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Nonlinear norms

Most of the time we will work in finite dimension. However the general setting we
can consider here is of a Banach space X with dual X ∗ and respective norms
denoted ∥ · ∥, ∥ · ∥∗ with

∥y∥∗ = sup{⟨y , x⟩X ∗,X : ∥x∥ ≤ 1} ∥x∥ = sup{⟨y , x⟩X ∗,X : ∥y∥∗ ≤ 1}.

Now, given f a C1 function, one can define its differential:

f (x ′) = f (x) +
〈
df (x), x ′ − x

〉
X ∗,X + o(∥x ′ − x∥)

but there is no obvious notion of a “Gradient”.
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Nonlinear Gradient descent

However, we can easily generalize the gradient descent as follows: given xk , we let
xk+1 be a minimizer of

min
x

f (xk) +
〈
df (xk), x − xk

〉
X ∗,X

+ 1
2τ

∥x − xk∥2

provided such a minimizer exists. This will be the case for instance
In finite dimension;
If X is reflexive (or if X is a dual and f is weakly-∗ lsc).

We assume one of these conditions hold.
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Nonlinear Gradient descent
Convergence

As in the linear case, we can show the following:

Theorem
Assume df L-Lipschitz and consider the iterates xk of the non-linear gradient
descent with τ = 1/L. Then, if x∗ is a minimizer and
C = max{f (x)<f (x0)} ∥x − x∗∥2 < +∞, one has the rate:

f (xk) − f (x∗) ≤ 2LC
k + 1 .
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Functions with Lipschitz differential

Of course, we say that f is a function with Lipschitz differential df (x) iff for any
x , x ′ ∈ X ,

∥df (x) − df (x ′)∥∗ ≤ ∥x − x ′∥

where each norm has to be taken in the appropriate space.
Then, one has, exactly as before:

f (x ′) = f (x) +
∫ 1

0

〈
df (x + s(x ′ − x)), x ′ − x

〉
ds

= f (x) +
〈

df (x), x ′ − x
〉

+
∫ 1

0

〈
df (x + s(x ′ − x)) − df (x), x ′ − x

〉
ds

≤ f (x) +
〈

df (x), x ′ − x
〉

+
∫ 1

0
∥df (x + s(x ′ − x)) − df (x)∥∗∥x ′ − x∥ds

≤ f (x) +
〈

df (x), x ′ − x
〉

+
∫ 1

0
Ls∥x ′ − x∥2ds = f (x) +

〈
df (x), x ′ − x

〉
+

L
2

∥x ′ − x∥2.
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Dual norms

We show the following lemma:

Lemma
Let F(x) = µ∥x∥2/2. Then its conjugate is F∗(y) = ∥y∥2

∗/(2µ).

Proof: we write

F∗(y) = sup
x

⟨y , x⟩ −
µ

2
∥x∥2 = sup

t>0
sup

∥x∥≤t
⟨y , x⟩ −

µt2

2
= sup

t>0
t∥y∥∗ −

µt2

2
=

1
2µ

∥y∥2
∗.

Legendre-Fenchel identity shows again that
y ∈ ∂F(x) ⇔ x ∈ ∂F∗(y) ⇔ ⟨y , x⟩ = F(x) + F∗(y), yet in addition, being F and F∗

positively 2-homogeneous, we have also ⟨y , x⟩ = 2F(x) = 2F∗(y) and F(x) = F∗(y).
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Dual norms

We show the following lemma:
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Nonlinear Gradient descent

Returning to the gradient descent algorithm, we have, since xk+1 is a minimizer
(for µ = 1/τ) of:

min
x

f (xk) +
〈
df (xk), x − xk

〉
X ∗,X

+ F(x − xk) = f (xk) − F∗(−df (xk)),

and −df (xk) ∈ ∂F(xk+1 − xk), xk+1 − xk ∈ −∂F∗(df (xk)), while
−
〈
df (xk), xk+1 − xk

〉
X ∗,X

= F(xk+1 − xk) + F∗(−df (xk)).
In particular, the algorithm is defined by:

xk+1 = xk − τpk , pk ∈ ∥df (xk)∥∗∂∥ · ∥∗(df (xk)).

By 2-homogeneity of F and F∗ one also sees that F(xk+1 − xk) = F∗(−df (xk)).
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Nonlinear Gradient descent

Now we return to the proof of a rate: In addition, since df is L-Lipschitz,

f (xk+1) ≤ f (xk) +
〈

df (xk), xk+1 − xk
〉

X ∗,X
+

L
2

∥xk+1 − xk∥2

= f (xk)+
L
2

∥xk+1−xk∥2−F(xk+1−xk)−F∗(−df (xk)) = f (xk)+
(L

2
−

1
2τ

)
∥xk+1−xk∥2−

τ

2
∥df (xk)∥2

∗.

so that if τ = 1/L, one obtains:
f (xk+1) ≤ f (xk) −

1
2L

∥df (xk)∥2
∗.

