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Constrained problems. Duality.

Assume we need to solve:
miny, {f(x) : gi(x) <0,i=1,...,m}

with £, gi convex (KKT framework), and we assume in addition:

@ f is strongly convex with some parameter v > 0,

o |g(x)—g(xX")| < Llx—x'| (g=I(g1,--.,8m) is L-Lipschitz).
We can introduce a Lagrange multiplier for the constraints as in the KKT's
theorem:

min f(x) = minsup f(x) + (A, g(x)) = (=) sup min f(x) + (A, g(x))
g(x)<0 X A>0 A>0 X

and try to solve the dual problem

o D(A\) where D(\) = min f(x)+ (A g(x)) -
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Assume now we are able to solve for any A > 0 the unconstrained problem
min £(x) + (A, g(x))

(for instance, using FISTA...)
Let x(\) be the (unique) solution. Then for any x> 0,

D(p) = f(x(1)) + (1 g(x(1))) = F(x(1)) + (X, g(x(10))) + (1 = A g(x(1)))
> F(x(A) + (X, 8(x(V)) + %|X(M) —x(N)? + (=X g(x(n))

that is:
D(A) < D(p) + (A — w, 8(x(1))) — %|X(M) —x(V)?

and it follows:
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D(A) < D(p) + (A — . g(x())) — %!X(u) —x(N)?
and it follows:
g(x(u)) € 0D(u)
[here the supergradient of the concave function g] and
Yx () = x(N)? < A =, 8(x (1)) — g(x(N)) < A = pllg(x(1)) — g(x(N))!-
Now we have |g(x(u)) — g(x(N))| < L|x(p) — x(\)| and we deduce

g(x(1) — g(x(V)] < @rx yl

that is, D is concave with L2 /v-Lipschitz gradient.



Continuous
(convex)
optimisation

A. Chambolle

Then, it can be solved using “ISTA” or “FISTA", for instance:
+
Nt = (A4 rg(x(\9)))

for 7 = 'y/L2, which will ensure that:

2
D) — DAN) < — X0 — 212
() = DOM) < 30 = X
In addition (using 1 = A* in the first inequality of the previous slide),

L2
2N

2

N_X*Z < *) N 0 _ *2.
XA =X < 2 (D) = PAM)) < S = A

(Of course, one should use acceleration, but for this we need to be able to solve the
primal problems very precisely.)
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ADMM

The “ADMM”

or Alternating Directions Method of Multipliers

The “ADMM" aims at solving a slightly more general form than f(Kx) + g(x),
namely:

acTin_, Fx) +&(y) (1)

for f, g convex, Isc., and A, B continuous, linear operators. [Of course, it is still of
the form f(Kx) + g(x) for some other functions f, g, which?]

It has the dual form:
max (b, p) — f*(A"p) — g"(B"p)

with strong duality if f, g are continuous at some x,y with Ax + By = b (in finite
dimension, x, y in the relative interiors of the domains, respectively, of f, g) or if f*
is continuous at some point A*p and g* at B*p (in finite dimension,

A*p € ridom f*, B*p € ridom g* for some p). This seems not particularly easier to
solve for generic f, g.
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An “augmented Lagrangian” approach consists in introducing the constraint in the
form 5
Ao n;n}p sup f(x) + g(y) — (z, Ax + By — b) + EIAX + By — b?
, z

for some v > 0, which is equivalent (as the sup is +o00 if Ax + By # b) to the
original problem. Why use v > 07 It makes the problem more regular.
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One considers the dual (concave) function:

D(z) = inf £(x) + g(y) — (2, Ax + By — b) + %\Ax + By — b2

ADMM

Thanks to the quadratic term, it has (1/v)-Lipschitz gradient. This follows from
the following result which we will prove next week in a slightly more general setting:

Let f be convex, Isc: then f is y-convex (strongly convex with parameter ) if and
only if f* has (1/v)-Lipschitz gradient.
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Hence, a natural method for maximizing the dual could be to implement an
(accelerated) gradient ascent, using that (the supergradient)

dD(z) = {—(Ax + By — b)}

ADMM

where (x, y) minimizes the problem which defines D(z). (Same proof as for the
Uzawa method, or simply Legendre-Fenchel identity.)

