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Most of the time we will work in finite dimension. However the general setting we
can consider here is of a Banach space X with dual X* and respective norms
denoted || - ||, || - ||« with

Iyl = sup{(ys x) e x = lIx <13 [Ix] = sup{(y, ) xe = Iyl < 13-

Now, given f a C! function, one can define its differential:
f(x") = £(x) + (df (x), X" = x) o+ 0o([Ix" = x]])

but there is no obvious notion of a “Gradient”.
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Nonlinear Gradient descent

However, we can easily generalize the gradient descent as follows: given x*, we let

xk*1 be a minimizer of

1
; k Ky o Jk kg2
min f(x )+<df(x ), X — X >X*,X+ 27_||X x|
provided such a minimizer exists. This will be the case for instance

@ In finite dimension;
o If X is reflexive (or if X is a dual and f is weakly-x Isc).

We assume one of these conditions hold.
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As in the linear case, we can show the following:

Assume df L-Lipschitz and consider the iterates x* of the non-linear gradient
N 88 descent with 7 = 1/L. Then, if x* is a minimizer and
C = maxgr(x)<f(xo)} |l < 400, one has the rate:

) — () < o
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A. Chambolle X, X, S Xy
dF (x) = df ()] < [lx = X

where each norm has to be taken in the appropriate space.
Then, one has, exactly as before:

) 1
b e f(x) = f(x) +/ <df(x +s(x’ — x)),x" — X> ds
0
1

= f(x)+ <df(x),x' - X> +/ <df(x +s(x’ — x)) — df(x),x" — x> ds
0
1

< F(x) + (df (x),x" = x) +/ lldf (x + s(x’ — x)) = df(x)||«||x" — x||ds

0

1
< F(x) + (df(x), X" = x) +/ Ls||x' — x|Pds = £(x) + (df (x),x — x) + éHx' — x||2.
0
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OSSN  \\/e show the following lemma:
Let F(x) = p||x|[?/2. Then its conjugate is F*(y) = |lyl|2/(2u).
\ aradont Proof: we write
descent
I pt? pt2 1
F*(y) =sup(y,x) = S|Ix|> =sup sup (y,x) — — =supt|lyll. — — = —|ly[3.

x 2 £>0 ||| <t 2 o 2 2u
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Dual norms

We show the following lemma:

Let F(x) = p||x|[?/2. Then its conjugate is F*(y) = |lyl|2/(2u).

Proof: we write

2 2
o pt pt 1
F*(y) =sup(y,x) — Z|Ix|[> = sup sup (y,x) — — =supt|yll — — = —|ly|3.
x 2 >0 ||x|| <t 2 >0 2 2p

Legendre-Fenchel identity shows again that
y € 0F(x) & x € 0F* (y) & (y,x) = F(x) + F*(y), yet in addition, being F and F*
positively 2-homogeneous, we have also (y, x) = 2F(x) = 2F*(y) and F(x) = F*(y).
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(for p=1/7) of:
. k Ky ok kY — (kY k
min £(x¥) + (df (x*), x = x >X*’X+]-"(x xK) = F(xK) — Fr(—df (x¥)),

S o0 i (xF) € OF (XL — xK), xKHT — xk € —9F*(df(x¥)), while

= (df(x), xH ) = FORTL xR 4 F(—df (x5)).
In particular, the algorithr‘h is defined by:

X =xk —rpk ph e df (<)L - [14(df (x¥)).

By 2-homogeneity of F and F* one also sees that F(x**1 — xk) = F*(—df(x¥)).
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FORHY < F(xF) + <df(xk)7xk+1 _ Xk>X*7X n élleJrl VI
= A 5 Ik Pk )= 7 (i () = £k (5 = o ) Ik ot 2T ) 2.
Nonlincar “gradient” so that if 7 = 1/L, one obtains:
FH) < F64) = o G 2,

Now we can proceed as in the Euclidean setting. We observe that
F(x*) > FxK) 4+ (df () x* = xK) = F(R) = F(x®) < [ldf (X)L flxk — x|
so that if Ay = f(xk) — f(x*),

2
Ak

A <Ay ———7F7—.
k+1 S Bk L[k — x |2
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If we now that Cx = maxo<;<k ||x' — x*||> < C remains bounded (for instance if
{f < f(x%)} is bounded) then we deduce:
o= 2LC
f(x¥) = f(x") < ——
()~ ) < s

as in the Hilbertian case.
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Strongly convex functions in non-Euclidean spaces

Are not!! functions f such that f — p|.||>/2 is convex!

