Lecture 3: Subgradients, Monotone operators.
Contents

1 Monotone operators
 - Subgradients of convex functions
 - Elements of monotone operators theory
Consider f convex, proper (the definition also is valid for a non-convex function but conflicts with more reasonable, local definitions).

Definition: subgradient

The subgradient of f at $x \in \text{dom } f$ is the set:

$$\partial f(x) := \{ p \in \mathcal{X} : f(y) \geq f(x) + \langle p, y - x \rangle \ \forall y \in \mathcal{X} \}.$$

This is clearly a closed, convex set.
Theorem (?)

Let \(f : \mathcal{X} \to (-\infty, +\infty] \) be convex, proper. Then \(x \in \mathcal{X} \) is a minimizer of \(f \) if and only if \(0 \in \partial f(x) \).

Proof: actually this is the definition of the subgradient.
If f (convex) is Gateaux-differentiable at x, that is if there exists $\nabla f(x) \in \mathcal{X}$ such that for any h,

$$\lim_{t \to 0} \frac{f(x + th) - f(x)}{t} = \langle \nabla f(x), h \rangle$$

then $\partial f = \{ \nabla f(x) \}$.
Subgradient

If \(f \) (convex) is Gateaux-differentiable at \(x \), that is if there exists \(\nabla f(x) \in \mathcal{X} \) such that for any \(h \),

\[
\lim_{t \to 0} \frac{f(x + th) - f(x)}{t} = \langle \nabla f(x), h \rangle
\]

then \(\partial f = \{ \nabla f(x) \} \).

- Indeed since \(f \) is convex then, for any \(h, \phi : t \mapsto f(x + th) \) is convex and using \(\phi(1) \geq \phi(0) + \phi'(0) \), that is:

\[
f(x + h) \geq f(x) + \langle \nabla f(x), h \rangle,
\]

which shows that \(\nabla f(x) \in \partial f(x) \).

- On the other hand, for \(p \in \partial f(x), t > 0 \) small, then \(f(x + th) - f(x) \geq t \langle p, h \rangle \). Dividing by \(t \) and letting \(t \to 0 \) we deduce \(\langle \nabla f(x) - p, h \rangle \geq 0 \). Since this is true for any \(h, p = \nabla f(x) \).
Subgradient

If f (convex) is Gateaux-differentiable at x, that is if there exists $\nabla f(x) \in \mathcal{X}$ such that for any h,

$$\lim_{t \to 0} \frac{f(x + th) - f(x)}{t} = \langle \nabla f(x), h \rangle$$

then $\partial f = \{\nabla f(x)\}$.

- Indeed since f is convex then, for any h, $\phi : t \mapsto f(x + th)$ is convex and using $\phi(1) \geq \phi(0) + \phi'(0)$, that is:

 $$f(x + h) \geq f(x) + \langle \nabla f(x), h \rangle,$$

 which shows that $\nabla f(x) \in \partial f(x)$.

- On the other hand, for $p \in \partial f(x)$, $t > 0$ small, then $f(x + th) - f(x) \geq t \langle p, h \rangle$. Dividing by t and letting $t \to 0$ we deduce $\langle \nabla f(x) - p, h \rangle \geq 0$. Since this is true for any h, $p = \nabla f(x)$.
If f is convex, $x \in \text{dom } f$, $v \in \mathcal{X}$, $t > s > 0$:

$$f(x + sv) = f\left((s/t)(x + tv) + (1 - s/t)x\right) \leq \frac{s}{t} f(x + tv) + (1 - \frac{s}{t})f(x)$$

so that

$$\frac{f(x + sv) - f(x)}{s} \leq \frac{f(x + tv) - f(x)}{t}.$$

It follows that

$$f'(x; v) := \lim_{t \downarrow 0^+} \frac{f(x + tv) - f(x)}{t} = \inf_{t > 0} \frac{f(x + tv) - f(x)}{t}$$

is well defined (in $[-\infty, \infty]$), and $< +\infty$ as soon as $\{x + tv : t > 0\} \cap \text{dom } f \neq \emptyset$.

Subgradient
Existence of subgradients
If f is convex, $x \in \text{dom } f$, $v \in \mathcal{X}$, $t > s > 0$:

$$f(x + sv) = f((s/t)(x + tv) + (1 - s/t)x) \leq \frac{s}{t} f(x + tv) + (1 - \frac{s}{t}) f(x)$$

so that

$$\frac{f(x + sv) - f(x)}{s} \leq \frac{f(x + tv) - f(x)}{t}.$$

It follows that

$$f'(x; v) := \lim_{t \downarrow 0^+} \frac{f(x + tv) - f(x)}{t} = \inf_{t > 0} \frac{f(x + tv) - f(x)}{t}$$

is well defined (in $[-\infty, \infty]$), and $< +\infty$ as soon as $\{x + tv : t > 0\} \cap \text{dom } f \neq \emptyset$.