Now we can proceed as in the Euclidean setting. We observe that

f (x∗) ≥ f (xk) +
〈

df (xk), x∗ − xk
〉

⇒ f (xk) − f (x∗) ≤ ∥df (xk)∥∗∥xk − x∗∥

so that if ∆k = f (xk) − f (x∗),

∆k+1 ≤ ∆k −
∆2

k
2L∥xk − x∗∥2 .
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Nonlinear Gradient descent: rate

If we now that Ck = max0≤i≤k ∥x i − x∗∥2 ≤ C remains bounded (for instance if
{f ≤ f (x0)} is bounded) then we deduce:

f (xk) − f (x∗) ≤ 2LC
k + 1

as in the Hilbertian case.
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Strongly convex functions in non-Euclidean spaces
Are not!! functions f such that f − µ∥.∥2/2 is convex!

Definition
The function f is µ−strongly convex if and only if for any x , x ′ ∈ X and t ∈ [0, 1],

f (tx + (1 − t)x ′) ≤ tf (x) + (1 − t)f (x ′) − µ
t(1 − t)

2 ∥x − x ′∥2

Then one can show the following. We assume X is reflexive.

Theorem
Let f : X → R ∪ {+∞} be convex, proper, lower semi-continuous. Then f is
strongly convex if and only if for all x , x ′ ∈ X and all y ∈ ∂f (x), one has:

f (x ′) ≥ f (x) +
〈
y , x ′ − x

〉
X ∗,X + µ

2 ∥x − x ′∥2.
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Strongly convex functions

Proof. One direction is easy (and does not require lower semicontinuity): if f is strongly convex and
x , x ′ ∈ X , y ∈ ∂f (x), then for any t ∈ (0, 1),

f (tx + (1 − t)x ′) ≥ f (x) + (1 − t)
〈

y , x ′ − x
〉

.

From the strong convexity, we deduce

f (x) + (1 − t)
〈

y , x ′ − x
〉

≤ tf (x) + (1 − t)f (x ′) − µ
t(1 − t)

2
∥x − x ′∥2.

Dividing by (1 − t) it follows:

f (x ′) ≥ f (x) +
〈

y , x ′ − x
〉

+ µ
t
2

∥x − x ′∥2

and letting t → 1 we conclude.
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Strongly convex functions

For the converse, we need to use points where the subgradient exists. Let x , x ′ ∈ X and t ∈ [0, 1].
We do as follows: we let xt = tx + (1 − t)x ′ and assume f (x), f (x ′) are finite (otherwise, nothing to
prove). Let ξn be a minimizer of:

min
ξ

f (ξ) +
n
2

∥ξ − xt∥2

Being ∥ · ∥ strongly continuous, one can show that a solution (which exists because a minimizing sequence
is bounded, hence weakly converging since we assumed X is reflexive, and Hahn-Banach’s theorem then
shows that f is weakly lsc.) satisfies:

∂f (ξn) + n∥ξn − xt∥∂∥ · ∥(ξn − xt) ∋ 0 ⇔ ∃ηn ∈ −n∥ξn − xt∥∂∥ · ∥(ξn − xt) s.t. ηn ∈ ∂f (ξn).

Using
f (ξn) +

n
2

∥ξn − xt∥2 ≤ f (xt) ≤ tf (x) + (1 − t)f (x ′) < +∞,

we deduce that ξn → xt , then that f (xt) ≤ lim infn f (ξn), and eventually that

n
2

∥ξ − xt∥2 → 0

as n → ∞.
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Strongly convex functions

Now, we can write: {
f (x) ≥ f (ξn) + ⟨ηn, x − ξn⟩ + µ

2 ∥x − ξn∥2

f (x ′) ≥ f (ξn) + ⟨ηn, x ′ − ξn⟩ + µ
2 ∥x ′ − ξn∥2.

We multiply the first equation by t and the second by (1 − t), and sum:

tf (x) + (1 − t)f (x ′) ≥ f (ξn) + ⟨ηn, xt − ξn⟩ +
µ

2
(t∥x − ξn∥2 + (1 − t)∥x ′ − ξn∥2).

As ∥ · ∥ is positively 1-homogeneous, Euler’s identity shows ⟨ηn, xt − ξn⟩ = n∥xt − ξn∥2 → 0 as n → ∞. In
the limit (and because f is lsc) we find

tf (x) + (1 − t)f (x ′) ≥ f (xt) +
µ

2
(t∥x − xt∥2 + (1 − t)∥x ′ − xt∥2)

= f (xt) +
µ

2
(t(1 − t)2∥x − x ′∥2 + (1 − t)t2∥x ′ − x∥2) = f (xt) + µ

t(1 − t)
2

∥x − x ′∥2
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Strongly convex functions and Lipschitz differentials

Now, we have the following theorem, which is a duality result between convex
functions with Lipschitz differential and strongly convex functions:

Theorem
Let f be convex, lsc. Then f has (L-)Lipschitz differential if and only if f ∗ is
(1/L-)strongly convex.

Proof: If f is convex with L-Lipschitz differential, then one has for all x , x ′

f (x ′) ≤ f (x) +
〈

df (x), x ′ − x
〉

+
L
2

∥x − x ′∥2.