However, it means we are able to solve for (x, y), which is not necessarily easy.
Hence the “Alternating Directions Methods of Multipliers".
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Choose v > 0, y9, 2.

for all Kk > 0 do
Find x**1 by minimising x + f(x) — <zk,Ax> + %|b — Ax — Byk|?,

Find y**! by minimising y — g(y) — <Zk’ By> 12— Axk By,
Update zKt1 = zK 4 ~(b — Axk+l — pyk+1),
end for

Convergence: for f, g convex, Isc. and provided there exists a saddle-point, the
method converges.

Proof is omitted. In fact, it can be related to a Douglas-Rachford iteration on the
dual problem. Or it is an “inexact” gradient ascent on the dual, with an error
which needs to be controlled.
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- k k|2
min f(x)— <z ,AX> + 3|b — Ax — By"|
and one may revert to "proximal” ADMM: one introduces G, H symmetric
pu— positive-definite operators and considers rather the steps:

xK1 = arg min f(x)— <zk,Ax> +3|b— Ax — By*]? + Lix — x*[2,
y¥t = argming(y) — (25 By) + 31b - A — By + Ly — yMf2.

In practice, choosing F = I/7 —~vA*A and G = /o — yB*B with 7,0 small enough
allows to solve the problems if the “prox” of f, g can be computed. Then, again,
the algorithm will converge.
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min £(K) + £(x) = minsup (K. y) + £(x)  £'(y).

A basic idea consists in performing a gradient descent in x and a gradient ascent in
y (“Arrow-Hurwicz” method):

XK = (1 + 70g) 7} (x* — 7K*y¥),

yhtl — (I+ aﬁf*)_l(yk + O'KXk)
for some o, 7 > 0, however in general this will not converge (case f,g = 0: this is
similar to an explicit update for a monotone operator).

We observe though that in this specific case, one could use x*1 in the second step
(— semi implicit). Does it help?
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Primal-Dual methods

Well, almost. For f,g = 0 one has:

xk+1 (] —TK* xk
ykL ] 7oK | —orKK* | \ y¥

and the eigenvalues of this matrix have modulus equal to 1 for o7 small enough.
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Primal-Dual methods

Well, almost. For f,g = 0 one has:

xk+1 / —TK* xk
ykL ] 7oK | —orKK* | \ y¥

and the eigenvalues of this matrix have modulus equal to 1 for o7 small enough.
We write, for A\ € C,

)\(X):<I ek )(X><:> X:1:>\K*y orA=1 K"y =0
y oK | —oTKK*) \y oKx+y —oTKK*y = Ay

In case A =1 we also deduce that Kx = 0. So the eigenvalue 1 corresponds to x € ker K, y € ker K*. If
K # 0 there must be another eigenvalue A # 1. Then, one has:

—1)2
1UT>\KK*y— oTKK*y = (A — 1)y & KK*y = _Q=Dt

oTA

unless A = 0 but in this case y = 0, then x = 0, and it is not an eigenvalue.
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We see that y is an eigenvector of KK*, corresponding to an eigenvalue ;i > 0 (otherwise A = 1). X solves:

(>‘_1)2 2 2 oTW
=S AN =22+ l=—ompd & N - 2(1 - FE)A+1=0
oTA

Primal-Dual methods

If o7||K*K|| < 2, letting 1 — o71/2 = cos 6 we find that A = cos 6 £ isin6.

Hence, in that case, the algorithm will not converge nor diverge (the iterates
“rotate”). Of course, for f, g # 0, the method may actually converge, in practice.
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Primal-Dual methods

The PDHG algorithm is a stable and converging variant of the previous case. Its

simplest form is:

XL = (1 4+ 70g) 1 (xk — 7K*y¥),
yhtl — (I+ cr@f*)_l(yk + c;’K(2xk+1 - xk))

Proposition (He-Yuan 2011)

If To||K*K]|| < 1 then PDHG? is a proximal-point algorithm.

2“Primal-dual hybrid gradient”

(PDHG)
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To see this we write the iterates as follows:

Xk+i—xk + 8g(xk+1) = _K*yk — K*(ykJrl _ yk)_K*yk+1
k+1 k
LLEAE 9 (yR ) 3 K (xR — xK) 4 Kkt

[

Primal-Dual methods

that is

%/ —_K* xk+1 _ gk N 8g(Xk+1) N 0 K* xk+1 o
-K %I yk+1 _yk 6f*(yk+1) K 0 yk+1 .
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We remark that if S is symmetric, positive-definite (defines a metric/coercive in
infinite dimension) then for A a maximal monotone operator:

S(ZFt -2+ A s 0

is the iteration of the proximal point algorithm for the maximal monotone operator
S71A in the metric defined by the scalar product (z,2)¢ := (Sz, 2').
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Hence here, one find that the algorithm is a PPA iff
1) Kk~
Primal-Dual methods MT,O’ = TK 1,
B o

is symmetric, coercive.
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One has:

<Mm @ , <§>> = 3¢+ 2l —2(Ke.m)

is positive if and only if for any X, Y >0

X2 Y2
sup  2(K¢&m) = 2| K[[XY < — + —
[€1<X,Inl<Y T g
if and only if
Y 2
2||K in —+4+-—=——
IKl < in(;,l\rjzo 7Y * oX 1o
if and only if

TJHKH2 <1,

hence the theorem.
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Primal-Dual methods

PDHG: rate

One inherits the rate of convergence for the iterates of a proximal-point algorithm.
Yet for this specific form (using the convexity of f*, g) one can improve the rate.
We denote z = (x,y)T and take the scalar product of the algorithm and Zkt 2

0 K*\ [xk+1 xk+1 _
(# o), <(_K ‘ ) (ym) , (yk+1 - y)>
+g(xF) + £ (YA < g(x) + £ ()

The scalar product is
_ <K*yk+1,x> + <ka“7y>

while
k+1 _ _k _k+1 _ _ 1kl _ k2 L) k+1 _ 2 1k 2
<z z,z Z>M, o= 51z z ‘MT,U + 351z Z|MT,U 312 =zl -
Hence:
1) k+1 _ k|2 1y k+l _ _p2 1k )2 _<*k+1 > < k+1 >
|z z ‘MT‘U+2|Z 2y, , =312 =zl KXy ™ x) + (Kx" Tty

+g(x* ) + £ (YY) < g(x) + F(y)
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LK y) = L0y ) = g(XF) + (v, KAk TE) — £ (y) — g(x) = ("1, Kx) + £ (y*7)
we obtain for any z = (x,y)7:
LR, y) = L0y )+ 12— 2B, L o, < Lk -,

so that, if M- s >0, for any N > 1,

N—-1

1 1
DL y) = Ly SN < 2y < 5120 - 2 -
k=0
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LXN,y) = L0, YNy < —|2° - 2|},
2N T,0
If the domains of x, y are bounded we deduce:

Primal-Dual methods 1 D2 D2

PXN) —D(YN) < = [ =4+ X

(XM - DY) < - ( e

where D, are the diameters of the corresponding sets. (Similar to Nemirovsky,
2010, for an extragradient variant.)



PDHG: rate

Continuous

NGO By convexity, we obtain, denoting ZN = (XN, yN)T .= & SN Zk
A. Chambolle 1
LXN,y) = L0, YNy < —|2° - 2|},
2N T,0
If the domains of x, y are bounded we deduce:
Primal-Dual methods 1 D2 D2
PXN) —D(YN) < = [ =4+ X
(XM - DY) < - ( e

where D, are the diameters of the corresponding sets. (Similar to Nemirovsky,
2010, for an extragradient variant.)

Remark: we just used 7o ||K||?2 < 1 (not <). If g, f* provide additional information
on the coerciveness of g, f* it is enough (in finite dimension) to show convergence
of the algorithm.
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we obtain an extension due to L. Condat (in a generalized form to B.C. Vu,
referred usually as Condat-Vu's primal-dual algorithm). If h is a convex function
with Lj-Lipschitz gradient one writes:

%I _K* Xk+1 _ Xk N 8g(xk+1) N 0 K* Xk+1 —Vh(Xk)
- -K %[ yk-i-l _ yk af*(yk+1) K 0 yk+1 > 0 .

Then, this is exactly a foward-backward splitting for two operators and we know
that it will converge provided, in the metric M, ;:

_ -1 [~ Vh(x)
e

is p-co-coercive for some p > 1/2.
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That is, if for all z, 2’
(Mro(z—2"),Cz— CZ') > p|Cz — Cz'\%,,my.