Definition

The function f is u—strongly convex if and only if for any x,x" € X and t € [0, 1],

M||X_X/H2

fltx+ (1 —t)X) < tF(x)+ (1 = t)f(X') — >

Then one can show the following. We assume X is reflexive.

Let f : X — RU {400} be convex, proper, lower semi-continuous. Then f is
strongly convex if and only if for all x,x" € X and all y € Of(x), one has:

F(x") > F(x) + (s X" = X) pp 2+ g|]x—x’||2.
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Strongly convex functions

Proof. One direction is easy (and does not require lower semicontinuity): if f is strongly convex and
x,x" € X, y € 9f(x), then for any t € (0, 1),

Fbx+ (1= £)x') > F() + (1= t) (y,x = x).

From the strong convexity, we deduce

2
[l — %%

f(x)+(1—1t) <y,x’ 7x> < tf(x) + (1 — t)f(x') — “t(1; t)

Dividing by (1 — t) it follows:
t
F(x') > F(x) + (v, ¥ = x) + nsllx =12

and letting t — 1 we conclude.
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Strongly convex functions

For the converse, we need to use points where the subgradient exists. Let x,x” € X and t € [0, 1].
We do as follows: we let x¢ = tx + (1 — t)x’ and assume f(x), f(x’) are finite (otherwise, nothing to
prove). Let &, be a minimizer of:

n
min £(€) + = ||€ — xe||?
in £€) + 3 € — x|
Being || - || strongly continuous, one can show that a solution (which exists because a minimizing sequence
is bounded, hence weakly converging since we assumed X is reflexive, and Hahn-Banach's theorem then
shows that f is weakly Isc.) satisfies:

Of(&n) + nll&n — xe IOl - (€ — xt) 20 & Tna € —nll€n — xc[|O]] - [|(§n — xt) s:t. np € OF(En).-

Using
f(&n) + g\lén —xe|? < F(xe) < tf(x) + (1 = £)f(x') < +o0,

we deduce that £, — x¢, then that f(x¢) < liminf, f(&,), and eventually that
Slg =l =0

as n — o0.
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Strongly convex functions

Now, we can write:

F(&n) + (nn, x — &n) + G lIx — &nll?

(&n) + (nn, X" — €n) + G I = &nll>.

—

{f(x)
F(x')

We multiply the first equation by t and the second by (1 — t), and sum:

-

tf(x) + (1 = t)f (x") = £(&n) + (nn, xe — &n) + %(tHX =&l + (L= )X — &)

As || - || is positively 1-homogeneous, Euler's identity shows (1n, xt — &) = nl|xt — &n||2 — 0 as n — oo. In
the limit (and because f is Isc) we find

tF(x) + (1= )f (x') > f(x) + g(tllx = xe|? + (1 = 1)|Ix" — xe|?)

2
[lx = x|

= F(x0) + 21 02— I+ (1= D21 xIP) = ) + D
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Strongly convex functions and Lipschitz differentials

Now, we have the following theorem, which is a duality result between convex
functions with Lipschitz differential and strongly convex functions:

Let f be convex, Isc. Then f has (L-)Lipschitz differential if and only if f* is
(1/L-)strongly convex.

Proof: If f is convex with L-Lipschitz differential, then one has for all x, x’
/ / L 2
F(x) < F(x) + (df(x),x" = x) + 5 = X112

We let y = df(x) so that, by Legendre-Fenchel’s identity, x € 9f*(y) and (y,x) = f(x) + *(y).
Taking the conjugate of the inequality at a point y’, we have

L L
f*(y!) > S)L(le <y/,Xl> — f(x) — <y,X’ _ X> - E”X — X/“Z = f*(y) +5)|;|,p <y/ —y,X’> _ EHX —X/H2,
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Strongly convex functions and Lipschitz differentials

Now, we recall that

L 2\ * 1 5
(31°17) @ =512
We deduce

sup (y' fy,X’>f§||X*X’|l2 =(y fy7X>+S;1/p (y' =y, ¥ 7X>*§HX*X'II2 = (v *Y’X>+i||y/*}’“§7

x!

so that 1
(') = f*(y)+<y’—y7><>+illy’—ylli ()

so that f* is (1/L)-convex. Conversely, if y,y’ € X* and x € 9f*(y), the same computation will show that
if (%) holds: (using y € 9f(x) and (y, x) = f(x) + f*(y)):

F'Y < FOO (v, = x) + I = P

Since f(x’) > f(x) + (y,x’ — x), we deduce that f is differentiable at x and y = df(x).
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Strongly convex functions and Lipschitz differentials