We let y = df (x) so that, by Legendre-Fenchel’s identity, x ∈ ∂f ∗(y) and ⟨y , x⟩ = f (x) + f ∗(y).
Taking the conjugate of the inequality at a point y ′, we have

f ∗(y ′) ≥ sup
x′

〈
y ′, x ′

〉
− f (x) −

〈
y , x ′ − x

〉
−

L
2

∥x − x ′∥2 = f ∗(y) + sup
x′

〈
y ′ − y , x ′

〉
−

L
2

∥x − x ′∥2.
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Strongly convex functions and Lipschitz differentials

Now, we recall that (L
2

∥ · ∥2
)∗

(p) =
1

2L
∥p∥2

∗.

We deduce

sup
x′

〈
y ′ − y , x ′

〉
−

L
2

∥x−x ′∥2 =
〈

y ′ − y , x
〉

+sup
x′

〈
y ′ − y , x ′ − x

〉
−

L
2

∥x−x ′∥2 =
〈

y ′ − y , x
〉

+
1

2L
∥y ′−y∥2

∗,

so that
f ∗(y ′) ≥ f ∗(y) +

〈
y ′ − y , x

〉
+

1
2L

∥y ′ − y∥2
∗ (∗)

so that f ∗ is (1/L)-convex. Conversely, if y , y ′ ∈ X ∗ and x ∈ ∂f ∗(y), the same computation will show that
if (∗) holds: (using y ∈ ∂f (x) and ⟨y , x⟩ = f (x) + f ∗(y)):

f (x ′) ≤ f (x) +
〈

y , x ′ − x
〉

+
L
2

∥x ′ − x∥2.

Since f (x ′) ≥ f (x) + ⟨y , x ′ − x⟩, we deduce that f is differentiable at x and y = df (x).



Continuous
(convex)

optimisation

A. Chambolle

Optimization
in Banach
spaces,
nonlinear
problems
Nonlinear norms

Nonlinear “gradient”
descent

Strong convexity in
Banach spaces

Bregman distances /
Legendre functions

Mirror descent,
relative smoothness

Accelerated Mirror
descent

Nonlinear primal-dual
algorithm

Strongly convex functions and Lipschitz differentials

In addition, if y ′ ∈ ∂f (x ′) (hence as above, y ′ = df (x ′)) so that x ′ ∈ ∂f ∗(y ′), we write:

f ∗(y ′) ≥ f ∗(y) +
〈

y ′ − y , x
〉

+
1

2L
∥y ′ − y∥2

∗ and f ∗(y) ≥ f ∗(y ′) +
〈

y − y ′, x ′
〉

+
1

2L
∥y − y ′∥2

∗

and we deduce ⟨x ′ − x , y ′ − y⟩ ≥ ∥y − y ′∥2
∗/L. Since ⟨x ′ − x , y ′ − y⟩ ≤ ∥x − x ′∥∥y − y ′∥∗ it follows that

∥df (x) − df (x ′)∥∗ = ∥y − y ′∥∗ ≤ L∥x − x ′∥.
It remains to check that df is defined everywhere. Observe that f is globally bounded by a quadratic
function hence locally finite, hence locally Lipschitz. Then, if xn → x are points where a subgradient (hence
differential) exists, since df (xn) is a Cauchy sequence: there exists y ∈ X ∗ with df (xn) → y and we pass to
the limit in:

f (x ′) ≥ f (xn) +
〈

df (xn), x ′ − xn
〉

to conclude that p ∈ ∂f (x) so that y = df (x). Hence f is C1 with Lipschitz gradient.
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Example

A typical example is given by the entropy in Rd on the unit simplex
Σ := {x ∈ Rd : xi ≥ 0,

∑
i xi = 1}:

ξ(x) =
{∑

i xi log xi if x ∈ Σ
+∞ else

(where 0 log 0 is defined as 0). Then, one shows that the conjugate is the
“log-sum-exp” function:

ξ∗(y) = log
∑

i
exp(yi)

also called “soft-max” since εξ∗(y/ε) is an approximation of the max as ε → 0.
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Example
Pinsker inequality

Then, one can show the following:

Lemma (Pinsker inequality)
ξ is 1-strongly convex in the ℓ1 norm.

That is, for any x , x ′ ∈ Σ the unit simplex, p ∈ ∂ξ(x),

ξ(x ′) − ξ(x) −
〈
p, x ′ − x

〉
=
∑

i
x ′

i log x ′
i

xi
≥ 1

2

(∑
i

|xi − x ′
i |
)2

This latter inequality is called the “Pinsker inequality”.
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Example

Proof: We leave as an exercise that if ∥ · ∥ = ∥ · ∥1 is the ℓ1 norm, then ∥ · ∥∗ = ∥ · ∥∞.

