Continuous
(convex)
optimisation

A. Chambolle

Continuous (convex) optimisation

M2 - PSL / Dauphine / S.U.

Antonin Chambolle, CNRS, CEREMADE

Université Paris Dauphine PSL

Sep.-Nov. 2024

Lecture 5: Saddle points, Primal-dual splitting

Contents

Continuous
(convex)
optimisation

A. Chambolle

o Optimisation for saddle-point problems, duality
e Uzawa
e ADMM
@ Primal-Dual methods
@ Extensions
@ PDHG: acceleration

Continuous
(convex)
optimisation

A. Chambolle

Constrained problems. Duality.

Assume we need to solve:
miny, {f(x) : gi(x) <0,i=1,...,m}

with £, gi convex (KKT framework), and we assume in addition:

@ f is strongly convex with some parameter v > 0,

o |g(x)—g(xX")| < Llx—x'| (g=I(g1,--.,8m) is L-Lipschitz).
We can introduce a Lagrange multiplier for the constraints as in the KKT's
theorem:

min f(x) = minsup f(x) + (A, g(x)) = (=) sup min f(x) + (A, g(x))
g(x)<0 X A>0 A>0 X

and try to solve the dual problem

o D(A\) where D(\) = min f(x)+ (A g(x)) -

Continuous
(convex)
optimisation

A. Chambolle

Assume now we are able to solve for any A > 0 the unconstrained problem
min £(x) + (A, g(x))

(for instance, using FISTA...)
Let x(\) be the (unique) solution. Then for any x> 0,

D(p) = f(x(1)) + (1 g(x(1))) = F(x(1)) + (X, g(x(10))) + (1 = A g(x(1)))
> F(x(A) + (X, 8(x(V)) + %|X(M) —x(N)? + (=X g(x(n))

that is:
D(A) < D(p) + (A — w, 8(x(1))) — %|X(M) —x(V)?

and it follows:

Continuous
(convex)
optimisation

A. Chambolle

D(A) < D(p) + (A — . g(x())) — %!X(u) —x(N)?
and it follows:
g(x(u)) € 0D(u)
[here the supergradient of the concave function g] and
Yx () = x(N)? < A =, 8(x (1)) — g(x(N)) < A = pllg(x(1)) — g(x(N))!-
Now we have |g(x(u)) — g(x(N))| < L|x(p) — x(\)| and we deduce

g(x(1) — g(x(V)] < @rx yl

that is, D is concave with L2 /v-Lipschitz gradient.

Continuous
(convex)
optimisation

A. Chambolle

Then, it can be solved using “ISTA” or “FISTA", for instance:
+
Nt = (A4 rg(x(\9)))

for 7 = 'y/L2, which will ensure that:

2
D) — DAN) < — X0 — 212
() = DOM) < 30 = X
In addition (using 1 = A* in the first inequality of the previous slide),

L2
2N

2

N_X*Z < *) N 0 _ *2.
XA =X < 2 (D) = PAM)) < S = A

(Of course, one should use acceleration, but for this we need to be able to solve the
primal problems very precisely.)

Continuous
(convex)
optimisation

A. Chambolle

ADMM

The “ADMM”

or Alternating Directions Method of Multipliers

The “ADMM" aims at solving a slightly more general form than f(Kx) + g(x),
namely:

acTin_, Fx) +&(y) (1)

for f, g convex, Isc., and A, B continuous, linear operators. [Of course, it is still of
the form f(Kx) + g(x) for some other functions f, g, which?]

It has the dual form:
max (b, p) — f*(A"p) — g"(B"p)

with strong duality if f, g are continuous at some x,y with Ax + By = b (in finite
dimension, x, y in the relative interiors of the domains, respectively, of f, g) or if f*
is continuous at some point A*p and g* at B*p (in finite dimension,

A*p € ridom f*, B*p € ridom g* for some p). This seems not particularly easier to
solve for generic f, g.

ADMM: Augmented Lagrangian

Continuous
(convex)
optimisation

A. Chambolle

An “augmented Lagrangian” approach consists in introducing the constraint in the
form 5
Ao n;n}p sup f(x) + g(y) — (z, Ax + By — b) + EIAX + By — b?
, z

for some v > 0, which is equivalent (as the sup is +o00 if Ax + By # b) to the
original problem. Why use v > 07 It makes the problem more regular.