In addition, if y’ € 9f(x’) (hence as above, y’ = df(x’)) so that x’ € 9f*(y’), we write:
1 1
O =2 W)+ (Y —yx) + Sp Y = yIE and £ (y) > £7(v) + (y=y'.x)+ Sy = ¥IIE

and we deduce (x’ — x,y’ —y) > |ly — y'||2/L. Since (x' — x,y" —y) <|Ix — x"|||ly — y’||« it follows that
IdF () — dF (<)l = lly — vl < Liix = x|,
It remains to check that df is defined everywhere. Observe that f is globally bounded by a quadratic
function hence locally finite, hence locally Lipschitz. Then, if x, — x are points where a subgradient (hence
differential) exists, since df (x,) is a Cauchy sequence: there exists y € X* with df(x,) — y and we pass to
the limit in:

F(x') > f(xn) + (df(xa), X' = xn)

to conclude that p € 8f(x) so that y = df(x). Hence f is C! with Lipschitz gradient. |
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A typical example is given by the entropy in R on the unit simplex
Y ={xecRy: x>0, x=1}k

£(x) = {Z,-x,- logx; ifxeX

400 else

(where 0log 0 is defined as 0). Then, one shows that the conjugate is the
“log-sum-exp” function:

£(y) = log Z exp(y;)

I

also called “soft-max” since £*(y/e) is an approximation of the max as ¢ — 0.
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Example

Pinsker inequality

Then, one can show the following:

Lemma (Pinsker inequality)

€ is 1-strongly convex in the /* norm.

That is, for any x, x’ € ¥ the unit simplex, p € 9¢(x),

|2

£0) —€0) — (pox' = x) = Sl log % » .

This latter inequality is called the “Pinsker inequality”.
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| -]l1 is the £ norm, then || - |l = || - ||co-

Proof: We leave as an exercise that if || - || =

First we prove the expression for {*: one has to compute sup, 5y Zix,-y,- — xj log x;. For the maximum x
there is a Lagrange multiplier A for the constraint ZI.X,‘ =1 and one has y; — logx; — 1 =X\ (and in

Batoch 2 particular £*(x) = Z'_x,-()\ +1)=X+1=:)). One has x; = exp(y; — \') and since Z'_x; =1,
exp(—X) Ziexp(y,-) = 1 so that exp(\) = Zfexp(y,-), and \ = log Ziexp(y,-).
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lde*(y') — de* ()l = sup (z,de*(y') — dE*(v))
llzllec <1
1
= sup <Z/ & (y+s(y —y)- (v — y)d5>
llzllec <1 0
' y' -y
< sup / (261,02 (v + 50 =) =2 Y sl = vl
gl lz()oe <1 Jo ly" = ylloo
1
< / Ly +s(y" = y)dslly" = ylleo
0
where o2
é‘*
Liy) = sup ()oiT

oi€l-11],mel-11] 4 9yidy;

If we can show that L(y) <1 for all y, we are done.
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Example

We now show that L(y) < 1 for all y € RY. First, letting (for a given y € R9) a; j := 8?j§*(y), we have
ajj = (9,‘5,',J' — 9,‘9j

where 0; = exp(y;)/ Zk exp(yx) and §; ; is the Kronecker symbol. In particular, § € X, and we see that
Zi ajj =0 for all j and Zj ajj =0 forall i.

Then, let 7,0 be a maximizer. Let o} =1 if Z,‘ ajj7j > 0 and —1 else, and then 7'1.’ =1if Z,’ aj jol >0
and —1 else: one checks that (¢’,7’) is also a maximizer. Hence one can restrict the maximisation problem
over 0j,7; € {—1,1} and in particular we see that

L(y) = L Z ’ Z ai joi
TR

Then, Zl. aj joi = Zim:l aij— Z'_:Ui:_l ajj =2 Zi:a,:l aj j since Zi a;jj = 0. Introducing the variable
& =20 — 1, we find that the max is
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Then, for all j,

‘ E &iaij
i

1-¢-0) ifg=1
£-0) if & =0

=§0(1 —€-0)+(1—¢&)0;(€-0)

= |60 — (€ 0)0;| = 0;|¢; — (¢-0)| = {ZE

so that

° E ‘E &iajj
J i

We deduce

w

=E0(1—E€-0)+(§-0)—(£-0)>=26-0(1—&-0).

= . —_£.9)< —t)=
L(y) 45’_21{%%1}(5 0)(1—-¢ 0)—402?§1t(1 =1

Remark: we see that the max is reached for 7 = o, minimizing |7 - 0] = | Z_r_:l 0; — 27:71 0il.