Hence: if $x \in \text{dom } f$, then $f'(x; v) < \infty$ for all v. In addition

$f'(x; 0) = 0 \leq f'(x; v) + f'(x; -v)$ hence $f'(x; v) > -\infty$.

One has: $f'(x; \cdot)$ is a limit of convex functions, and hence convex, moreover, it is clearly positively 1-homogeneous: $f'(x; \lambda v) = \lambda f'(x; v)$ for all $\lambda \geq 0$ and all v. Letting $C = \{p : \langle p, v \rangle \leq f'(x; v) \ \forall v\}$ we know that the convex, lower-semicontinuous envelope of $v \mapsto f'(x; v)$ is the support function of C (which could be empty).
Subgradient
Existence of subgradients

One has: $f'(x; \cdot)$ is a limit of convex functions, and hence convex, moreover, it is clearly positively 1-homogeneous: $f'(x; \lambda v) = \lambda f'(x; v)$ for all $\lambda \geq 0$ and all v. Letting $C = \{p : \langle p, v \rangle \leq f'(x; v) \ \forall v\}$ we know that the convex, lower-semicontinous envelope of $v \mapsto f'(x; v)$ is the support function of C (which could be empty).

For $p \in C$, $f(x + v) - f(x) \geq f'(x; v) \geq \langle p, v \rangle$ for all v, hence $p \in \partial f(x)$. The converse is also clear.

In finite dimension this argument is enough to deduce that the subgradient $\partial f(x)$ is not empty for any x in the interior of the domain (actually in $\text{ri} \text{ dom } f$, also).
In infinite dimension it is a bit more complicated. Let us assume in addition f is lower semicontinuous. Then we have seen that f is bounded in the interior of its domain and therefore locally Lipschitz. Hence for v in the unit ball and t small enough, $(f(x + tv) - f(x))/t$ is also Lipschitz therefore also $v \mapsto f'(x; v)$ is.

Since

$$f'(x; v) = \sup_{p \in C} \langle p, v \rangle$$

it shows that $C = \partial f(x)$ is not empty, and bounded.

We will show later on that in general, for a convex lsc function, $\text{dom } \partial f$ is dense in $\text{dom } f$ (even when this set has empty interior).
Additionally, for x in the interior of $\text{dom } f$, in case $\partial f(x) = \{p\}$, then $f'(x; v) = \langle p, v \rangle$ for any v, that is: f is Gateaux differentiable in x.

Lemma

Let f be convex lsc and $x \in \text{dom } f$. Then f is (Gateaux) differentiable at x if and only if ∂f has exactly one element.

Remark: One could assume $x \in \text{ri } \text{dom } f$ in the finite-dimensional case yet this would not really be relevant: since a convex function which has a domain with empty interior cannot be Gateaux differentiable anyway — only the restriction to its domain could be.
If x realizes the sup in $f^*(y) = \sup_x \langle y, x \rangle - f(x)$ then for all z,

$$
\langle y, x \rangle - f(x) \geq \langle y, z \rangle - f(z) \iff f(z) \geq f(x) + \langle y, z - x \rangle
$$

which means that $y \in \partial f(x)$. Conversely if $y \in \partial f(x)$, $f(x) - \langle y, x \rangle \geq f(x') - \langle y, x' \rangle$ for all x' hence $f^*(y) \leq \langle y, x \rangle - f(x)$, and then $f^{**}(x) = f(x)$, $y \in \partial f^{**}(x)$, and f is lsc at x. In particular we see that $\partial f^{**}(x) \supseteq \partial f(x)$ for all x. Precisely we have:

Legendre-Fenchel identity

$$
y \in \partial f(x) \iff \langle x, y \rangle = f(x) + f^*(y) \Rightarrow x \in \partial f^*(y),
$$

the latter being also an equivalence if f is lsc, convex (if $f = f^{**}$).
“Subdifferential calculus”

A first simple example: minimizing $f + g$ with g smooth.

Lemma

Assume $x \in X$ is a minimizer of $f + g$, where f is convex and g is C^1. Then for all $y \in X$,

$$f(y) \geq f(x) - \langle \nabla g(x), y - x \rangle$$

that is, $-\nabla g(x) \in \partial f(x) \iff \partial f(x) + \nabla g(x) \ni 0$.

Proof: For $t > 0$ small enough,

$$f(x) + g(x) \leq f(x + t(y - x)) + g(x + t(y - x)) \leq f(x) + t(f(y) - f(x)) + g(x + t(y - x))$$

so that

$$\frac{g(x) - g(x + t(y - x))}{t} \leq f(y) - f(x)$$

and we recover the claim in the limit $t \to 0$.
Remark: density of subgradients

Corollary

Let f be convex, lsc: then $\text{dom } \partial f$ is dense in $\text{dom } f$.