ADMM: Augmented Lagrangian and dual

Continuous
(convex)
optimisation

A. Chambolle
One considers the dual (concave) function:

D(z) = inf £(x) + g(y) — (2, Ax + By — b) + %\Ax + By — b2

ADMM

Thanks to the quadratic term, it has (1/v)-Lipschitz gradient. This follows from
the following result which we will prove next week in a slightly more general setting:

Let f be convex, Isc: then f is y-convex (strongly convex with parameter) if and
only if f* has (1/v)-Lipschitz gradient.

ADMM: Augmented Lagrangian and dual

Continuous
(convex)
optimisation

A. Chambolle

Hence, a natural method for maximizing the dual could be to implement an
(accelerated) gradient ascent, using that (the supergradient)

dD(z) = {—(Ax + By — b)}

ADMM

where (x, y) minimizes the problem which defines D(z). (Same proof as for the
Uzawa method, or simply Legendre-Fenchel identity.)

However, it means we are able to solve for (x, y), which is not necessarily easy.
Hence the “Alternating Directions Methods of Multipliers".

ADMM: algorithm

Continuous
(convex)

optimisation [Proposed initially by Glowinski and Marroco 75 / Gabay and Mercier 76]

A. Chambolle
Choose v > 0, y9, 2.

for all Kk > 0 do
Find x**1 by minimising x + f(x) — <zk,Ax> + %|b — Ax — Byk|?,

Find y**! by minimising y — g(y) — <Zk’ By> 12— Axk By,
Update zKt1 = zK 4 ~(b — Axk+l — pyk+1),
end for

Convergence: for f, g convex, Isc. and provided there exists a saddle-point, the
method converges.

Proof is omitted. In fact, it can be related to a Douglas-Rachford iteration on the
dual problem. Or it is an “inexact” gradient ascent on the dual, with an error
which needs to be controlled.

ADMM: difficulties

Continuous
(convex)

_OPT'STIO‘T In practice, it is not necessarily easy to solve
A. Chambolle
- k k|2
min f(x)— <z ,AX> + 3|b — Ax — By"|
and one may revert to "proximal” ADMM: one introduces G, H symmetric
pu— positive-definite operators and considers rather the steps:

xK1 = arg min f(x)— <zk,Ax> +3|b— Ax — By*]? + Lix — x*[2,
y¥t = argming(y) — (25 By) + 31b - A — By + Ly — yMf2.

In practice, choosing F = I/7 —~vA*A and G = /o — yB*B with 7,0 small enough
allows to solve the problems if the “prox” of f, g can be computed. Then, again,
the algorithm will converge.

“PDHG"

(primal dual hybrid gradient)

Continuous
(convex)
optimisation

One considers again:
A. Chambolle

min £(K) + £(x) = minsup (K. y) + £(x) £'(y).

A basic idea consists in performing a gradient descent in x and a gradient ascent in
y (“Arrow-Hurwicz” method):

XK = (1 + 70g) 7} (x* — 7K*y¥),

yhtl — (I+ aﬁf*)_l(yk + O'KXk)
for some o, 7 > 0, however in general this will not converge (case f,g = 0: this is
similar to an explicit update for a monotone operator).

We observe though that in this specific case, one could use x*1 in the second step
(— semi implicit). Does it help?

Continuous
(convex)
optimisation

A. Chambolle

Primal-Dual methods

Well, almost. For f,g = 0 one has:

xk+1 (] —TK* xk
ykL] 7oK | —orKK* | \ y¥

and the eigenvalues of this matrix have modulus equal to 1 for o7 small enough.

Continuous
(convex)
optimisation

A. Chambolle

Primal-Dual methods

Well, almost. For f,g = 0 one has:

xk+1 / —TK* xk
ykL] 7oK | —orKK* | \ y¥

and the eigenvalues of this matrix have modulus equal to 1 for o7 small enough.
We write, for A\ € C,

)\(X):<I ek)(X><:> X:1:>\K*y orA=1 K"y =0
y oK | —oTKK*) \y oKx+y —oTKK*y = Ay

In case A =1 we also deduce that Kx = 0. So the eigenvalue 1 corresponds to x € ker K, y € ker K*. If
K # 0 there must be another eigenvalue A # 1. Then, one has:

—1)2
1UT>\KK*y— oTKK*y = (A — 1)y & KK*y = _Q=Dt

oTA

unless A = 0 but in this case y = 0, then x = 0, and it is not an eigenvalue.