Bregman distances and Legendre function

Continuous
(convex)
optimisation

SR We say a convex function £ with domain D C X is “Legendre” (Rockafellar 1970,
Chen-Teboulle 1993) if

(i) ¢is Clin the (relative) interior of D;
(it) limy—ap [VE()| = +oo;
(iii) & is 1-convex.

In particular, 9&(x) = 0 for x € 9D, and, given f convex, Isc., then if x solves:
min £(x) + f(x)

one must have x € D and —V£(x) € 9f (x)
[If “relative” in (i) this needs to be adapted a bit)]



Bregman distances
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(convex) Given ¢ Legendre, we define for x, x’ € X

A Chambolie De(x', x) := &(x") = &(x) — (d€(x),x" — x)

and we observe that D¢(x’,x) > 0 (by convexity), moreover
De(x', x) > ||x" — x]|?/2 if (iii) holds.

One has the following result:

Three-point inequality [Chen-Teboulle 1993, Tseng 2008] Let g be convex, Isc., and
assume X is a minimiser of miny D¢(x,X) + g(x). Then for all x,

De(x, %) + g(x) = De(%,X) + g(%) + De(x, %).
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Bregman distances

Proof: one has by minimality that
di(X) —dé(x) +0g(X) 20 < 0g(k) 3 dg(x) — d&(%).

Hence for all x,
g(x) > g(x) + (d§(x) — d&(%),x — %)

We deduce
£(%) — (d&(%), x — X) + g(X) + (d§(xX) — d§(%), x — %)
(d§(X), x—=% + & — X) + g(X) + (d§(X) — d§(X),x — %)

De(x, %) + g(x) 2&(x) —
(d&(%), % — %) + (%)

€(x) =€(%) +£(%) — &(x) -
€(x) = &(%) +&(%) — (%) — (d€(X), x = %) —

= D¢(x, %) + De(%X,%) + g(%).
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Let £ be a Legendre function.
Assume the function f has L-Lipschitz gradient and g is such that one can
compute for each k:

A. Chambolle

min =Dy (x,x¥) + (df(x), ) + g(x)

xedom& T

and let x*1 be the solution. This is a “mirror-prox” algorithm. Then thanks to
the “three points inequality” one can deduce the same as for the forward-backward
descent: for any x, one has for 7 small enough, letting F =f + g:

1 1
;DE(X,Xk) + F(x) > F(x**1) + ;Dg(x,xkﬂ)
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D xk) + F(x) 2 F() 2D, x4 (+

we deduce exactly as in the Euclidean case:

Convergence rate for the mirror descent

Assume there exists x* a minimizer of F in dom&. Then the mirror-prox algorithm
produces a sequence which satisfies:

Fxk) - F(x) < 200

V

As usual, we obtain this by taking x = x* and x = x* in the descent inequality (x).
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Mirror descent (explicit-implicit)

One has thanks to the 3-points inequality:

%Dg(x,xk) +FG) > %DE(X, <)+ F(F) + (dF(xK), x — x<) + g(x)

1 1
> ZDex 1, x4) + Fxk) + (dF() X1 = x) 4 g1 4 Dl ).

Now f(x*) + <df(x"),x’<Jrl - xk> = f(x**t1) — D (xk*1, xk) by definition so that:
1 K 1 K1k k1 k kt1y , L k+1
;DE(X7X )+F(X)2;D§(X s X )_Df(X 3 X )+F(X )+;D§(X)X )

Now, if f has L-Lipschitz gradient then Df(x*t1, xk) < L||xkt1 — xk||2/2, while & being strongly convex,
De(x**1, xK) > ||xk*1 — xk||2/2. Hence one finds that if 7 < 1/L,

1
;DE(Xk+1,Xk) _ Df(Xk+l,Xk) >0

and this ends the proof.
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Relative smoothness

However, here, we need the strong convexity of £ and the Lipschitz gradient of f
only to bound the difference Dg(xkﬂ,xk)/T — Df(x**1, x¥). So a much simper
and better assumption could be “there exists L such that LD; — Df > 0"

When is it true??? Observe that by construction,

Df_, = Df — Dy

so that clearly, D > D, for any points if and only if f — g is convex. Hence:

Definition
One says that f is L-relatively smooth with respect to £ if LE — f is convex.

The nonlinear forward-backward algorithm has the rate O(1/k) (when a minimizer
exists) as soon as f is L-relatively smooth wr. £ and 7 < 1/L.