First we prove the expression for ξ∗: one has to compute supx∈Σ
∑

i xi yi − xi log xi . For the maximum x
there is a Lagrange multiplier λ for the constraint

∑
i xi = 1 and one has yi − log xi − 1 = λ (and in

particular ξ∗(x) =
∑

i xi (λ + 1) = λ + 1 =: λ′). One has xi = exp(yi − λ′) and since
∑

i xi = 1,
exp(−λ′)

∑
i exp(yi ) = 1 so that exp(λ′) =

∑
i exp(yi ), and λ′ = log

∑
i exp(yi ).
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Example

Now, we prove that ξ∗ has 1-Lipschitz gradient. Observe that

∥dξ∗(y ′) − dξ∗(y)∥1 = sup
∥z∥∞≤1

〈
z, dξ∗(y ′) − dξ∗(y)

〉
= sup

∥z∥∞≤1

〈
z,

∫ 1

0
d2ξ∗(y + s(y ′ − y)) · (y ′ − y)ds

〉
≤ sup

∥z(·)∥∞≤1

∫ 1

0

〈
z(s), d2ξ∗(y + s(y ′ − y)) ·

y ′ − y
∥y ′ − y∥∞

〉
ds∥y ′ − y∥∞

≤
∫ 1

0
L(y + s(y ′ − y))ds∥y ′ − y∥∞

where
L(y) := sup

σi ∈[−1,1],τj ∈[−1,1]

∑
i,j

∂2ξ∗

∂yi ∂yj
(y)σi τj .

If we can show that L(y) ≤ 1 for all y , we are done.
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We now show that L(y) ≤ 1 for all y ∈ Rd . First, letting (for a given y ∈ Rd ) ai,j := ∂2
i,j ξ

∗(y), we have

ai,j = θi δi,j − θi θj

where θi = exp(yi )/
∑

k exp(yk) and δi,j is the Kronecker symbol. In particular, θ ∈ Σ, and we see that∑
i ai,j = 0 for all j and

∑
j ai,j = 0 for all i .

Then, let τ, σ be a maximizer. Let σ′
i = 1 if

∑
j ai,j τj ≥ 0 and −1 else, and then τ ′

j = 1 if
∑

i ai,j σ′
i ≥ 0

and −1 else: one checks that (σ′, τ ′) is also a maximizer. Hence one can restrict the maximisation problem
over σi , τj ∈ {−1, 1} and in particular we see that

L(y) = max
σi ∈{−1,1}

∑
j

∣∣∣∑
i

ai,j σi

∣∣∣.
Then,

∑
i ai,j σi =

∑
i :σi =1 ai,j −

∑
i :σi =−1 ai,j = 2

∑
i :σi =1 ai,j since

∑
i ai,j = 0. Introducing the variable

ξ = 2σ − 1, we find that the max is

max
ξi ∈{0,1}

2
∑

j

∣∣∣∑
i

ξi ai,j

∣∣∣.
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Then, for all j,

∣∣∣∑
i

ξi ai,j

∣∣∣ =
∣∣ξj θj − (ξ · θ)θj

∣∣ = θj
∣∣ξj − (ξ · θ)

∣∣ =
{

θj (1 − ξ · θ) if ξj = 1
θj (ξ · θ) if ξj = 0

= ξj θj (1 − ξ · θ) + (1 − ξj )θj (ξ · θ)

so that ∑
j

∣∣∣∑
i

ξi ai,j

∣∣∣ = ξ · θ(1 − ξ · θ) + (ξ · θ) − (ξ · θ)2 = 2ξ · θ(1 − ξ · θ).

We deduce
L(y) = 4 max

ξi ∈{0,1}
(ξ · θ)(1 − ξ · θ) ≤ 4 max

0≤t≤1
t(1 − t) = 1

Remark: we see that the max is reached for τ = σ, minimizing |τ · θ| = |
∑

τi =1 θi −
∑

τi =−1 θi |.
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Bregman distances and Legendre function

We say a convex function ξ with domain D ⊂ X is “Legendre” (Rockafellar 1970,
Chen-Teboulle 1993) if
(i) ξ is C1 in the (relative) interior of D;
(ii) limx→∂D ∥∇ξ(x)∥ = +∞;
(iii) ξ is 1-convex.
In particular, ∂ξ(x) = ∅ for x ∈ ∂D, and, given f convex, lsc., then if x solves:

min
x

ξ(x) + f (x)

one must have x ∈ D̊ and −∇ξ(x) ∈ ∂f (x)
[If “relative” in (i) this needs to be adapted a bit)]
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Bregman distances

Given ξ Legendre, we define for x , x ′ ∈ X :

Dξ(x ′, x) := ξ(x ′) − ξ(x) −
〈
dξ(x), x ′ − x

〉
and we observe that Dξ(x ′, x) ≥ 0 (by convexity), moreover
Dξ(x ′, x) ≥ ∥x ′ − x∥2/2 if (iii) holds.

One has the following result:

Lemma
Three-point inequality [Chen-Teboulle 1993, Tseng 2008] Let g be convex, lsc., and
assume x̂ is a minimiser of minx Dξ(x , x̄) + g(x). Then for all x ,

Dξ(x , x̄) + g(x) ≥ Dξ(x̂ , x̄) + g(x̂) + Dξ(x , x̂).
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Proof: one has by minimality that

dξ(x̂) − dξ(x̄) + ∂g(x̂) ∋ 0 ⇔ ∂g(x̂) ∋ dξ(x̄) − dξ(x̂).