Proof: Let $\bar{x} \in \text{dom } f$, $\tau > 0$ and let x_τ be the minimizer of $|x - \bar{x}|^2/(2\tau) + f(x)$. Then by the previous result,

$$\frac{\bar{x} - x_\tau}{\tau} \in \partial f(x_\tau)$$

so that $x_\tau \in \text{dom } \partial f$. In addition, $|x_\tau - \bar{x}|^2 \leq 2\tau f(\bar{x}) \to 0$ as $\tau \to 0$ since $f(\bar{x}) < +\infty$. \qed
Remark: strongly convex functions in Hilbert spaces

Corollary

Let f be strongly convex with parameter $\mu > 0$. Then for any $x \in \text{dom } \partial f$, $y \in \text{dom } f$ and $p \in \partial f(x)$,

$$f(y) \geq f(x) + \langle p, y - x \rangle + \frac{\mu}{2} |x - y|^2$$

Proof: We use that $f'(y) = f(y) - \langle p, y - x \rangle - \mu|y - x|^2/2$ is also convex. We have, since $p \in \partial f(x)$:

$$f'(y) + \frac{\mu}{2} |y - x|^2 \geq f'(x) = f(x)$$

for all y, hence by the previous lemma, $0 = -\mu(y - x)|_{y=x} \in \partial f'(x)$ and therefore f' is also minimal at x. That is, $f'(y) \geq f'(x) = f(x)$ for all y, which is precisely the claim. \qed
Subdifferential calculus

The subgradient of a sum

Theorem

Let f, g be convex, proper.

- For all x, $\partial f(x) + \partial g(x) \subset \partial (f + g)(x)$.
- If there exists $\bar{x} \in \text{dom } f$ where g is continuous, then $\partial f(x) + \partial g(x) = \partial (f + g)(x)$. (In finite dimension, a relevant, weaker condition is $\text{ri dom } g \cap \text{ri dom } f \neq \emptyset$.)

Proof: the inclusion is obvious from the definition. For the reverse inclusion, we assume $p \in \partial (f + g)(x)$ and want to show that it can be decomposed as $q + r$ with $q \in \partial f(x)$ and $r \in \partial g(x)$.

By definition, we have that $f(y) + g(y) \geq f(x) + g(x) + \langle p, y - x \rangle$.

Subdifferential calculus

Thanks to the assumption that g is continuous at \bar{x}, $\text{epi} \ (g(\cdot) - \langle p, \cdot \rangle)$ contains a ball B centered at $(\bar{x}, g(\bar{x}) - \langle p, \bar{x} \rangle + 1)$ and has non empty interior. Denote E this interior, and F the following translation/flip of $\text{epi} \ f$:

$$F = \{(y, t) : -t \geq f(y) - [f(x) + g(x) - \langle p, x \rangle]\},$$

which is convex.

For $(y, t) \in F$, one has

$$-t \geq f(y) - [f(x) + g(x) - \langle p, x \rangle] \geq -[g(y) - \langle p, y \rangle],$$

that is

$$t \leq [g(y) - \langle p, y \rangle]$$

so that $(y, t) \not\in E$.

Hence by the separation theorem there exists $(q, \lambda) \neq (0, 0)$, such that for all $(y, t) \in E$, $(y', t') \in F$,

$$\langle q, y \rangle + \lambda t \geq \langle q, y' \rangle + \lambda t'.$$

As t' can be sent to $-\infty$ (or t to $+\infty$), $\lambda \geq 0$. Moreover since \bar{x} is in $\text{dom} \ f$, if $\lambda = 0$ one finds that

$$\langle q, y - \bar{x} \rangle \leq 0$$

for all $y \in \text{dom} \ g$ which contains a ball centered in \bar{x}, so that $q = 0$, which is a contradiction.
Hence $\lambda > 0$ so that without loss of generality we can assume $\lambda = 1$. In particular choosing $t' = f(x) + g(x) - \langle p, x \rangle - f(y')$,

$$\langle q, y \rangle + t \geq \langle q, y' \rangle + f(x) + g(x) - \langle p, x \rangle - f(y').$$

for all $(y, t) \in E$. The closure of E contains $\text{epi}(g(\cdot) - \langle p, \cdot \rangle)$: indeed any $(y, t) \in \text{epi}(g(\cdot) - \langle p, \cdot \rangle)$ is on the boundary of the set $\{ty + (1-t)B : 0 < t < 1\} \subset \text{epi}(g(\cdot) - \langle p, \cdot \rangle)$. Hence it follows that for all y, y',

$$\langle q, y \rangle + g(y) - \langle p, y \rangle \geq \langle q, y' \rangle + f(x) + g(x) - \langle p, x \rangle - f(y')$$

$$\iff f(y') + g(y) \geq f(x) + g(x) + \langle p, y - x \rangle + \langle q, y' - y \rangle$$

$$= f(x) + g(x) + \langle p - q, y - x \rangle + \langle q, y' - x \rangle$$

showing that $q \in \partial f(x)$ and $r = p - q \in \partial g(x)$, as requested. □

Remark: For f, g convex, proper, lsc. the result is also deduced from the theorem on inf-convolutions...
Subdifferential calculus

Theorem

Let $A : \mathcal{X} \to \mathcal{Y}$ be a continuous operator between two Hilbert spaces and f a proper, convex function on \mathcal{Y}. Let $g = f(Ax)$, then if there is \bar{x} such that f is continuous at $A\bar{x}$, $\partial g(x) = A^*\partial f(Ax)$. In finite dimension, one can just require that $A\bar{x} \in \mathrm{ri} \, \mathrm{dom} \, f$.

