟨p, y⟩X

Then, ker df (x) = {y : ⟨∇f (x), y⟩X = 0} and

f (y) = f (x) + ⟨∇f (x), y − x⟩X + o(|y − x |)

so that f increases if y − x is small in the direction of ∇f (x): that is, −∇f (x) is a
“descent direction”.
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Gradient descent

Then the iteration:
xk+1 = xk − τ∇f (xk) =: Tτ (xk)

(τ > 0) makes sense and one has

f (xk+1) = f (xk) − τ |∇f (xk)|2X + o(τ) < f (xk).

if τ is small enough (but how small?)
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Gradient descent: choices for τ

Optimal: solve minτ f (xk − τ∇f (xk)). 1D optimization solved with a “line
search” is easy but requires many evaluations of f ;
“Armijo” type rule: for instance, find i ≥ 0 such that
f (xk − τρi∇f (xk)) ≤ f (xk) − cτρi |∇f (xk)|2, ρ < 1, c < 1 fixed: “sufficient
descent rule”;
Fixed step τ > 0.
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Gradient descent: fixed step

Important remark: Given τ > 0, one can interpret xk+1 as the minimizer of a
quadratic approximation of f :

xk+1 = arg min
x

f (xk) +
〈
∇f (xk), x − xk

〉
X

+ 1
2τ

|x − xk |2X .

A natural generalization is: obtain xk+1 as a minimizer of

min
x

f (xk) + df (xk) · (x − xk) + 1
2τ

d(x , xk)2

for d a distance in X . This can serve as a generalization for non-Hilbertian
distances (→ nonlinear gradient descent method), can be used to improve the
quadratic approximation of f (2nd order methods, Newton, Quasi-Newton...), or
one can even substitute d with more general “divergences”.
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Conditional Gradient / “Frank-Wolfe” algorithm

Variant (different from a classical gradient descent method): replace
(1/τ)|x − xk |2X with the characteristic function 0 if x ∈ Xk , +∞ else:

min
x∈Xk

f (xk) + df (xk) · (x − xk)

for some set X k , which could be fixed (a constraint set), or varying, depending on
the particular method—a gradient method is recovered if X k = B(xk , ρk) for some
radius ρk > 0.
(Then in general one chooses xk+1 as a convex combination of xk and the above
minimizer.)
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Fixed step: Why a Lipschitz gradient is needed

xk xk − τ∇F (xk) xk+1 xk+2 = xk

etc...

The gradient descent may never converge if the step is too large or the function
not smooth enough (here f (x) = |x |).
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Convergence

Proposition

If f is C1, bounded from below with ∇f L-Lipschitz

Then: ∇f (xk) → 0 as k → ∞ provided 0 < τ < 2/L.

Proof: One writes:

f (xk+1) = f (xk) −
∫ τ

0

〈
∇f (xk − s∇f (xk)), ∇f (xk)

〉
X

= f (xk) − τ |∇f (xk)|2X +∫ τ

0

〈
∇f (xk) − ∇f (xk − s∇f (xk)), ∇f (xk)

〉
X

≤ f (xk) − τ(1 − Lτ
2 )|∇f (xk)|2X .
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Convergence

Letting κ := τ(1 − τL/2) > 0, we get:

f (xk+1) + κ|∇f (xk)|2X ≤ f (xk)

so that f (xk) is a decreasing sequence (unless xk is critical), and summing we get:

f (xn) + κ
n−1∑
k=0

|∇f (xk)|2X ≤ f (x0).

from which we can deduce the result (letting n → ∞).
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Convergence: remarks

Remark: If τ = 0, then the algorithm does not move. If τ = 2/L it may not converge:
example: f (x) = L|x |2/2, x0 ̸= 0.
Remark: In the proof we only use that

⟨∇f (x) − ∇f (y), x − y⟩X ≤ L|x − y |2X

that is, an upper bound for the Hessian (D2f ≤ LI), or “ L
2 |x |2X − f (x) is convex”.

Remark: To get convergence of (a subsequence of) xk to some critical point one needs in
addition to assume that f is “coercive” (for instance, f (x) → ∞ when |x | → ∞).
Remark: If x∗ is a minimizer, one also deduces that the gradient is controlled by the
objective f :

1
2L |∇f (xk)|2X ≤ f (xk) − f (xk+1) ≤ f (xk) − f (x∗).