Hence for all x ,
g(x) ≥ g(x̂) + ⟨dξ(x̄) − dξ(x̂), x − x̂⟩ .

We deduce

Dξ(x , x̄) + g(x) ≥ξ(x) − ξ(x̄) − ⟨dξ(x̄), x − x̄⟩ + g(x̂) + ⟨dξ(x̄) − dξ(x̂), x − x̂⟩
= ξ(x) −ξ(x̂) + ξ(x̂) − ξ(x̄) − ⟨dξ(x̄), x−x̂ + x̂ − x̄⟩ + g(x̂) + ⟨dξ(x̄) − dξ(x̂), x − x̂⟩
= ξ(x) − ξ(x̂) + ξ(x̂) − ξ(x̄) − ⟨dξ(x̂), x − x̂⟩ − ⟨dξ(x̄), x̂ − x̄⟩ + g(x̂)
= Dξ(x , x̂) + Dξ(x̂ , x̄) + g(x̂).
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Mirror descent (explicit-implicit)

Let ξ be a Legendre function.
Assume the function f has L-Lipschitz gradient and g is such that one can
compute for each k:

min
x∈dom ξ

1
τ

Dξ(x , xk) +
〈
df (xk), x

〉
+ g(x)

and let xk+1 be the solution. This is a “mirror-prox” algorithm. Then thanks to
the “three points inequality” one can deduce the same as for the forward-backward
descent: for any x , one has for τ small enough, letting F = f + g :

1
τ

Dξ(x , xk) + F (x) ≥ F (xk+1) + 1
τ

Dξ(x , xk+1)
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Mirror descent

Thanks to:
1
τ

Dξ(x , xk) + F (x) ≥ F (xk+1) + 1
τ

Dξ(x , xk+1) (∗)

we deduce exactly as in the Euclidean case:

Convergence rate for the mirror descent
Assume there exists x∗ a minimizer of F in dom ξ. Then the mirror-prox algorithm
produces a sequence which satisfies:

F (xk) − F (x∗) ≤ Dξ(x∗, x0)
τk .

As usual, we obtain this by taking x = xk and x = x∗ in the descent inequality (∗).
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Mirror descent (explicit-implicit)

One has thanks to the 3-points inequality:

1
τ

Dξ(x , xk) + F (x) ≥
1
τ

Dξ(x , xk) + f (xk) +
〈

df (xk), x − xk
〉

+ g(x)

≥
1
τ

Dξ(xk+1, xk) + f (xk) +
〈

df (xk), xk+1 − xk
〉

+ g(xk+1) +
1
τ

Dξ(x , xk+1).

Now f (xk) +
〈

df (xk), xk+1 − xk
〉

= f (xk+1) − Df (xk+1, xk) by definition so that:

1
τ

Dξ(x , xk) + F (x) ≥
1
τ

Dξ(xk+1, xk) − Df (xk+1, xk) + F (xk+1) +
1
τ

Dξ(x , xk+1).

Now, if f has L-Lipschitz gradient then Df (xk+1, xk) ≤ L∥xk+1 − xk∥2/2, while ξ being strongly convex,
Dξ(xk+1, xk) ≥ ∥xk+1 − xk∥2/2. Hence one finds that if τ ≤ 1/L,

1
τ

Dξ(xk+1, xk) − Df (xk+1, xk) ≥ 0

and this ends the proof.
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Relative smoothness

However, here, we need the strong convexity of ξ and the Lipschitz gradient of f
only to bound the difference Dξ(xk+1, xk)/τ − Df (xk+1, xk). So a much simper
and better assumption could be “there exists L such that LDξ − Df ≥ 0”.
When is it true??? Observe that by construction,

Df −g = Df − Dg

so that clearly, Df ≥ Dg for any points if and only if f − g is convex. Hence:

Definition
One says that f is L-relatively smooth with respect to ξ if Lξ − f is convex.

Corollary
The nonlinear forward-backward algorithm has the rate O(1/k) (when a minimizer
exists) as soon as f is L-relatively smooth wr. ξ and τ ≤ 1/L.

(No L-Lipschitz or strongly convexity assumption needed here → “NoLips” algorithm (Bauschke, Bolte,
Teboulle 2017). Can be improved with over-relaxation which depends on ξ.)
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Relative strong convexity

Similarly (Teboulle 2018, Lu, Freund, Nesterov 2018, C-Pock 2016):

Definition
One says that f is relatively strongly convex wr. ξ if there exists γ > 0 such that
f − γξ is convex.

In case f or g is relatively strongly convex, one obtains a linear convergence rate.
Indeed, the three-points inequality is improved to:

Dξ(x , x̄) + g(x) ≥ Dξ(x̂ , x̄) + g(x̂) + (1 + µg)Dξ(x , x̂),

and the descent inequality is improved as before to, for τ ≤ 1/L:

1 − τµf
τ

Dξ(x , xk) + F (x) ≥ F (xk+1) + 1 + τµg
τ

Dξ(x , xk+1)
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Accelerated Mirror descent
[Nesterov, Tseng]

Unfortunately, there is no way to accelerate under the mere assumption of relative
smoothness, nor can we improve easily this method when f is relatively strongly
convex. (cf Dragomir, Taylor, D’Aspremont, Bolte 2019.)