Proof is similar (again, one inclusion is easy).
Application: Karush-Kuhn-Tucker’s theorem

KKT’s Theorem

Let \(f, g_i, i = 1, \ldots, m \) be \(C^1 \), convex and assume

\[\exists \bar{x}, \ (g_i(\bar{x}) < 0 \ \forall \ i = 1, \ldots, m) \quad \text{(Slater’s condition)} \]

Then \(x^* \) is a solution of

\[\min_{g_i(x) \leq 0, i = 1, \ldots, m} f(x) \]

if and only if there exists \((\lambda_i)_{i=1}^m \), \(\lambda_i \geq 0 \) such that

\[\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0, \]

\[\sum_{i=1}^m \lambda_i g_i(x^*) = 0 \quad \text{(complementary slackness condition)} \]
KKT’s Theorem

Proof: Observe that since \(g_i(x^*) \leq 0 \) and \(\lambda_i \geq 0 \) the complementary condition is also equivalent to:
\[
\forall i, \ g_i(x^*) = 0 \text{ or } \lambda_i = 0.
\]
If the last statements are true, then \(x^* \) is a minimizer of the convex function \(f + \sum_i \lambda_i g_i \). Then obviously for any \(x \) with \(g_i(x) \leq 0 \) for all \(i \),
\[
f(x) \geq f(x) + \sum_i \lambda_i g_i(x) \geq f(x^*) + \sum_i \lambda_i g_i(x^*) = f(x^*).
\]

Conversely, consider for all \(i \) the function
\[
\delta_i(x) = \begin{cases}
0 & \text{if } g_i(x) \leq 0, \\
+\infty & \text{else}.
\end{cases}
\]
then the problem is equivalent to \(\min_x f(x) + \sum_i \delta_i(x) \). By Slater’s condition, we know that there exists \(\bar{x} \) where all functions \(f, \delta_i \) are continuous. Hence by the previous theorems:
\[
0 \in \partial (f + \sum_i \delta_i)(x^*) = \nabla f(x^*) + \sum_{i=1}^m \partial \delta_i(x^*).
\]
It remains to characterize $\partial \delta_i(x^*)$.

If $g_i(x^*) < 0$ then it is negative in a neighborhood of x^* and $\partial \delta_i(x^*) = \{0\}$.

If $g_i(x^*) = 0$, then we need to characterize the vectors p such that for all y with $g_i(y) \leq 0$,

$$0 \geq \langle p, y - x^* \rangle.$$

Let $\nu \perp \nabla g_i(x^*)$, and consider $y = x^* - t(\nabla g_i(x^*) + \nu)$: then

$$g_i(y) = -t \langle \nabla g_i(x^*), \nabla g_i(x^*) + \nu \rangle + o(t) = -t |\nabla g_i(x^*)|^2 + o(t) < 0$$

if $t > 0$ is small enough, hence

$$0 \leq \langle p, \nabla g_i(x^*) + \nu \rangle.$$

We easily deduce that we must have $p = \lambda_i \nabla g_i(x^*)$, for some $\lambda_i \geq 0$ (in other words, $\partial \delta_i(x^*) = \mathbb{R}_+ \nabla g_i(x^*)$). The theorem follows. \square
Remark: in case g_i is affine it is enough to assume $g_i(\bar{x}) = 0$, this allows in particular to treat also the case of affine equality constraints $(g(x) = 0 \iff (g(x) \leq 0 \text{ and } -g(x) \leq 0))$.