(Choosing τ = 1/L.) (Why am I allowed to do this?)
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Convergence analysis: convex case

In the convex case one can get much more precise results. Convexity will be
studied more deeply in a forthcoming lecture, now we just need two properties:

Property
If f is convex, then for any x , y ∈ X :

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩X

This is true in fact in any vector space and could be taken as a definition of a
convex function: a convex function is always above its first order (affine)
approximations.
[→ “Monotonicity” of the gradient]
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Convergence analysis: convex case

This is a small piece of a much more general result of (Baillon-Haddad, 1977):

Theorem
If f is convex and ∇f is L-Lipschitz, then for all x , y :

⟨∇f (x) − ∇f (y), x − y⟩X ≥ 1
L |∇f (x) − ∇f (y)|2X .

(∇f is said to be “(1/L)-co-coercive”, or L−1∇f “firmly non-expansive”.)

[Definition: An operator A : X → X is “firmly non expansive” if and only if
|A(x) − A(y)|2 + |(I − A)(x) − (I − A)(y)|2 ≤ |x − y |2 for all x , y .
Show that this is equivalent to being 1-co-coercive: ⟨Ax − Ay , x − y⟩ ≥ |Ax − Ay |2 for all x , y .]
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Convergence analysis: convex case

Proof: assuming f is C2 (the general case is easily recovered by approximation with smooth functions), we
use: 0 ≤ D2f ≤ LI (because f is convex, and because ∇f is L-Lipschitz). We let:

∇f (x) − ∇f (y) =
∫ 1

0
D2f (y + s(x − y))(x − y)ds =: A(x − y).

with A =
∫ 1

0 D2f (y + s(x − y))ds symmetric, 0 ≤ A ≤ LI. Then:

|∇f (x) − ∇f (y)|2 = |A(x − y)|2 =
〈

AA1/2(x − y), A1/2(x − y)
〉

≤

L
〈

A1/2(x − y), A1/2(x − y)
〉

≤ L ⟨A(x − y), x − y⟩ = L ⟨∇f (x) − ∇f (y), x − y⟩

which is the result.
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Convergence analysis: convex case

Lemma:
If f is convex with L-Lipschitz gradient, then the mapping Tτ = I − τ∇f is a weak

contraction when 0 ≤ τ ≤ 2/L (that is, Tτ is 1-Lipschitz, or “non-expansive”).

Proof: we write

|Tτ x − Tτ y |2 = |x − y |2 − 2τ ⟨x − y , ∇f (x) − ∇f (y)⟩ + τ2|∇f (x) − ∇f (y)|2

≤ |x − y |2 −
2τ

L

(
1 −

τL
2

)
|∇f (x) − ∇f (y)|2

≤ |x − y |2

provided 2τ/L(1 − τL/2) ≥ 0.
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Convex case: remark

Remark: Tτ is “averaged” for 0 < τ < 2/L, that is:

Tτ = θT2/L + (1 − θ)I

for θ = τL/2 ∈]0, 1[ where, by the previous Lemma, T2/L = (I − 2
L∇f ) is

1-Lipschitz.

The convergence of the iterates of this class of operators will be proved later on. It
will follow that xk ⇀ x∗ a minimizer of f (⇔ a fixed point of Tτ ), if it exists.
We now rather establish a convergence rate.
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Convergence rate in the convex case

As already mentioned, if f is convex, one has:

f (x∗) ≥ f (xk) +
〈
∇f (xk), x∗ − xk〉

for any minimizer x∗, so that:

f (xk) − f (x∗)
|x∗ − xk |X

≤ |∇f (xk)|X .

Combined with:

f (xk+1)−f (x∗) + κ|∇f (xk)|2X ≤ f (xk)−f (x∗) =: ∆k

we obtain (as |xk+1 − x∗| = |Tτ xk − Tτ x∗| ≤ |xk − x∗| ≤ |x0 − x∗|):

∆k+1 ≤ ∆k − κ

|x0 − x∗|2X
∆2

k
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Convergence rate in the convex case

Lemma
Let (ak)k be a sequence of nonnegative numbers satisfying for k ≥ 0:

ak+1 ≤ ak − c−1a2
k

Then, for all k ≥ 0, ak ≤ c
k+1

Proof: if we replace ak with ak/c, it becomes ak+1 ≤ ak − a2
k : hence we may assume c = 1. Then, since

ak(1 − ak) ≥ ak+1 ≥ 0, one has 0 ≤ ak ≤ 1 for all k ≥ 0.
We show the inequality by induction: for k = 0, a0 ≤ 1. If k ≥ 1 and if kak−1 ≤ 1, then we write that

(k + 1)ak ≤ (k + 1)(ak−1 − a2
k−1)

= (k + 1)ak−1 − (k + 1)a2
k−1 = kak−1 + ak−1(1 − (k + 1)ak−1)

≤ 1 + ak−1(1 − (k + 1)ak) (since 0 ≤ ak ≤ ak−1).