Assuming ξ is 1-convex and ∇f is L-Lipschitz, on the other hand, makes
acceleration is possible. This is improved in addition under a relative strong
convexity assumption.

The “accelerated mirror descent” is a possibility, the “accelerated primal-dual”
algorithm another. We now explain the mirror descent algorithm in the simplest
case, that is non relatively strongly convex.
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Accelerated Mirror descent

The general algorithm is as follows: we assume f is has L-Lipschitz gradient. Let
also g such that minx αg(x) + ξ(x) + ⟨p, x⟩ is easily computed.
We pick x0, set y0 = z0 = x0, let α0 = β0 = 0.

1 Let αk+1 be the largest root of:

βk+1 := βk + αk+1 = Lα2
k+1;

2 Let: xk+1 = (αk+1zk + βkyk)/βk+1
3 Define zk+1 as the minimizer of

min
x

1
αk+1

Dξ(z , zk) + (g(z) + f (xk+1) +
〈
df (xk+1), z − xk+1

〉
4 Let yk+1 = (αk+1zk+1 + βkyk)/βk+1; return to 1.
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Accelerated Mirror descent

We prove that, letting F = f + g :

Rate of convergence for accelerated mirror descent.

F (yk) − F (x∗) ≤ 4L
k2 Dξ(x∗, y0).

Proof: As in the descent lemma, we have that

αk+1(f (z) + g(z)) + Dξ(z, zk) ≥ αk+1(g(z) + f (xk+1) +
〈

df (xk+1), z − xk+1
〉

) + Dξ(z, zk)

≥ αk+1(g(zk+1) + f (xk+1) +
〈

df (xk+1), zk+1 − xk+1
〉

) + Dξ(zk+1, zk) + Dξ(z, zk+1)

Now we use that αk+1 = βk+1 − βk and αk+1zk+1 = βk+1yk+1 − βkyk to write:

αk+1(f (xk+1) +
〈

df (xk+1), zk+1 − xk+1
〉

)

= βk+1(f (xk+1) +
〈

df (xk+1), yk+1 − xk+1
〉

)) − βk(f (xk+1) +
〈

df (xk+1), yk − xk+1
〉

))

≥ βk+1(f (yk+1) − Df (yk+1, xk+1)) − βk f (yk).

Also: βk+1g(yk+1) ≤ αk+1g(zk+1) + βkg(yk) by convexity.
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Accelerated Mirror descent

We prove that, letting F = f + g :

Rate of convergence for accelerated mirror descent.

F (yk) − F (x∗) ≤ 4L
k2 Dξ(x∗, y0).

Proof: As in the descent lemma, we have that

αk+1(f (z) + g(z)) + Dξ(z, zk) ≥ αk+1(g(z) + f (xk+1) +
〈

df (xk+1), z − xk+1
〉

) + Dξ(z, zk)

≥ αk+1(g(zk+1) + f (xk+1) +
〈

df (xk+1), zk+1 − xk+1
〉

) + Dξ(zk+1, zk) + Dξ(z, zk+1)

Now we use that αk+1 = βk+1 − βk and αk+1zk+1 = βk+1yk+1 − βkyk to write:

αk+1(f (xk+1) +
〈

df (xk+1), zk+1 − xk+1
〉

)

= βk+1(f (xk+1) +
〈

df (xk+1), yk+1 − xk+1
〉

)) − βk(f (xk+1) +
〈

df (xk+1), yk − xk+1
〉

))

≥ βk+1(f (yk+1) − Df (yk+1, xk+1)) − βk f (yk).

Also: βk+1g(yk+1) ≤ αk+1g(zk+1) + βkg(yk) by convexity.
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Hence combining these inequalities we have:

αk+1(g(zk+1) + f (xk+1) +
〈

df (xk+1), zk+1 − xk+1
〉

) ≥ βk+1(F (yk+1) − Df (yk+1, xk+1)) − βkF (yk),

and

(βk+1 − βk)F (z) + Dξ(z, zk) ≥ βk+1(F (yk+1) − Df (yk+1, xk+1)) − βkF (yk) + Dξ(zk+1, zk) + Dξ(z, zk+1),

that is:

βk(F (yk) − F (z)) + Dξ(z, zk) ≥ βk+1(F (yk+1) − F (z)) + Dξ(z, zk+1)

− βk+1Df (yk+1, xk+1) + Dξ(zk+1, zk).

We now show that Dξ(zk+1, zk) ≥ βk+1Df (yk+1, xk+1).
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Dξ(zk+1, zk) ≥ βk+1Df (yk+1, xk+1): here we use that f is L-Lipschitz and ξ 1-convex, so that

Dξ(zk+1, zk) − βk+1Df (yk+1, xk+1) ≥
1
2
(

∥zk+1 − zk∥2 − βk+1L∥yk+1 − xk+1∥2
)

=
1
2

(
∥zk+1 − zk∥2 − βk+1L

α2
k+1

β2
k+1

∥zk+1 − zk∥2
)

≥ 0

by the definition of βk+1.