Some algebra (see notes) show that 1 can be estimated as
Exensions > (1—o7||K|?)/(7Ly) and one needs p1 > 1/2, hence:

S K|2.
S(-2) >k



Condat-Vu's variant

Continuous In the end the method reads:

(convex)
optimisation Input: initial pair of primal and dual points (XO,yO), steps 7,0 > 0.
A. Chambolle for a" k 2 O do

find (x¥*1, y**1) by solving
XM = prox, (x* — 7(K*yk + Vh(x"))) (2)
Y = prox, (v + oK (2xKF1 = XK)). (3)

end for
which will converge to a fixed point (if it exists) if 7 < 2/L, and
o||K||? < 1/7 — Lp/2. [A rate can also be shown with a proof similar to the
previous. |



Condat-Vu's variant

Continuous In the end the method reads:

(convex)
optimisation

Input: initial pair of primal and dual points (x°, y°), steps 7, > 0.
A. Chambolle for a" k 2 O dO
find (x¥*1, y**1) by solving
XHL = prox, (k= 7(K*y* + Th(x))) )
Y = prox, (v + oK (2xKF1 = XK)). (3)
end for

which will converge to a fixed point (if it exists) if 7 < 2/L, and
o||K||? < 1/7 — Lp/2. [A rate can also be shown with a proof similar to the
previous. |

(!) One should additionally check that a fixed point of these iterations solves:

min f(Kx) + g(x) + h(x) = min 51;p (v, Kx) — f*(y) + g(x) + h(x).
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The previous method can be accelerated if g or 7* is strongly convex (and even
further if both are strongly convex), similarly to the forward-backward splitting.
We explain how it works, for instance if g is strongly convex. To make the
computation a little bit easier we rather write the method as:

— Yy = (1 + 00f) Y yk + o K(xK + 6(x* — xk71y)

xkt = (I + T@g)_l(xk — TK*yk+1) .

for some 0,7 > 0, and some # € [0,1] (we had § = 1 in the previous parts).
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SR Actually, the general form considers "“old points” (X, X, y,¥) and finds a “new
point” (X, ) by solving:
¥ =+00f")" Yy +oKx)
%= (I+710g) Y% — TK*}).

POHG: sccelraton In particular, if g is j1g-convex and/or f* is ps«-convex, then for all x,y, one has:

. 1 _ N o~ 1. _ 1+ .
g(x) + (Kx, 7) + —|x — X1 > g(%) + (K%, 7) + —|% — X + ——F&|x — %]
2T 2T 27

1+a'y,,c* 12
— vy =7l

* ~ 1 - * ~ ~ ~ 1 A -
F(y) = (K&, y) + —ly = 71> > £ (9) — (K%, §) + — 9 — 7[> +
20 20 20
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A. Chambolle g(x) + (Kx,y) + ;\X — %> > g(%) + (K%, 9) + §|X - x>+ Tg|x — %2
* ~ 1 _ S/ A 1, _ 14 opr= R
F(y) = (K%, y) + =y =y > £ (9) = (K%, 9) + — 19 = 7P+ ——Iy — 9
20 20 20
as before we sum and see that:
. . 1. _ 1+ 71u . 1., _ 14 opr= .
L(%,y) — L 9) + =8 = %P+ ——Ex =&+ =y -y + ——y - 5P
27 2T 20 20
PDHG: acceleration 1 1
< 22—y T2
< slx =%+ —ly -5l

+<K)A<7y> - <KX7}A/>+<K(X_)%)7.?>_ <K)~<7y_j\/>’

Then, we add and remove (KX, §) to rewrite the last terms:

(K(x=%),7 = 9) = (K(X = %),y = 9).



acceleration

Continuous

(convex)
optimisation
. 1 _ N o 1., _ 1+ 7 .
A. Chambolle g(x) + (Kx,y) + ;\X — %> > g(%) + (K%, 9) + §|X - x>+ Tg|x — %2
* ~ 1 _ S/ A 1, _ 14 opr= R
F(y) = (K%, y) + =y =y > £ (9) = (K%, 9) + — 19 = 7P+ ——Iy — 9
20 20 20
as before we sum and see that:
. . 1. _ 1+ 71u . 1., _ 14 opr= .
L(%,y) — L 9) + =8 = %P+ ——Ex =&+ =y -y + ——y - 5P
27 2T 20 20

PDHG: acceleration 1 1
gz, e
< o= 3P+ by~ 7]
+<K)A<7y>_<KX7}A/>+<K(X_)?)7.?>_<K)~<vy_j\/>’

Then, we add and remove (KX, §) to rewrite the last terms:

— the best would be to take X = X and ¥ = § to get rid of these terms... (but then it is totally implicit).
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L(%,y) = L0 §) + =8 = %P+ —Fx = 2P+ =) — 7P+ ———y - 9I?