Continuous
(convex)
optimisation

A. Chambolle

We see that y is an eigenvector of KK*, corresponding to an eigenvalue ;i > 0 (otherwise A = 1). X solves:

(>‘_1)2 2 2 oTW
=S AN =22+ l=—ompd & N - 2(1 - FE)A+1=0
oTA

Primal-Dual methods

If o7||K*K|| < 2, letting 1 — o71/2 = cos 6 we find that A = cos 6 £ isin6.

Hence, in that case, the algorithm will not converge nor diverge (the iterates
“rotate”). Of course, for f, g # 0, the method may actually converge, in practice.

Continuous
(convex)
optimisation

A. Chambolle

Primal-Dual methods

The PDHG algorithm is a stable and converging variant of the previous case. Its

simplest form is:

XL = (1 4+ 70g) 1 (xk — 7K*y¥),
yhtl — (I+ cr@f*)_l(yk + c;’K(2xk+1 - xk))

Proposition (He-Yuan 2011)

If To||K*K]|| < 1 then PDHG? is a proximal-point algorithm.

2“Primal-dual hybrid gradient”

(PDHG)

Continuous
(convex)
optimisation

A. Chambolle

To see this we write the iterates as follows:

Xk+i—xk + 8g(xk+1) = _K*yk — K*(ykJrl _ yk)_K*yk+1
k+1 k
LLEAE 9 (yR) 3 K (xR — xK) 4 Kkt

[

Primal-Dual methods

that is

%/ —_K* xk+1 _ gk N 8g(Xk+1) N 0 K* xk+1 o
-K %I yk+1 _yk 6f*(yk+1) K 0 yk+1 .

Continuous
(convex)
optimisation

A. Chambolle

We remark that if S is symmetric, positive-definite (defines a metric/coercive in
infinite dimension) then for A a maximal monotone operator:

S(ZFt -2+ A s 0

is the iteration of the proximal point algorithm for the maximal monotone operator
S71A in the metric defined by the scalar product (z,2)¢ := (Sz, 2').

Continuous
(convex)
optimisation

A. Chambolle
Hence here, one find that the algorithm is a PPA iff
1) Kk~
Primal-Dual methods MT,O’ = TK 1,
B o

is symmetric, coercive.

Continuous
(convex)
optimisation

A. Chambolle

One has:

<Mm @ , <§>> = 3¢+ 2l —2(Ke.m)

is positive if and only if for any X, Y >0

X2 Y2
sup 2(K¢&m) = 2| K[[XY < — + —
[€1<X,Inl<Y T g
if and only if
Y 2
2||K in —+4+-—=——
IKl < in(;,l\rjzo 7Y * oX 1o
if and only if

TJHKH2 <1,

hence the theorem.

Continuous
(convex)
optimisation

A. Chambolle

Primal-Dual methods

PDHG: rate

One inherits the rate of convergence for the iterates of a proximal-point algorithm.
Yet for this specific form (using the convexity of f*, g) one can improve the rate.
We denote z = (x,y)T and take the scalar product of the algorithm and Zkt 2

0 K*\ [xk+1 xk+1 _
(# o), <(_K ‘) (ym) , (yk+1 - y)>
+g(xF) + £ (YA < g(x) + £ ()

The scalar product is
_ <K*yk+1,x> + <ka“7y>

while
k+1 _ _k _k+1 _ _ 1kl _ k2 L) k+1 _ 2 1k 2
<z z,z Z>M, o= 51z z ‘MT,U + 351z Z|MT,U 312 =zl -
Hence:
1) k+1 _ k|2 1y k+l _ _p2 1k)2 _<*k+1 > < k+1 >
|z z ‘MT‘U+2|Z 2y, , =312 =zl KXy ™ x) + (Kx" Tty

+g(x*) + £ (YY) < g(x) + F(y)

PDHG: rate

Continuous
(convex)
optimisation

A Cienmbel Therefore, introducing the Lagrangian £(x,y) = g(x) — f*(y) + (Kx, y) and using:
LK y) = L0y) = g(XF) + (v, KAk TE) — £ (y) — g(x) = ("1, Kx) + £ (y*7)
we obtain for any z = (x,y)7:
LR, y) = L0y)+ 12— 2B, L o, < Lk -,

so that, if M- s >0, for any N > 1,

N—-1

1 1
DL y) = Ly SN < 2y < 5120 - 2 -
k=0

PDHG: rate

Continuous
NGO By convexity, we obtain, denoting ZN = (XN, yN)T .= & SN Zk
A. Chambolle 1
LXN,y) = L0, YNy < —|2° - 2|},
2N T,0
If the domains of x, y are bounded we deduce:

Primal-Dual methods 1 D2 D2

PXN) —D(YN) < = [=4+ X

(XM - DY) < - (e

where D, are the diameters of the corresponding sets. (Similar to Nemirovsky,
2010, for an extragradient variant.)