We deduce:
βk
(

F (yk) − F (z)
)

≤ Dξ(z, z0) + β0(F (y0) − F (z)) = Dξ(z, z0).

Now, αk+1 = 1+
√

1+4Lβk
2L and βk+1 = βk + αk+1. By induction we deduce that βk ≥ k2/(4L). Indeed, if

true, it implies:

αk+1 ≥
1 +

√
k2 + 1

2L
and βk+1 ≥

k2 + 2 + 2
√

k2 + 1
4L

=
(
√

k2 + 1 + 1)2

4L
≥

(k + 1)2

4L
.
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Accelerated Mirror descent
Remarks

A “backtracking” technique is available if one does not know L in advance;
Requires increasing sequence αk : might become harder and harder to compute
as k increases;
Better rate if g is relatively strongly convex (or f , possibly modifying the
algorithm). Linear with ω ≈ 1 −

√
µ/L if µ << L (with varying or fixed α, β);

“Relatively” strongly convex might not be very interesting in general. (Main
example: “smoothing”.)
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Nonlinear primal-dual algorithm

One can extend also the primal-dual algorithm to the non-linear case. In fact, it is
even simpler. We introduce strongly convex Legendre functions ξx , ξy for both x
and y and assume we want to solve

min
x∈dom ξx

sup
y∈dom ξy

g(x) + ⟨y , Kx⟩ − f ∗(y).

Algorithm: Bregman PDHG

xk+1 = arg min g(x) +
〈
yk , Kx

〉
+ 1

τ
Dx (x , xk) ,

yk+1 = arg min f ∗(y) −
〈
y , K (2xk+1 − xk)

〉
+ 1

σ
Dy (y , yk)
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Nonlinear primal-dual algorithm: descent rule

With the same notation as in the previous lecture:

ŷ = arg min
y

f ∗(y) − ⟨y , Kx̃⟩ + 1
σ

Dy (y , ȳ) ,

x̂ = arg min
x

g(x) + ⟨ỹ , Kx⟩ + 1
τ

Dx (x , x̄)

we can deduce the same descent rule: for all x ∈ dom ξx , y ∈ dom ξy , one has:

g(x) + ⟨Kx , ỹ⟩ +
1
τ

Dx (x , x̄) ≥ g(x̂) + ⟨Kx̂ , ỹ⟩ +
1
τ

Dx (x̂ , x̄) +
1 + τµg

τ
Dx (x , x̂)

f ∗(y) − ⟨Kx̃ , y⟩ +
1
σ

Dy (y , ȳ) ≥ f ∗(ŷ) − ⟨Kx̃ , ŷ⟩ +
1
σ

Dy (ŷ , ȳ) +
1 + σµf ∗

σ
Dy (y , ŷ).

reproducing the same computation and using the 3-points inequality (here if g is
µg relatively strongly convex wr ξx , and f ∗ is µf ∗ relatively strongly convex wr ξy ).
Then the convergence proofs are identical. For instance, we get:
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Nonlinear primal-dual algorithm

Rate for Nonlinear PDHG
We let ZN = (XN , Y N)T := 1

N
∑N

k=1 zk . Then for all x ∈ dom ξx and y ∈ dom ξy :

L(XN , y) − L(x , Y N) ≤ 1
N

(1
τ

Dx (x , x0) + 1
σ

Dy (y , y0) −
〈
y − y0, K (x − x0)

〉)
provided στL2 ≤ 1, where L := sup∥x∥≤1,∥y∥≤1 ⟨y , Kx⟩.

Remark: under this condition, one has〈
y − y0, K (x − x0)

〉
≤ Dx (x , x0)/τ + Dy (y , y0)/σ so that one can also bound the

rate by
· · · ≤ 2

N

(1
τ

Dx (x , x0) + 1
σ

Dy (y , y0)
)

.
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(Accelereated) Nonlinear primal-dual algorithm

If in addition g is µg relatively strongly convex, then, as in the Euclidean case, one
can update yk with xk + θk(xk − xk−1) and then xk with yk+1 and we obtain:

Accelerated rate
Choosing x−1 = x0, σ0τ0L2 ≤ 1 and for k ≥ 0, θk+1 = 1/

√
1 + µgτk ,

τk+1 = τkθk+1, σk+1 = σk/θk+1, one has:

TN(L(XN , y) − L(x , Y N)) + σN
2τN

∥xN − x∥2 ≤ σ0
τ0

Dx (x , x0) + Dy (y , y0)

where TN =
∑N−1

k=0 σk ≈ µgk2/L2, ZN = 1
TN

∑N−1
k=0 σkzk+1 (z = (x , y)).
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Application of Bregman (primal-dual) descent

Example: Complexity for “optimal transportation” problems.
Problem: optimal assignment:

min
{

C :X : X1 = 1
N 1, XT 1 = 1

N 1, X ≥ 0
}

where C is an N × N cost matrix (in general ≥ 0 but this is not important), X is
an N × N matrix with

∑
i ,j Xi ,j = 1, C : X :=

∑
i ,j Ci ,jXi ,j and 1 = (1, . . . , 1)T .