27 2T 20 20

1 _ 1 _ e Y. N
< —x =%+ =y =P+ (K(x = %),7 — 9) — (K(X = %),y — 9) .
2T 20
reads in our case:
1 ‘Xk+lixk‘2+1+
o 20

2
1 ) .
“Pot by =y P (K= XK, 5 = ) — (K (5 = x4,y = k)

THg k412, L ka1 k2, L+ ops k412
X — X +— — +——y —
— | \ ly y" ly =y

PDHG: acceleration

and we can specialize in a semi-implicit form: § = y**1 and %X = x* 4 6(x¥ — x¥~1) for some @ choosen

later on, so that the last term becomes:

_ <K(Xk + G(Xk _ kal) _ Xk+1),y _yk+1> — <K(Xk+1 _ Xk),y _yk+1> _ 9<K(Xk _ Xk71)7y _yk+1>
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We end up with:

1 1
LK y) = L6y ) 4 = XK XK |y — kP
2T 20

14+ 71p 14 ops=
4 g‘X—Xk+l‘2+ |y—yk+1\2—<K(Xk+1—xk),y—yk+1>
27 20

1 1 _
< =X P+ ly = AP - 0 (K - ),y - )
2T 20

PDHG: acceleration
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We end up with:

1 1
LA y) — £y ) kP g Lyt kg
14+ 71p 14 ops=
- g‘X—Xk+l‘2+ = |y—yk+1\2—<K(Xk+1—xk),y—yk+1>

2
_ 1 1 _
+0 (KO =X,y =y ) < e Py =y P = 0 (KK =X,y =y

PDHG: acceleration
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We end up with:

1 1
LA y) — £y ) kP g Lyt kg
14+ 71p 14 ops=
- g‘X—Xk+l‘2+ = |y—yk+1\2—<K(Xk+1—xk),y—yk+1>

2
_ 1 1 _
+0 (KO =X,y =y ) < e Py =y P = 0 (KK =X,y =y

PDHG: acceleration

Provided we can control the cross term <K(x’< — xk=1) yk — y"+1> with the terms
%|x""’1 — xk? + %\yk‘*'l — yk|2 we can hope to obtain a rate of convergence, even linear if 1z > 0 and

pex > 0. Let us consider the more difficult case p1g > 0, prx = 0.
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In this case, we assume 6, o, T are varying and depend on k and we write:

A. Chambolle 1 _
m E(xk“,y) _ L(x,ykﬂ) + |Xk+1 _ Xk|2 + |yk+1 _ yk‘Q + 0, <K(Xk _ Xk 1)’yk _ yk+1>
2Tk 20'k
14 Tip
4 EIX_Xk+1|2+ Iy_yk+1|2_<K(Xk+l_Xk)7y_yk+l>
2Tk 20’k

1 1 _
Ix =XK1 + Elyfyk\z — 0k (K(x* =XK1,y — %)

S -
27y

PDHG: acceleration



Accelerated PDHG

C(oc':r']:i:;s In this case, we assume 6, o, T are varying and depend on k and we write:

optimisation

A. Chambolle k+1 k+1 1 k2 1 k2 k k—1y k k+1
: L y) = L(x, y** )+ x| + o T YK Ok (K (K = XK h), k= ki)

n i1 (1 + Tiepg) 1 Ix — xkH1 2 4 Thetl 1 ly — yk 12 = Or+1 (K4 = xK),y — )
Tk 2Tk 41 Ok 20k41 Ok+1

1 _
< —x = xR Sy = v P = Ok (KK = x5 ),y = ¥)
2Tk 20’k

so that if we can choose

PDHG: acceleration

Thr(L+ Thptg) _ okpn 1 o1
Tk ok Ot1

and let A 1= i|x — xk? + ﬁ|y — yK? — 0, <K(xk —xk=1)y —yk> it reads:

1 1 _
E(xk+1,y)—E(X,yk+1)+—|xk+l—xk|2+—|yk+l—yk\2+9k<K(xk—xk 1)7yk_yk+l>
27k 20

Ok+1

+ Ary1 < Ax

Ok
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k+1 k|2 k k—1 k k+1
5o IV = VP 0 (KO = X0,y = k)
k