PDHG: rate

Continuous

NGO By convexity, we obtain, denoting ZN = (XN, yN)T .= & SN Zk
A. Chambolle 1
LXN,y) = L0, YNy < —|2° - 2|},
2N T,0
If the domains of x, y are bounded we deduce:
Primal-Dual methods 1 D2 D2
PXN) —D(YN) < = [=4+ X
(XM - DY) < - (e

where D, are the diameters of the corresponding sets. (Similar to Nemirovsky,
2010, for an extragradient variant.)

Remark: we just used 7o ||K||?2 < 1 (not <). If g, f* provide additional information
on the coerciveness of g, f* it is enough (in finite dimension) to show convergence
of the algorithm.

PDHG: Extensions

Continuous

e @ one can over-relax;
optimisation

N @ one can ad an “explicit” (co-coercive) term:
A. Chambolle

we obtain an extension due to L. Condat (in a generalized form to B.C. Vu,
referred usually as Condat-Vu's primal-dual algorithm). If h is a convex function
with Lj-Lipschitz gradient one writes:

%I _K* Xk+1 _ Xk N 8g(xk+1) N 0 K* Xk+1 —Vh(Xk)
- -K %[yk-i-l _ yk af*(yk+1) K 0 yk+1 > 0 .

Then, this is exactly a foward-backward splitting for two operators and we know
that it will converge provided, in the metric M, ;:

_ -1 [~ Vh(x)
e

is p-co-coercive for some p > 1/2.

Condat-Vu's variant

Continuous
(convex)
optimisation

A. Chambolle

That is, if for all z, 2’
(Mro(z—2"),Cz— CZ') > p|Cz — Cz'\%,,my.

Some algebra (see notes) show that 1 can be estimated as
Exensions > (1—o7||K|?)/(7Ly) and one needs p1 > 1/2, hence:

S K|2.
S(-2) >k

Condat-Vu's variant

Continuous In the end the method reads:

(convex)
optimisation Input: initial pair of primal and dual points (XO,yO), steps 7,0 > 0.
A. Chambolle for a" k 2 O do

find (x¥*1, y**1) by solving
XM = prox, (x* — 7(K*yk + Vh(x"))) (2)
Y = prox, (v + oK (2xKF1 = XK)). (3)

end for
which will converge to a fixed point (if it exists) if 7 < 2/L, and
o||K||? < 1/7 — Lp/2. [A rate can also be shown with a proof similar to the
previous. |

Condat-Vu's variant

Continuous In the end the method reads:

(convex)
optimisation

Input: initial pair of primal and dual points (x°, y°), steps 7, > 0.
A. Chambolle for a" k 2 O dO
find (x¥*1, y**1) by solving
XHL = prox, (k= 7(K*y* + Th(x))))
Y = prox, (v + oK (2xKF1 = XK)). (3)
end for

which will converge to a fixed point (if it exists) if 7 < 2/L, and
o||K||? < 1/7 — Lp/2. [A rate can also be shown with a proof similar to the
previous. |

(!) One should additionally check that a fixed point of these iterations solves:

min f(Kx) + g(x) + h(x) = min 51;p (v, Kx) — f*(y) + g(x) + h(x).

PDHG: acceleration

Continuous
(convex)

optimisation

A. Chambolle
The previous method can be accelerated if g or 7* is strongly convex (and even
further if both are strongly convex), similarly to the forward-backward splitting.
We explain how it works, for instance if g is strongly convex. To make the
computation a little bit easier we rather write the method as:

— Yy = (1 + 00f) Y yk + o K(xK + 6(x* — xk71y)

xkt = (I + T@g)_l(xk — TK*yk+1) .

for some 0,7 > 0, and some # € [0,1] (we had § = 1 in the previous parts).