Hence (1 − (k + 1)ak)(1 + ak−1) ≥ 0, and (k + 1)ak ≤ 1.
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Convergence rate in the convex case: conclusion

Theorem
The gradient descent with fixed step satisfies

∆k ≤ |x0 − x∗|2X
κ(k + 1)

(for κ = τ(1 − τL/2) > 0).

κ is maximal for τ = 1/L, and the corresponding rate is:

∆k ≤ 2L |x0 − x∗|2X
k + 1 .
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The strongly convex case

We anticipate and say that f is strongly convex if D2f ≥ γI, γ > 0. This is also
called γ-convex. An equivalent definition, which does not require f to be twice
differentiable, is that f − γ

2 |x |2X is convex1.
In that case (assuming, still, f C2), there is a simpler convergence proof for the
gradient descent, as follows. We let x∗ be the minimizer (in this case, which exists
and is unique) of f . We write:

1 △! These definitions are for Euclidean or real Hilbert spaces only! General strong convexity is
defined a bit differently, by means of an inequality.
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The strongly convex case

xk+1 − x∗ = xk − x∗ − τ(∇f (xk) − ∇f (x∗)) =
∫ 1

0
(I − τD2f (x∗ + s(xk − x∗))(xk − x∗)ds

hence (using that (1 − τL)I ≤ I − τD2f ≤ (1 − τγ)I)

|xk+1 − x∗|X ≤ max{1 − τγ, τL − 1}|xk − x∗|X .

If f is not C2 one can still show this by smoothing. The best constant is for τ = 2/(L + γ) and gives, for
q = (L − γ)/(L + γ) ∈ [0, 1]

|xk − x∗|X ≤ qk |x0 − x∗|X .

This is called a linear convergence rate. The contraction factor is

q = 1 − γ/L
1 + γ/L

where γ/L < 1 can be thought as the inverse condition number of the problem.
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What can we achieve?

We will soon see that these convergence bounds are not tight. We give here a
very basic approach to the complexity theory for first-order method developed by
Nemirovsky and Yudin (see also Nesterov’s lecture notes).

The idea is to introduce a “hard problem” and show that no first-order method can
solve it faster than a certain rate.
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Hard problem / F.O.M.

We consider L > 0, γ ≥ 0, 1 ≤ p ≤ n, and for x ∈ Rn, a function of the form:

f (x) = L − γ

8

(
(x1 − 1)2 +

p∑
i=2

(xi − xi−1)2
)

+ γ

2 |x |2.

A “First Order Method” is such that the iterates xk belong to the subspace
spanned by the gradients of already computed iterates: for k ≥ 0,

xk ∈ x0 +
{

∇f (x0), ∇f (x1), . . . , ∇f (xk−1)
}

,

where x0 is an arbitrary starting point.
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Hard problem

Starting from x0 = 0 in the above problem (whose solution is given, in case γ = 0,
by x∗

l = 1, k = 1, . . . , p, and 0 for l > p), then at the first iteration, only the first
component x1

1 will be updated (since ∂i f (x0) = 0 for i ≥ 2), and by induction one
can check that at iteration k, xk

l = 0 for l ≥ k + 1: information is transmitted very
slowly



Continuous
(convex)

optimisation

A. Chambolle

Introduction

(Mostly) First
order descent
methods
Gradient descent

Convergence Analysis

Lower bounds

Better methods...