A fundamental property of subgradients is the *monotonicity*: Using that for all $p \in \partial f(x)$, $p' \in \partial f(x')$:

$$f(x') \geq f(x) + \langle p, x' - x \rangle, \quad f(x) \geq f(x') + \langle p', x - x' \rangle,$$

and summing both inequalities, we find

$$0 \geq \langle p - p', x' - x \rangle.$$

In 1D, this is equivalent to saying that ∂f is non-decreasing (if $x' > x$, p' must be $\geq p$). In general one says that ∂f is a “monotone operator”:

Definition

The operator $A : \mathcal{X} \to \mathcal{P}(\mathcal{X})$ is monotone if and only if $\forall x, x' \in \mathcal{X}$, $\forall p \in Ax$ and $p' \in Ax'$, one has

$$\langle p' - p, x' - x \rangle \geq 0.$$
Monotone operators in Hilbert spaces
More definitions

Definition

The operator $A : \mathcal{X} \rightarrow \mathcal{P}(\mathcal{X})$ is (μ)-strongly monotone if and only if $\forall x, x' \in \mathcal{X}$, $\forall p \in Ax$ and $p' \in A x'$, one has

$$\langle p - p', x - x' \rangle \geq \mu |x - x'|^2.$$

It is (μ)-co-coercive if

$$\langle p - p', x - x' \rangle \geq \mu |p - p'|^2.$$

It is maximal if the graph $\{(x, p) : p \in Ax\} \subset \mathcal{X} \times \mathcal{X}$ is maximal with respect to inclusion, among all the graphs of monotone operators.

In dimension 1: graphs of nondecreasing functions / (sub)gradients of convex functions.
In higher dimension, not true anymore (example: an antisymmetric linear mapping in \mathbb{R}^d, $d \geq 2$).

The subgradient of a convex function f is monotone, strongly monotone if f is strongly convex, co-coercive if ∇f is Lipschitz ("Baillon-Haddad").
Lemma

Let f be convex. Then ∂f is a maximal-monotone operator if and only if it is the subgradient of a lower-semicontinuous function.

Proof: (cf Rockafellar): if f is lsc, to show that ∂f is maximal we must show that if $x \in X$ and $p \notin \partial f(x)$ then one can find y and $q \in \partial f(y)$ with $\langle p - q, x - y \rangle < 0$.

Replacing f with $f(x) - \langle p, x \rangle$ we can assume that $p = 0$, that is, $0 \notin \partial f(x)$.

Consider now the minimizer of $f(y) + |y - x|^2/2$ which exists as this function is strongly convex and lsc. It characterized by $\partial f(y) + (y - x) \ni 0$ that is, $q = x - y \in \partial f(y)$. Then, necessarily $q \neq 0$ otherwise this means $0 \in \partial f(x)$. Then,

$$\langle p - q, x - y \rangle = \langle -q, x - y \rangle = -|x - y|^2 = -|q|^2 < 0.$$

This shows that ∂f is maximal.

Conversely if ∂f is maximal, since $\partial f^{**} \supset \partial f$, then this operator is also the subgradient of the convex, lsc function f^{**}. We are not proving here that $f = f^{**}$, only that ∂f is also the subgradient of the convex, lsc function f^{**}. f and f^{**} could differ at some point where $\partial f(x) = \emptyset$.
Monotone operators in Hilbert spaces

Definition

Given A a monotone operator, with graph $\{(x, p) : p \in Ax\}$, its inverse is $A^{-1} : p \mapsto \{x : Ax \ni p\}$, with graph $\{(p, x) : p \in Ax\}$. Therefore, it is maximal if and only if A is maximal, co-coercive if and only if A is strongly monotone.

Remark: For f convex lsc.*, $(\partial f)^{-1} = \partial f^*$ (by Legendre-Fenchel’s identity).
Monotone operators in Hilbert spaces

Sum of Maximal-Monotone operators

Lemma

Let A, B be maximal monotone operators. if $\text{dom } A \cap \text{dom } B \neq \emptyset$, then $A + B$ (which is always monotone) is maximal monotone.

(Cor 2.7 in H. Brézis: Opérateurs maximaux-monotones et semi-groupes de contraction dans les espaces de Hilbert).
Theorem (Minty 62)

The *resolvent* of a maximal-monotone operator A, defined by

$$ x \mapsto y = (I + A)^{-1}x =: J_A x \iff y + Ay \ni x $$

is a well (everywhere) defined single-valued nonexpansive mapping. (Conversely, for a monotone operator A if $(I + A)$ is surjective then A is maximal.)
Minty’s theorem

Proof: We introduce the graph $G = \{(y + x, y - x) : x \in \mathcal{X}, y \in Ax\}$. If $(a, b), (a', b') \in G$, with $a = y + x, b = y - x$ and $a' = y' + x', b = y' - x'$, then

$$|b - b'|^2 = |y - y'|^2 - 2 \langle y - y', x - x' \rangle + |y + y'|^2 = |a - a'|^2 - 4 \langle y - y', x - x' \rangle \leq |a - a'|^2$$

that is G is the graph of a 1-Lipschitz function. [Conversely, G 1-Lipschitz implies A monotone.]

Moreover, if $G' \supseteq G$ is also the graph of a 1-Lipschitz function, then defining $A' = \{((a - b)/2, (a + b)/2) : (a, b) \in G'\}$ the same computation shows that $A' \supseteq A$ is the graph of a monotone operator, hence if A is maximal: $A' = A$ and $G' = G$.