PDHG: acceleration

Continuous
(convex)
optimisation

SR Actually, the general form considers "“old points” (X, X, y,¥) and finds a “new
point” (X,) by solving:
¥ =+00f")" Yy +oKx)
%= (I+710g) Y% — TK*}).

POHG: sccelraton In particular, if g is j1g-convex and/or f* is ps«-convex, then for all x,y, one has:

. 1 _ N o~ 1. _ 1+ .
g(x) + (Kx, 7) + —|x — X1 > g(%) + (K%, 7) + —|% — X + ——F&|x — %]
2T 2T 27

1+a'y,,c* 12
— vy =7l

* ~ 1 - * ~ ~ ~ 1 A -
F(y) = (K&, y) + —ly = 71> > £ (9) — (K%, §) + — 9 — 7[> +
20 20 20

acceleration

Continuous

(convex)
optimisation
. 1 _ N o 1., _ 1+ 7 .
A. Chambolle g(x) + (Kx,y) + ;\X — %> > g(%) + (K%, 9) + §|X - x>+ Tg|x — %2
* ~ 1 _ S/ A 1, _ 14 opr= R
F(y) = (K%, y) + =y =y > £ (9) = (K%, 9) + — 19 = 7P+ ——Iy — 9
20 20 20
as before we sum and see that:
. . 1. _ 1+ 71u . 1., _ 14 opr= .
L(%,y) — L 9) + =8 = %P+ ——Ex =&+ =y -y + ——y - 5P
27 2T 20 20
PDHG: acceleration 1 1
< 22—y T2
< slx =%+ —ly -5l

+<K)A<7y> - <KX7}A/>+<K(X_)%)7.?>_ <K)~<7y_j\/>’

Then, we add and remove (KX, §) to rewrite the last terms:

(K(x=%),7 = 9) = (K(X = %),y = 9).

acceleration

Continuous

(convex)
optimisation
. 1 _ N o 1., _ 1+ 7 .
A. Chambolle g(x) + (Kx,y) + ;\X — %> > g(%) + (K%, 9) + §|X - x>+ Tg|x — %2
* ~ 1 _ S/ A 1, _ 14 opr= R
F(y) = (K%, y) + =y =y > £ (9) = (K%, 9) + — 19 = 7P+ ——Iy — 9
20 20 20
as before we sum and see that:
. . 1. _ 1+ 71u . 1., _ 14 opr= .
L(%,y) — L 9) + =8 = %P+ ——Ex =&+ =y -y + ——y - 5P
27 2T 20 20

PDHG: acceleration 1 1
gz, e
< o= 3P+ by~ 7]
+<K)A<7y>_<KX7}A/>+<K(X_)?)7.?>_<K)~<vy_j\/>’

Then, we add and remove (KX, §) to rewrite the last terms:

— the best would be to take X = X and ¥ = § to get rid of these terms... (but then it is totally implicit).

Accelerated PDHG

Continuous
(convex)
optimisation
A. Chambolle . . 1 . _ 1+ TH . 1 . _ 1+ e .
L(%,y) = L0 §) + =8 = %P+ —Fx = 2P+ =) — 7P+ ———y - 9I?

27 2T 20 20

1 _ 1 _ e Y. N
< —x =%+ =y =P+ (K(x = %),7 — 9) — (K(X = %),y — 9) .
2T 20
reads in our case:
1 ‘Xk+lixk‘2+1+
o 20

2
1) .
“Pot by =y P (K= XK, 5 =) — (K (5 = x4,y = k)

THg k412, L ka1 k2, L+ ops k412
X — X +— — +——y —
— | \ ly y" ly =y

PDHG: acceleration

and we can specialize in a semi-implicit form: § = y**1 and %X = x* 4 6(x¥ — x¥~1) for some @ choosen

later on, so that the last term becomes:

_ <K(Xk + G(Xk _ kal) _ Xk+1),y _yk+1> — <K(Xk+1 _ Xk),y _yk+1> _ 9<K(Xk _ Xk71)7y _yk+1>

Accelerated PDHG

Continuous
(convex)
optimisation

We end up with:

1 1
LK y) = L6y) 4 = XK XK |y — kP
2T 20

14+ 71p 14 ops=
4 g‘X—Xk+l‘2+ |y—yk+1\2—<K(Xk+1—xk),y—yk+1>
27 20

1 1 _
< =X P+ ly = AP - 0 (K -),y -)
2T 20

PDHG: acceleration

Accelerated PDHG

Continuous
(convex)
optimisation

We end up with:

1 1
LA y) — £y) kP g Lyt kg
14+ 71p 14 ops=
- g‘X—Xk+l‘2+ = |y—yk+1\2—<K(Xk+1—xk),y—yk+1>

2
_ 1 1 _
+0 (KO =X,y =y) < e Py =y P = 0 (KK =X,y =y

PDHG: acceleration

Accelerated PDHG

Continuous
(convex)
optimisation

A. Chambolle

We end up with:

1 1
LA y) — £y) kP g Lyt kg
14+ 71p 14 ops=
- g‘X—Xk+l‘2+ = |y—yk+1\2—<K(Xk+1—xk),y—yk+1>

2
_ 1 1 _
+0 (KO =X,y =y) < e Py =y P = 0 (KK =X,y =y

PDHG: acceleration

Provided we can control the cross term <K(x’< — xk=1) yk — y"+1> with the terms
%|x""’1 — xk? + %\yk‘*'l — yk|2 we can hope to obtain a rate of convergence, even linear if 1z > 0 and

pex > 0. Let us consider the more difficult case p1g > 0, prx = 0.

Accelerated PDHG

Continuous
(convex)
optimisation

In this case, we assume 6, o, T are varying and depend on k and we write:

A. Chambolle 1 _
m E(xk“,y) _ L(x,ykﬂ) + |Xk+1 _ Xk|2 + |yk+1 _ yk‘Q + 0, <K(Xk _ Xk 1)’yk _ yk+1>
2Tk 20'k
14 Tip
4 EIX_Xk+1|2+ Iy_yk+1|2_<K(Xk+l_Xk)7y_yk+l>
2Tk 20’k

1 1 _
Ix =XK1 + Elyfyk\z — 0k (K(x* =XK1,y — %)

S -
27y

PDHG: acceleration

Accelerated PDHG

C(oc':r']:i:;s In this case, we assume 6, o, T are varying and depend on k and we write:

optimisation

A. Chambolle k+1 k+1 1 k2 1 k2 k k—1y k k+1
: L y) = L(x, y**)+ x| + o T YK Ok (K (K = XK h), k= ki)

n i1 (1 + Tiepg) 1 Ix — xkH1 2 4 Thetl 1 ly — yk 12 = Or+1 (K4 = xK),y —)
Tk 2Tk 41 Ok 20k41 Ok+1

1 _
< —x = xR Sy = v P = Ok (KK = x5),y = ¥)
2Tk 20’k

so that if we can choose

PDHG: acceleration

Thr(L+ Thptg) _ okpn 1 o1
Tk ok Ot1

and let A 1= i|x — xk? + ﬁ|y — yK? — 0, <K(xk —xk=1)y —yk> it reads:

1 1 _
E(xk+1,y)—E(X,yk+1)+—|xk+l—xk|2+—|yk+l—yk\2+9k<K(xk—xk 1)7yk_yk+l>
27k 20

Ok+1

+ Ary1 < Ax

Ok

Accelerated PDHG

Continuous
(convex)
optimisation

k+1 k|2 k k—1 k k+1
5o IV = VP 0 (KO = X0,y = k)
k

A. Chambolle

1
E(Xk+17y) _ E(X7yk+1) + 27|Xk+1 _ Xk|2 +
Tk

Okl
+ A1 < Ax
ok

Then, we use that (denoting to simplify L := ||K]|):

ko kety ok ket o OBk e geap K k12
*9k<K(X =X)y -y >ST|X —x 7 +£\y -y

PDHG: acceleration

to arrive at

k+1 k+1 1 e ko Oiloi k=112 |, Tk+1
LT y) = LO6y) 4 o T = XA = S) = x4 =2 A < A
Tk 2 Ok
or (after multiplication with o):
92L20'2
ak(L(le,y) _ E(x,yHl)) + &|Xk+l _ Xk|2 _ u|Xk _ Xk71|2 + o'k+1Ak+1 < UkAk~

27y 2

Continuous
(convex)
optimisation

A. Chambolle

PDHG: acceleration

Accelerated PDHG

We now sum from k =0 to N — 1 the inequality (we use also 6y = ok_1):