Multistep first order
methods

Nonsmooth problems

Hard problem

The solution satisfies ∇f = 0, therefore is characterized by

xi = L − γ

L + γ

xi+1 + xi−1
2 , i ≤ p − 1,

with x0 = 1 and xp = (L − γ)/(L + 3γ)xp−1. The best possible point at iteration k
satisfies this equation for i ≤ k, and xk+1 = 0.
In case γ = 0 we find that this point x is affine: xi = (1 − i/(k + 1))+, and
xi − xi−1 = −1/(k + 1) for i ≤ k + 1. Hence

f (x) = L
8

k+1∑
i=1

1
(k + 1)2 = L

8
1

k + 1

is the best possible value which can be reached at step k.
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Lower bound for hard problem

Using here that x0 = 0 while x∗
i = 1 for i ≤ p and 0 for i > p, one has

|x0 − x∗|2 = p, f (x∗) = 0, hence we find:

f (xk) − f (x∗) ≥ L
8p(k + 1) |x0 − x∗|2

(k < p) (while if k = p, xk = x∗). For k = p − 1 one finds

f (xk) − f (x∗) ≥ L
8

|x0 − x∗|2

(k + 1)2

hence no first order method can satisfy a better reverse inequality!
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(Dimension-independent) Lower bound

Theorem
For any n ≥ 2, any x0 ∈ Rn, L > 0, and k < n, there exists a convex, one times
continuously differentiable function f with L-Lipschitz continuous gradient, such
that for any first-order method, it holds that

f (xk) − f (x∗) ≥ L|x0 − x∗|2

8(k + 1)2 ,

where x∗ denotes a minimizer of f .

(cf Thms. 2.1.7 and 2.1.13 in Nesterov’s book.)

BUT: the gradient descent had ≤ 2L|x0 − x∗|2/(k + 1)! which is very far from this
lower bound.



Continuous
(convex)

optimisation

A. Chambolle

Introduction

(Mostly) First
order descent
methods
Gradient descent

Convergence Analysis

Lower bounds

Better methods...

Multistep first order
methods

Nonsmooth problems

(Dimension-independent) Lower bound

Theorem
For any n ≥ 2, any x0 ∈ Rn, L > 0, and k < n, there exists a convex, one times
continuously differentiable function f with L-Lipschitz continuous gradient, such
that for any first-order method, it holds that

f (xk) − f (x∗) ≥ L|x0 − x∗|2

8(k + 1)2 ,

where x∗ denotes a minimizer of f .

(cf Thms. 2.1.7 and 2.1.13 in Nesterov’s book.)

BUT: the gradient descent had ≤ 2L|x0 − x∗|2/(k + 1)! which is very far from this
lower bound.



Continuous
(convex)

optimisation

A. Chambolle

Introduction

(Mostly) First
order descent
methods
Gradient descent

Convergence Analysis

Lower bounds

Better methods...

Multistep first order
methods

Nonsmooth problems

Strongly convex case

A similar study (slightly more complicated, in R∞) in the strongly convex case
shows:
Theorem
For any x0 ∈ R∞ ≃ ℓ2(N) and γ, L > 0 there exists a γ-strongly convex, one times
continuously differentiable function f with L-Lipschitz continuous gradient, such
that for any first order method, it holds that for all k,

f (xk) − f (x∗) ≥ γ

2 q2k |x0 − x∗|2

|xk − x∗| ≥ qk |x0 − x∗|

where q =
√

Q−1√
Q+1 and where Q = L/γ ≥ 1 is the condition number, and x∗ a

minimizer of f .
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Strongly convex case

Again, here, the gradient descent had: q = (Q − 1)/(Q + 1). Passing from Q to√
Q would be a huge improvement.

To have (√
Q − 1

√
Q + 1

)k

≤ ε

one needs, assuming Q >> 1 so that (
√

Q − 1)/(
√

Q + 1) ≈ 1 − 2/
√

Q, and ε << γ:

k ≳

√
Q| log ε|

2

iterations. For the gradient descent, we needed

k ≳
Q| log ε|

2

iterations. This is the same order of improvement as for the case γ = 0.
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Higher order or accelerated methods

Now, we will consider variants of the gradient descent method and show that the
worse case rates of the previous slides can actually be (almost) reached.
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Newton method

We first discuss a second order method, which yields much faster convergence.
However: it is not obvious to find a good starting point, it is computationally too
intensive for large problems.
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Newton method

The idea is to develop a second order approximation of f at xk :

f (x) = f (xk) +
〈

∇f (xk), x − xk
〉

+ 1
2

〈
D2f (xk)(x − xk), x − xk

〉
+ o(|x − xk |2).