In particular, if G is defined for all a then clearly G and therefore A are maximal (Remark: being 1-Lipschitz, G is necessarily single-valued).

So the theorem is equivalent to the question whether a 1-Lipschitz function which is not defined in the whole of \mathcal{X} can be extended.

This result (which is true only in Hilbert spaces) is known as Kirszbraun-Valentine’s theorem (1935), we give a quick proof derived from Federer (Geometric measure theory, 2.10.43).
Minty’s / Kirszbraun-Valentine’s theorem

The basic brick is the following extension from n to $n+1$ points:

Lemma

If $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$ are points in Hilbert spaces respectively \mathcal{X}, \mathcal{Y} such that $\forall i, j, \ |y_i - y_j| \leq |x_i - x_j|$, then for any $x \in \mathcal{X}$ there exists $y \in \mathcal{Y}$ with $|y_i - y| \leq |x_i - x|$ for all $i = 1, \ldots, n$.

Proof: It is enough to prove this for $x = 0$: we need to find a common point to $\overline{B}(y_i, |x_i|)$. There is nothing to prove if $x = x_i$ for some i, so we assume $x_i \neq 0$, $i = 1, \ldots, n$.

We define

$$\bar{c} = \min \left\{ c \geq 0 : \bigcap_{i=1}^n \overline{B}(y_i, c|x_i|) \neq \emptyset \right\} > 0$$

(if the y_i are distinct, which we may also assume). This is a min because the closed balls are weakly compact, and we can consider y such that $|y - y_i| \leq \bar{c}|x_i|$, $i = 1, \ldots, n$.

We must show that $\bar{c} \leq 1$.
Then: y must be a convex combination of the points $(y_i)_{i \in I}$ such that $|y - y_i| = \bar{c}|x_i|$. Indeed, if not, let y' be the projection of y onto $\overline{co} \{ y_i : i \in I \}$. As for any $i \in I$, $\langle y_i - y', y - y' \rangle \leq 0$ one has, letting $y_t = (1 - t)y + ty'$, that for any $i \in I$:

$$|y_i - y_t|^2 = |y_i - y + t(y - y')|^2 = |y_i - y|^2 + 2t \langle y_i - y, y - y' \rangle + t^2 |y - y'|^2$$

$$= |y_i - y|^2 + 2t \langle y_i - y', y - y' \rangle - 2t |y - y'|^2 + t^2 |y - y'|^2$$

$$\leq |y_i - y|^2 - t(2 - t)|y - y'|^2 < |y_i - y|^2$$

if $t \in (0, 2)$.

Hence if $t > 0$ is small enough, one sees that $|y_i - y_t| < |y_i - y| = \bar{c}|x_i|$ for $i \in I$, while since for $i \notin I$, $|y_i - y| < \bar{c}|x_i|$, one can still guarantee the same strict inequality for y_t if t is small enough. But this contradicts the definition of \bar{c}, since then there would exists $c < \bar{c}$ such that $y_t \in \bigcap_{i=1}^n \bar{B}(y_i, c|x_i|)$.

Kirschbraun-Valentine’s theorem
Hence we can write \(y = \sum_{i \in I} \theta_i y_i \) as a convex combination (\(\theta_i \in [0, 1], \sum_{i \in I} \theta_i = 1 \)). Then since
\[
2 \langle a, b \rangle = |a|^2 + |b|^2 - |a - b|^2,
\]

\[
0 = \left| \sum_{i \in I} \theta_i y_i - y \right|^2 = \sum_{i,j \in I} \theta_i \theta_j \langle y_i - y, y_j - y \rangle
\]
\[
= \frac{1}{2} \sum_{i,j \in I} \theta_i \theta_j \left(|y_i - y|^2 + |y_j - y|^2 - |y_i - y_j|^2 \right)
\]
\[
\geq \frac{1}{2} \sum_{i,j \in I} \theta_i \theta_j \left(\bar{c}^2 |x_i|^2 + \bar{c}^2 |x_j|^2 - |x_i - x_j|^2 \right)
\]
\[
= \bar{c}^2 \sum_{i,j \in I} \theta_i \theta_j \langle x_i, x_j \rangle - \frac{1 - \bar{c}^2}{2} |x_i - x_j|^2
\]

which shows that
\[
(1 - \bar{c}^2) \sum_{i,j \in I} \theta_i \theta_j |x_i - x_j|^2 \geq 2 \bar{c}^2 |x_i|^2 \sum_{i \in I} \theta_i |x_i|^2
\]

so that \(\bar{c} \leq 1 \). Hence, \(y \) satisfies \(|y - y_i| \leq |x_i| \), as requested, which shows the Lemma.
Minty’s theorem

We finish the proof of Minty’s Theorem: if there exists \(x \in X \) such that \(\{x\} \times X \cap G = \emptyset \), consider the set

\[
K = \bigcap_{(a,b) \in G} \bar{B}(b, |x - a|)
\]

which is an intersection of weakly compact sets.