A. Chambolle

1
E(Xk+17y) _ E(X7yk+1) + 27|Xk+1 _ Xk|2 +
Tk

Okl
+ A1 < Ax
ok

Then, we use that (denoting to simplify L := ||K]|):

ko kety ok ket o OBk e geap K k12
*9k<K(X =X )y -y >ST|X —x 7 +£\y -y

PDHG: acceleration

to arrive at

k+1 k+1 1 e ko Oiloi k=112 |, Tk+1
LT y) = LO6y ) 4 o T = XA = S ) = x4 =2 A < A
Tk 2 Ok
or (after multiplication with o):
92L20'2
ak(L(le,y) _ E(x,yHl)) + &|Xk+l _ Xk|2 _ u|Xk _ Xk71|2 + o'k+1Ak+1 < UkAk~

27y 2
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Accelerated PDHG

We now sum from k =0 to N — 1 the inequality (we use also 6y = ok_1):

1262
k+1 k+1 Tk | k+1 k(2 k=1 k k=12
ar(L(x* L y) — L(x, y ) + £|x T xk)2 - T|x — X" + okp1Ak+1 < oKAk.
N—1 N—1 N—1
We let Ty = Zk:o o XN = %N 0 opxktl YN = .%N 0 oky*t1, so that:

TW(L(XY,y) = L(x, YM) <Zak XKL y) = L(x,y )

thanks to the convexity of L(,y) — £(x,-") Then we get:

N—-1

1202

o _

Tn(L(XN, y) — L(x, YN)) + Z k1 — xk=12 = Z #Mk — X2 4 opAy < 00Ag
k=0

or, choosing x~1 = x0:

k71‘ 2

g Xk—X
TH(EOX, )= 06 Y= — < 1|2+Z< = rklak1)>'

> +onAn < 0pAo
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Accelerated PDHG

Hence: we choose in addition L2047 < 1 (or = in practice) and end up with:

_ 1
TR(LXN,y) = £(x, YN)) 4+ LN G N-12 g TN N 2 SN P2
271 27N 2

_ oo 1
—onOn <K(XN -x" 1)7)’*)/N> < 27_0|X0 —x?+ §|y0 —yP

(using again x~! = x0 and recalling A, := ﬁ\x — xk2 + ﬁbf — vk — 0, <K(Xk —xk1yy — yk>). We
end up estimating again:

N _ _N-1 N Lo}, N on—1p2 1 N2
oniy (KN =X,y —y >§T|X =X A Sy =y

and using L2O'I2V71 < on_1/7Tn—1 to find:

1
TH(LXY,y) = £ YY) + TV — xP < 210 — P 4 2]y — P2
27N 279 2
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Accelerated PDHG

Now we specify the parameters... In order to keep L?0,7, = 1 (to simplify) we keep o7k = oom0 = 1/L°.
Then, we should have:
Thar(L+ Thttg) _ okn L 51
) ok Or41

and in particular, oy1 = 0k /0k+1 and T 1 = Ok 17k, so that:

1 Tk
Okp1 = ——=, Thi1 = ——==, Oki1=0k\/1+ figTk
\/1+,ung ‘/1+/Lg7'k

In particular O'i+1 = 02 + Koy where k = pg/L? is an (inverse) condition number.
One can then show that: if 7o is large, then after very few iterations, 7, < 1: we use

HgTk

HgThtl = ——== < \/HgTk = ...
1+ bgTi
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Accelerated PDHG: paramters and rate

1
HgTki1 < /HigTk = log g < % log g0

so that, for instance, ug7, < 2 as soon as k > log, log,(11g70) (or k = 0), which is always very small.
Then, for larger ks, one has oy = 1/(L?7) > k/2 and:

2
K
az_'_l:az—o—ﬁokZoi—l—anak—o—(l—a)?

= (o + $r)* + ((1 —a)— 2) 5= (o + §r)?

if we choose @ = v/3 — 1 =~ 0.73. Then it follows o, > (.73x/2)k and in particular,
Tn 2 ((73k/4)N(N — 1) (in fact, one can show o ~ (x/2)k and Ty ~ kN2 /4).
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Accelerated PDHG

Getting back to:
onN o) 1
Tw(LXN,y) = L0 YN)) + =XV = xP < = x® = x]P + Sy =y
27N 279 2

we see that, taking (x,y) = (x*,y*) (for which one can show: £(XV,y) — L(x, YN) > ug|XN — x*|?) one
has

cL?
|XN—X*|2+‘XN—X*|25 —
g

and
LXN,y) = L, YN) = O(xINT2)(Ix = x° P + |y = ¥°%)

(for og < 7).

It shows an improvement over the non-accelerated method provided N 2 1/k.
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A similar (easier) proof shows an accelerated rate in case both functions are
strongly convex.

PDHG: acceleration
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