Near a minimizer, one can hope that D2f (xk) > 0: we find find xk+1 by solving

min
x

f (xk) +
〈
∇f (xk), x − xk

〉
+ 1

2

〈
D2f (xk)(x − xk), x − xk

〉
(Compare with the Gradient descent with step τ in a metric defined by a symmetric positive definite

matrix A > 0, which would be:

min
x

f (xk) +
〈

∇f (xk), x − xk
〉

+ 1
2τ

〈
A(x − xk), x − xk

〉
hence we can see Newton’s method as a gradient descent in the metric which best approximates the
function.)
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Newton method

xk+1 is given by

∇f (xk) + D2f (xk)(xk+1 − xk) = 0 ⇔ xk+1 = xk − D2f (xk)−1∇f (xk).

Theorem
Assume f is C2, D2f is M-Lipschitz, and D2f ≥ γ (strong convexity). Let

q = M
2γ2 |∇f (x0)| and assume x0 is close enough to the minimizer x∗, so that

q < 1. Then |xk − x∗| ≤ (2γ/M)q2k .

This is very fast: q2k ≤ ε if k ≥ log(| log ε|/| log q|)/ log 2 (a “quadratic”
convergence rate).
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Newton method: proof

We start with:

∇f (x + h) = ∇f (x) +
∫ 1

0
D2f (x + sh)hds = ∇f (x) + D2f (x)h +

∫ 1

0
(D2f (x + sh) − D2f (x))hds

so that
|∇f (x + h) − ∇f (x) − D2f (x)h| ≤

M
2

|h|2.

Hence

|∇f (xk+1)−

0︷ ︸︸ ︷
∇f (xk) − D2f (xk)(xk+1 − xk) | ≤

M
2

|xk+1 − xk |2

⇒ |∇f (xk+1)| ≤
M
2

|D2f (xk)−1|2|∇f (xk)|2 ≤
M

2γ2 |∇f (xk)|2
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Newton method: proof

Hence letting gk = |∇f (xk)|, for all k one has

log gk+1 ≤ 2 log gk + log
M

2γ2 ⇒ log gk ≤ 2k log g0 + (2k − 1) log
M

2γ2 = 2k log q − log
M

2γ2

so that
|∇f (xk)| ≤

2γ2

M
q2k

.

As f is strongly convex,
〈

∇f (xk), xk − x∗
〉

≥ γ|xk − x∗|2, and we can conclude.

This rate is excellent but: it needs a good initialization, it is hard to compute (→
“quasi”-Newton methods such as “BFGS” try to approximate the inverse Hessian).
Let us return to first order methods and try to improve them...
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Heavy ball method (Polyak)

The general idea of a multi-step first order method is to have xk+1 depending not
only on xk but also on previous iterates. The heavy ball method has the general
form:

xk+1 = xk − α∇f (xk) + β(xk − xk−1),

α, β ≥ 0.
Inspired by mẍ = −∇f (x) − cẋ equation of a heavy ball in a potential f (x) with a
kinetic friction, discretized as:

mxk+1 − 2xk + xk−1

(δt)2 + c xk+1 − xk

δt = −∇f (xk)

(which is the same for α = (δt)2

m+cδt and β = m
m+cδt ).
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Heavy ball method

Theorem (Polyak 87)
Let x∗ be a (local) minimizer of f such that γI ≤ D2f (x∗) ≤ LI, and choose α, β
with 0 ≤ β < 1, 0 < α < 2(1 + β)/L. There exists q < 1 such that if q < q′ < 1
and if x0, x1 are close enough to x∗, one has

|xk − x∗| ≤ c(q′)q′k .

Moreover, this is almost optimal: if

α = 4
(
√

L + √
γ)2

, β =
(√

L − √
γ√

L + √
γ

)2

then q =
√

L − √
γ√

L + √
γ

=
√

Q − 1√
Q + 1

.
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Heavy ball method

Remark: This method requires that f is C2, γ-convex, with L-Lipschitz gradient
(at least near a solution x∗):

γI ≤ D2f ≤ LI.

Proof: we study the iteration of a linearized system near the optimum: close enough to x∗,

xk+1 = xk − αD2f (x∗)(xk − x∗) + o(|xk − x∗|) + β(xk − xk−1),

hence zk = (xk − x∗, xk−1 − x∗)T satisfies, for B = D2f (x∗):

zk+1 =
(

(1 + β)I − αB −βI
I 0

)
zk + o(zk).