We show that because the compact sets defining \(K \) have the “finite intersection property”, \(K \) can not be empty: Choosing \((a_0, b_0) \in G\), if \(\bar{B}_0 = \bar{B}(b_0, |x - b_0|) \), we see that

\[
K = \bar{B}_0 \cap \left(\bigcap_{(a,b) \in G} \bar{B}(b, |x - a|) \right)
\]

hence \(\bar{B}_0 \setminus K = \bar{B}_0 \cap \bigcup_{(a,b) \in G} \bar{B}(b, |x - a|)^c \).

If this is \(\bar{B}_0 \), by compactness one can extract a finite covering \(\bigcup_{i=1}^n \bar{B}(b_i, |x - a_i|)^c \) for \((a_i, b_i) \in G\), \(i = 1, \ldots, n \). We find that

\[
\bar{B}_0 \cap \bigcup_{i=1}^n \bar{B}(b_i, |x - a_i|)^c = \bar{B}_0
\]

or equivalently that

\[
\bar{B}_0 \cap \bigcap_{i=1}^n \bar{B}(b_i, |x - a_i|) = \emptyset
\]

which contradicts The Lemma.
Hence, $\bar{B}_0 \setminus K \neq \bar{B}_0$ which means that $K \neq \emptyset$. Choosing $y \in K$, we find that $G \cup \{(x, y)\}$ is the graph of a 1-Lipschitz function and is strictly larger than G, which contradicts the maximality of A.

The non-expansiveness of $(I + A)^{-1}$ follows from, if $y + Ay \ni x$, $y' + Ay' \ni x'$, $p = x - y \in Ay$, $p' = x' - y' \in Ay'$:

$$|x - x'|^2 = |y - y'|^2 + 2 \langle p - p', y - y' \rangle + |p - p'|^2 \geq |y - y'|^2 + |p - p'|^2,$$

that is, for $T = (I + A)^{-1}$:

$$|Tx - Tx'|^2 + |(I - T)x - (I - T)x'|^2 \leq |x - x'|^2.$$

An operator which satisfies this is said **firmly non-expansive**.
Reflexion operator

Given A maximal monotone, we define the Reflexion of A:

$$R_A = 2J_A - I = 2(I + A)^{-1} - I$$

Lemma

R_A is nonexpansive, and in particular, $J_A = I/2 + R_A/2$ is $(1/2)$-averaged.

In fact one has even:

Proposition

For an operator $T : \mathcal{X} \rightarrow \mathcal{X}$, the following are equivalent:

1. T is the resolvent of a maximal-monotone operator.
2. T is firmly non-expansive;
3. T is $1/2$-averaged, that is, $R = 2T - I$ is non-expansive;
Proof of the lemma: We prove (2) \(\Leftrightarrow\) (3) in the theorem. It follows in an obvious way from the parallelogram identity: for any \(x, x'\),

\[
|R - R'|^2 = |(T - x) - (T' - x') + x - T'|^2 \\
= 2|(I - T)x - (I - T)x'|^2 + 2|T - T'|^2 - |x - x'|^2 \leq |x - x'|^2 \\
\Leftrightarrow |(I - T)(x) - (I - T)(x')|^2 + |T - T'|^2 \leq |x - x'|^2.
\]

Remark: more generally, the parallelogram identity/strong convexity of \(|\cdot|^2/2\) shows that: \(T\) is \(\theta\)-averaged for some \(0 < \theta \leq 1\) (that is \(T = (1 - \theta)I + \theta T\), \(T\) 1-Lipschitz) if and only if for all \(x, x'\):

\[
|T\theta x - T\theta x'|^2 + \frac{1 - \theta}{\theta} |(I - T\theta)x - (I - T\theta)x'|^2 \leq |x - x'|^2
\]

To finish the proof of the theorem, we have to prove that if an operator \(T = I/2 + R/2\) is (1/2)-averaged (\(R\) is non-expansive), then there exists a maximal monotone operator \(A\) such that \(T = J_A\).
The proof follows by the same (or reverse) construction as in the beginning of the proof of Minty’s theorem: we consider the graph

$$G = \{((x + y)/2, (x – y)/2) : x \in \mathcal{X}, y = Rx\} = \{(Tx, (I – T)x) : x \in \mathcal{X}\}$$

and denote by A the corresponding operator ($y \in Ax \iff (x, y) \in G$). Then A is monotone: if $(\xi, \eta), (\xi’, \eta’) \in G$, then for some $x, x’ \in \mathcal{X}$, $\xi = (x + Rx)/2$, $\eta = (x – Rx)/2$, etc., and we find:

$$\langle \xi – \xi’, \eta – \eta’ \rangle = \frac{1}{4} \langle x + Rx – x’ – Rx’, x – Rx – x’ + Rx’ \rangle$$

$$= \frac{1}{4} (|x – x’|^2 – |Rx – Rx’|^2) \geq 0.$$

Moreover, A is maximal, if not, one could build as before from $A’ \supset A$ a non-expansive graph $\{(\xi + \eta, \xi – \eta) : \eta \in A’\xi\}$ strictly larger than the graph $\{(x, Rx) : x \in \mathcal{X}\}$, which is of course impossible. By construction, $ATx \ni (I – T)x$ for all x, hence $(I + A)Tx \ni x \iff Tx = (I + A)^{-1}x$.
A practical consequence: proximal point algorithm