Then one can show that this problem is solved by a permutation matrix
Xi ,j = δϵ(i),j for ϵ ∈ S(N), which minimizes the cost

∑
j Ci ,ϵ(i). More general

problem: X1 = µ, XT 1 = ν where µ, ν are discretized probability measures
(
∑

i µi = 1): convexification of “optimal transportation” problem (then X might
not be a permutation anymore).
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Optimal assignment

Primal-dual and dual formulation:

min
X≥0

sup
f ,g∈RN

C : X + f · (µ − X1) + g · (ν − XT 1)

= max
f ,g

f · µ + g · ν + min
X≥0

X : (C − f ⊗ 1 − 1 ⊗ g) = max
f ,g :fi +gj ≤Ci,j

f · µ + g · ν.

Then, one can show that there is a solution (X ∗, f ∗, g∗) with:

Xi ,j > 0 ⇒ fi + gj = Ci ,j

fi + gj < Ci ,j ⇒ Xi ,j = 0.

In particular:
(f , g) solution ⇒ (f + c, g − c) solution for any constant c;
One can find a solution with |fi |, |gj | ≤ |C |∞/2 (|C |∞ = maxi ,j Ci ,j).
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Optimal assignment

Primal-dual algorithm, for λ = |C |∞/2:

min
X≥0

sup
|f |,|g |≤λ

C : X − X : (f ⊗ 1 − 1 ⊗ g) + f · µ + g · ν :

We pick X 0, f 0, g0 and let for k ≥ 0:

(f k+1, gk+1) = arg min
|f |,|g|≤λ/2

1
τ

(
Df (f , f k) + Df (g , gk)

)
− f · µ − g · ν − Xk : (f ⊗ 1 − 1 ⊗ g) ;

(f̄ k+1, ḡk+1) = 2(f k+1, gk+1) − (f k , gk)

Xk+1 = arg min
X≥0

1
σ

DX (X , Xk) + X : (C − f̄ k+1 ⊗ 1 − 1 ⊗ ḡk+1) .

(the minimizations wr f and wr g are uncoupled).
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Optimal assignment

One obtains a rate of the form:

Gapk ≤ 2
k

( 1
σ

DX (X , X 0) + 1
τ

Df (f , f 0) + 1
τ

Dg(g , g0)
)

.

with στL2 ≤ 1. Let us consider two cases:
1 ξf = ξg = | · |2/2, ξX = | · |2/2 (Euclidean case);
2 ξf = ξg = | · |2/2, ξX =

∑
i ,j Xi ,j log Xi ,j with

∑
i ,j Xi ,j = 1 (Entropy case), and

the norm ∥X∥ = ∥X∥1 =
∑

i ,j |Xi ,j |.



Continuous
(convex)

optimisation

A. Chambolle

Optimization
in Banach
spaces,
nonlinear
problems
Nonlinear norms

Nonlinear “gradient”
descent

Strong convexity in
Banach spaces

Bregman distances /
Legendre functions

Mirror descent,
relative smoothness

Accelerated Mirror
descent

Nonlinear primal-dual
algorithm

Optimal assignment
Euclidean

In the first case:

L = sup
{∑

i,j
Xi,j(fi + gj) :

∑
i,j

X 2
i,j ≤ 1,

∑
i

f 2
i + g2

i ≤ 1
}

= sup
√∑

i,j
f 2
i + g2

j =
√

N

so one needs τσ ≤ 1/N. Then, one has (assuming X 0 = 1
N2 1 ⊗ 1 or 0)

sup
X≥0,

∑
i,j Xi,j =1

1
2 |X − X 0|2 ≤ 1

2 , sup
|f |,|g |≤λ

1
2(|f |2 + |g |2) ≤ Nλ2

hence the rate is less than (2/k) times:

min
στ=1/N

1
2σ

+ Nλ2

τ
= min

σ>0

1
2σ

+ N2λ2σ =
√

2Nλ

and the optimum is for σ = 1/(Nλ
√

2), τ =
√

2λ.
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In the second case:

L = sup
{∑

i,j
Xi,j(fi + gj) :

∑
i,j

|Xi,j | ≤ 1,
∑

i
f 2
i + g2

i ≤ 1
}

= sup max
i,j

fi + gj =
√

2

so one needs τσ ≤ 1/2. One recalls that (for
∑

i ,j Xi ,j =
∑

i ,j Yi ,j = 1):

DX (X , Y ) =
∑

i,j

Xi,j log Xi,j − Yi,j log Yi,j − (log Yi,j + 1)(Xi,j − Yi,j ) =
∑

i,j

Xi,j log
Xi,j

Yi,j

so that one has (assuming X 0 = 1
N2 1 ⊗ 1)

sup
X≥0,

∑
i,j Xi,j =1

∑
i ,j

Xi ,j log Xi ,j
X 0

i ,j
≤ log N2.

Hence, the rate is less than (2/k) times:

min
στ=1/2

2 log N
σ

+ Nλ2

τ
= min

σ>0

2 log N
σ

+ 2Nλ2σ =
√

N log Nλ

and the optimum is for σ =
√

log N/N/λ, τ = (λ/2)
√

N/ log N.
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