→ We study the eigenvalues of the matrix A which appears in this iteration.
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Heavy ball

A
(

x
y

)
=
(

(1 + β)I − αB −βI
I 0

)(
x
y

)
= ρ

(
x
y

)
if and only if

(1 + β)x − αBx − βy = ρx , x = ρy

(and x , y ̸= 0) hence if (1 + β)x − αBx − (β/ρ)x = ρx .
We find that

Bx =
1
α

(
1 + β − ρ −

β

ρ

)
x

hence 1
α

(
1 + β − ρ − β

ρ

)
= µ ∈ [γ, L] is an eigenvalue of B. We derive the equation

ρ2 − (1 + β − αµ)ρ + β = 0

which gives two eigenvalues with product β and sum 1 + β − αµ. If β ∈ [0, 1) and
−(1 + β) < 1 + β − αµ < (1 + β) (extreme cases where ±(1, β) are solutions) then |ρ| < 1, that is, if
0 < α < (2 + β)/µ. Since µ < L one deduces that if 0 ≤ β < 1, 0 < α < (2 + β)/L, the eigenvalues of A
are all in (−1, 1) (incidentally, it has 2n eigenvalues).
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Matrices with spectral radius less than 1

Lemma
Let A be a N × N matrix and assume that all its eigenvalues (complex or real) have
modulus ≤ ρ. Then for any ρ′ > ρ, there exists a norm | · |∗ in CN such that
∥A∥∗ := sup|ξ|∗≤1 |Aξ|∗ < ρ′.
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Matrices with spectral radius less than 1

Proof: up to a change of a basis, A is triangular: there exists P such that

P−1AP = T

with T = (ti,j )i,j , ti,i = λi , an eigenvalue, and ti,j = 0 if i > j. Then, if
Ds = diag(s, s2, s3, . . . , sN) = (s i δi,j )i,j , DsP−1APD−1

s = (x s
i,j ) with

x s
i,j =

∑
k,l

s i δi,k tk,l s−l δl,j = s i−j ti,j

and (since ti,j = 0 for i > j), x s
i,j → λi δi,j as s → +∞. Hence, if s is large enough, denoting

|ξ|∞ = maxi |ξi | the ∞-norm,

max
|ξ|∞≤1

|DsP−1APD−1
s ξ|∞ ≤ max

i
(|λi | + (ρ′ − ρ)) ≤ ρ′

if s is large. Hence, if |ξ|∗ := |DsP−1ξ|∞, one has

∥A∥∗ = sup
|ξ|∗≤1

|Aξ|∗ ≤ ρ′.
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Heavy ball

It follows, in particular, that if ρ′ < 1, ∥Ak∥∗ ≤ ∥A∥k
∗ ≤ ρ′k → 0 as k → ∞. Applying this to our problem,

we see that (choosing ρ′ < 1)

|zk+1|∗ = |Azk + o(zk)|∗ ≤ (ρ′ + ε)|zk |∗

if |zk |∗ is small enough. Starting from z0 such that this holds for ε with ρ′ + ε < 1, we find that it holds
for all k ≥ 0 and that |zk+1|∗ ≤ (ρ′ + ε)k |z0|∗, showing the linear convergence.
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Conjugate Gradient

The conjugate gradient is defined as “the best” two-steps method, in the sense
that one can define it as follows: given xk , xk−1, we let
xk+1 = xk − αk∇f (xk) + βk(xk − xk−1) where αk , βk are minimizing

min
α,β

f (xk − α∇f (xk) + β(xk − xk−1)).
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Conjugate Gradient

In particular, we deduce that〈
∇f (xk+1), ∇f (xk)

〉
= 0 and

〈
∇f (xk+1), xk − xk−1

〉
= 0

and it also follows 〈
∇f (xk+1), xk+1 − xk

〉
= 0.

Notice moreover that

∇f (xk+1) = ∇f (xk) − αkD2f (xk + s(xk+1 − xk))∇f (xk)
+ βkD2f (xk + s(xk+1 − xk))(xk − xk−1)

for some s ∈ [0, 1].
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Conjugate Gradient

However, for a general f , it is “conceptual”: there is no simple way to compute
αk , βk . One can show that in the quadratic case, that is, if
f (x) = (1/2) ⟨Ax , x⟩ − ⟨b, x⟩ + c (A symmetric), then there are closed forms to
compute the parameters. (Using the last formula in the previous slide.)