If \(x^0 \in \mathcal{X} \) and \(x^{k+1} = (I + A)^{-1}x^k \), \(k \geq 0 \), and there exists \(\bar{x} \) with \(A\bar{x} \ni 0 \iff (I + A)^{-1}\bar{x} = \bar{x} \), then \(x^k \rightharpoonup x \) where \(Ax \ni 0 \) (KM’s theorem).

In particular if \(A = \tau \partial g \) for \(g \) convex, lsc and \(\tau > 0 \),

\[
x^{k+1} = (I + A)^{-1}(x^k) \iff x^{k+1} \in x^k - \tau \partial g(x^{k+1}) \iff x^{k+1} = \arg\min_{x'} g(x') + \frac{1}{2\tau}||x' - x^k||^2
\]

we see that the implicit gradient descent converges, as the iterations of a 1/2-averaged operator.

Definition

The resolvent of the subgradient \(\partial g \) of a convex, lsc function is called the “proximity operator” (or “proximal”) of \(g \):

\[
\text{prox}_g(x) = (I + \partial g)^{-1}(x) = \arg\min_{x'} g(x') + \frac{1}{2}||x' - x||^2.
\]
Moreau’s identity

Lemma

Let A be a maximal-monotone operator. Then for any $x \in \mathcal{X}$,

$$x = (I + A)^{-1}(x) + (I + A^{-1})^{-1}x.$$

Proof: one has $y = (I + A)^{-1}x \Leftrightarrow y + Ay \ni x \Leftrightarrow y \in A^{-1}(x - y)$, letting then $z = x - y$, this is $x \in z + A^{-1}z \Leftrightarrow z = (I + A^{-1})^{-1}x$.

This is often written, for $\tau > 0$:

$$x = (I + \tau A)^{-1}(x) + \tau(I + \frac{1}{\tau} A^{-1})^{-1}(\frac{x}{\tau}),$$

or for $A = \partial g$, g convex lsc,

$$x = (I + \tau \partial g)^{-1}(x) + \tau(I + \frac{1}{\tau} \partial g^\ast)^{-1}(\frac{x}{\tau}) = \text{prox}_{\tau g}(x) + \tau \text{prox}_{g^\ast/\tau}(\frac{x}{\tau}).$$
Remark: Yosida regularization and gradient flows

Given A a maximal monotone operator, the maximal monotone operator $A_\tau = \left[x - (I + \tau A)^{-1}x]\right]/\tau$ is called a Yosida approximation of A: it is a $(1/\tau)$-Lipschitz-continuous mapping, with full domain. In case $A = \partial f$, $A_\tau = \nabla f_\tau$ where

$$f_\tau(x) = \min_{x'} f(x') + \frac{1}{2\tau} |x - x'|^2.$$

The operator τA_τ is firmly non-expansive, since $I - \tau A_\tau$ is. It is a key tool for establishing the existence of solutions to:

$$\dot{x} + Ax \ni 0$$

(cf H. Brézis, *Opérateurs maximaux-monotones et semi-groupes de contraction dans les espaces de Hilbert*).
Consider again:

\[
\min_{x \in X} f(Kx) + g(x)
\]

with \(K : \mathcal{X} \to \mathcal{Y} \) is continuous linear map and \(f, g \) convex, lsc. Then we have seen that a solution can be found as a saddle-point of

\[
\mathcal{L}(x, y) = \langle y, Kx \rangle - f^*(y) + g(x),
\]

that is \((x^*, y^*)\) such that:

\[
\mathcal{L}(x^*, y) \leq \mathcal{L}(x^*, y^*) \leq \mathcal{L}(x, y^*) \quad (S)
\]

for all \(x \in \mathcal{X}, \ y \in \mathcal{Y} \). Then:
By optimality in the saddle-point problem: $Kx^* - \partial f^*(y^*) \ni 0$, $K^*y^* + \partial g(x^*) \ni 0$, that is:

$$0 \in \begin{pmatrix} \partial g(x) \\ \partial f^*(y) \end{pmatrix} + \begin{pmatrix} 0 & K^* \\ -K & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

meaning the solution can be found by finding the “zero” of the sum of two monotone operators. So a solution can be computed if we have an algorithm for solving $Ax + Bx \ni 0$, A, B maximal monotone. This can be solve by a class or methods called (operator) “splitting algorithms”.