1262
k+1 k+1 Tk | k+1 k(2 k=1 k k=12
ar(L(x* L y) — L(x, y) + £|x T xk)2 - T|x — X" + okp1Ak+1 < oKAk.
N—1 N—1 N—1
We let Ty = Zk:o o XN = %N 0 opxktl YN = .%N 0 oky*t1, so that:

TW(L(XY,y) = L(x, YM) <Zak XKL y) = L(x,y)

thanks to the convexity of L(,y) — £(x,-") Then we get:

N—-1

1202

o _

Tn(L(XN, y) — L(x, YN)) + Z k1 — xk=12 = Z #Mk — X2 4 opAy < 00Ag
k=0

or, choosing x~1 = x0:

k71‘ 2

g Xk—X
TH(EOX,)= 06 Y= — < 1|2+Z< = rklak1)>'

> +onAn < 0pAo

Continuous
(convex)
optimisation

A. Chambolle

PDHG: acceleration

Accelerated PDHG

Hence: we choose in addition L2047 < 1 (or = in practice) and end up with:

_ 1
TR(LXN,y) = £(x, YN)) 4+ LN G N-12 g TN N 2 SN P2
271 27N 2

_ oo 1
—onOn <K(XN -x" 1)7)’*)/N> < 27_0|X0 —x?+ §|y0 —yP

(using again x~! = x0 and recalling A, := ﬁ\x — xk2 + ﬁbf — vk — 0, <K(Xk —xk1yy — yk>). We
end up estimating again:

N _ _N-1 N Lo}, N on—1p2 1 N2
oniy (KN =X,y —y >§T|X =X A Sy =y

and using L2O'I2V71 < on_1/7Tn—1 to find:

1
TH(LXY,y) = £ YY) + TV — xP < 210 — P 4 2]y — P2
27N 279 2

Continuous
(convex)
optimisation

A. Chambolle

PDHG: tion

Accelerated PDHG

Now we specify the parameters... In order to keep L?0,7, = 1 (to simplify) we keep o7k = oom0 = 1/L°.
Then, we should have:
Thar(L+ Thttg) _ okn L 51
) ok Or41

and in particular, oy1 = 0k /0k+1 and T 1 = Ok 17k, so that:

1 Tk
Okp1 = ——=, Thi1 = ——==, Oki1=0k\/1+ figTk
\/1+,ung ‘/1+/Lg7'k

In particular O'i+1 = 02 + Koy where k = pg/L? is an (inverse) condition number.
One can then show that: if 7o is large, then after very few iterations, 7, < 1: we use

HgTk

HgThtl = ——== < \/HgTk = ...
1+ bgTi

Continuous
(convex)
optimisation

A. Chambolle

PDHG: acceleration

Accelerated PDHG: paramters and rate

1
HgTki1 < /HigTk = log g < % log g0

so that, for instance, ug7, < 2 as soon as k > log, log,(11g70) (or k = 0), which is always very small.
Then, for larger ks, one has oy = 1/(L?7) > k/2 and:

2
K
az_'_l:az—o—ﬁokZoi—l—anak—o—(l—a)?

= (o + $r)* + ((1 —a)— 2) 5= (o + §r)?

if we choose @ = v/3 — 1 =~ 0.73. Then it follows o, > (.73x/2)k and in particular,
Tn 2 ((73k/4)N(N — 1) (in fact, one can show o ~ (x/2)k and Ty ~ kN2 /4).

Continuous
(convex)
optimisation

A. Chambolle

PDHG: acceleration

Accelerated PDHG

Getting back to:
onN o) 1
Tw(LXN,y) = L0 YN)) + =XV = xP < = x® = x]P + Sy =y
27N 279 2

we see that, taking (x,y) = (x*,y*) (for which one can show: £(XV,y) — L(x, YN) > ug|XN — x*|?) one
has

cL?
|XN—X*|2+‘XN—X*|25 —
g

and
LXN,y) = L, YN) = O(xINT2)(Ix = x° P + |y = ¥°%)

(for og < 7).

It shows an improvement over the non-accelerated method provided N 2 1/k.

Accelerated PDHG

Continuous
(convex)
optimisation

A. Chambolle

A similar (easier) proof shows an accelerated rate in case both functions are
strongly convex.

PDHG: acceleration

	Optimisation for saddle-point problems, duality
	Uzawa
	ADMM
	Primal-Dual methods
	Extensions
	PDHG: acceleration