In that case, one has:
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Conjugate Gradient

Lemma
The gradients pk = ∇f (xk) are all orthogonal.

Corollary
For a quadratic function, the conjugate gradient is the “best” first order method.

Corollary
A solution is found in k = rkA iterations.

In addition one can show a rate similar to the heavy ball method.
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Nesterov’s “Accelerated Gradient Descent” (AGD)
(Yu. Nesterov, 1983 / book of 2004)

x0 = x−1 given, xk+1 defined by:yk = xk + tk−1
tk+1

(xk − xk−1)
xk+1 = yk − τ∇f (yk)

where τ = 1/L and for instance tk = 1 + k/2. Then,

f (xk) − f (x∗) ≤ 2L
(k + 1)2 |x0 − x∗|2

→ optimal. For strongly convex problems, a variant exists with again optimal rate
of convergence.
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Top: Comparisons of the solutions x of GD and AGD after 10000(!) iterations. Bottom: Rate of
convergence for GD, AGD together with their theoretical worst case rates, and the lower bound for smooth
optimization. For comparison we also provide the rate of convergence for CG. Note that CG exactly
touches the lower bound at k = 99 (this is the “hard problem” with γ = 0, p = n = 100)
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What about “nonsmooth” problems?

That is: problems where ∇f is not Lipschitz (or even not well defined, later on).
Non-smooth (“subgradient”) descent;
Implicit descent.
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Nonsmooth problems
Subgradient descent

xk+1 = xk − hk
∇f (xk)
|∇f (xk)| .

(In practice, the gradient can be replaced with any selection of the “subgradient” if
f is not differentiable, definition comes later.)

|xk+1 − x∗|2 = |xk − x∗|2 − 2 hk
|∇f (xk)|

〈
∇f (xk), xk − x∗

〉
+ h2

k

≤ |xk − x∗|2 − 2 hk
|∇f (xk)|(f (xk) − f (x∗)) + h2

k .

(using f (x∗) ≥ f (xk) +
〈
∇f (xk), x∗ − xk

〉
).
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Subgradient descent

If we assume in addition f is M-Lipschitz, near x∗ at least,

min
0≤i≤k

f (x i) − f (x∗) ≤ M |x0 − x∗|2 +
∑k

i=0 h2
i

2
∑k

i=0 hi

and choosing hi = C/
√

k + 1 for k iterations, we obtain

min
0≤i≤k

f (x i) − f (x∗) ≤ M C2 + |x0 − x∗|2

2C
√

k + 1

(the best choice is C ∼ |x0 − x∗| but this is of course unknown).
In general, one chooses steps such that

∑
i h2

i < +∞,
∑

i hi = +∞, such as
hi = 1/i (actually the best varying choice is rather hi ∼ 1/

√
i , why?). It results in

a very slowly converging algorithm which should be used only when there is no
other obvious choice.
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Nonsmooth problems
Implicit descent

Consider a gradient descent where instead of using the gradient at xk , one is able
to evaluate the gradient in xk+1:

xk+1 = xk − τ∇f (xk+1).

This seems “conceptual”, or useless because it seems easy to compute only in
situations where min f also is easy to compute.
It says that xk+1 is a critical point of (and one can ask that it minimises)

f (x) + 1
2τ

|x − xk |2→ min
x

= fτ (xk)

and also, that, xk+1 = xk − τ∇fτ (xk).
Can be showed to always converge to a minimum / critical point with very
little assumptions on f . (Precisions later.)
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Implicit descent

However, we will see that:
It can be useful for solving composite problems minx f (x) + g(x) where f or g
is simple and can be treated implicitly;
Many (simple) algorithms will be, in fact, particular cases of this method
(later);
Sometimes, simply changing the metric makes the method computable,
cf Lasso problem:
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Implicit descent
Example: the LASSO problem

min
x

|x |1 + 1
2 |Ax − b|2

If |x |2M = ⟨Mx , x⟩ and M = I/τ − A∗A, τ < 1/|A|2, then

min
x

1
2 |x − xk |2M + |x |1 + 1

2 |Ax − b|2

is solved by
xk+1 = Sτ (xk − τA∗(Axk − b))

where Sτ ξ is the unique minimizer of

min
x

|x |1 + 1
2τ

|x − ξ|2,

called the “shrinkage” operator. This converges with rate O(1/k) to a solution.
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