(No L-Lipschitz or strongly convexity assumption needed here — “NoLips” algorithm (Bauschke, Bolte,

Teboulle 2017). Can be improved with over-relaxation which depends on ¢.)
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Definition

One says that f is relatively strongly convex wr. £ if there exists v > 0 such that
f — ~& is convex.

In case f or g is relatively strongly convex, one obtains a linear convergence rate.
Indeed, the three-points inequality is improved to:

ey De(x,%) + g(x) > De(3,%) + (%) + (1 + jig) De(x. %),

and the descent inequality is improved as before to, for 7 < 1/L:

1— 1
T D¢, xK) + F(x) 2 F(x1) + =8 D, x4



Accelerated Mirror descent

[Nesterov, Tseng]
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Unfortunately, there is no way to accelerate under the mere assumption of relative
smoothness, nor can we improve easily this method when f is relatively strongly

convex. (cf Dragomir, Taylor, D'Aspremont, Bolte 2019.)

Assuming & is 1-convex and Vf is L-Lipschitz, on the other hand, makes
acceleration is possible. This is improved in addition under a relative strong
convexity assumption.

The “accelerated mirror descent” is a possibility, the “accelerated primal-dual”
algorithm another. We now explain the mirror descent algorithm in the simplest
case, that is non relatively strongly convex.
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The general algorithm is as follows: we assume f is has L-Lipschitz gradient. Let
also g such that min, ag(x) + &(x) + (p, x) is easily computed.
We pick x9, set y9 = 20 = x%, let ag = By = 0.

A. Chambolle

© Let a1 be the largest root of:
2
Bry1 = Bk + a1 = Lakq;

Q@ Let: x1 = (12X + Bry*) /Bt
© Define zK*! as the minimizer of

min
X Ok41

Q Let y"+1 = (aksz*l + 5kyk)/5k+1; return to 1.

De(z,2%) + (g(2) + FKT) + (df (x*11), z — x4



Accelerated Mirror descent

Coniinnuzng We prove that, letting F = f + g:
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N Rate of convergence for accelerated mirror descent.
F ~hambolle




Accelerated Mirror descent

Continuous We prove that, letting F = f + g:
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Rate of convergence for accelerated mirror descent.
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Proof: As in the descent lemma, we have that

a1 (F(2) + 8(2)) + De(z,25) > aura(g(2) + FOKH) 4 (df (x*), 2 = xKF1)) 4 De (2, 2%)
> ak+1(g(zk+1) + f(Xk+1) + <df(Xk+1)7Zk+l _ Xk+1>) + Dg(2k+l,zk) + DE(Z, Zk+1)

Accelerated Mirror

s Now we use that a1 = Brr1 — Bk and 125t = By Tt — Bry* to write:

Oék+1(f(Xk+1) 4 <df(Xk+l),Zk+1 _ Xk+l>)
— 5k+1(f(xk+1) + <df(Xk+1),yk+1 o Xk+1>)) 7 ﬁk(f(Xk_H) + <df(Xk+1),yk o Xk+1>))
> Brya(FATh) = De(y* 1, x4H)) = Bif (v5).

Also: Biy18(y 1) < arr18(2%M) + Big(yk) by convexity.
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Hence combining these inequalities we have:
iy1(g(Z) + FOET) 4 (df (K1), 24 = X)) > Biya (F(yFHT) = De(y* x5 — BeF(v¥),
and

(Bk1 — Be)F(2) + De(z,2) > Braa (F(y*h) — De(y 1, x*H1)) — B F(y¥) + De (2, 25) + De(z, 24,

that is:

B(F(y*) = F(2)) + De(z,2") > By (F(y*') — F(2)) + De(z,24M)
- 6k+1Df(yk+17Xk+1) + D§(2k+17 Zk)'

We now show that Dg(z**1, zK) > By 1 Dp(y* L, xk+1).
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Accelerated Mirror
descent

Accelerated Mirror descent

Dg(zk‘*'l,zk) > Bis1De(y 1t xkt1): here we use that f is L-Lipschitz and ¢ 1-convex, so that

1
Dg(zkﬂ,zk) _ ,3k+1Df(yk+l,Xk+1) > 5 (szJrl _ Zk||2 _ Bk+1L”yk+1 _ Xk+1||2)
2
1 k41 k)2 Chtl | _k+1 k2
_2<||Z+ — 2|7 = B L1 = 24P ) >0
k+1

by the definition of 1.

We deduce:
Bi (F(y*) = F(2)) < De(z,2°) + Bo(F(y°) — F(2)) = D¢ (2, 2%).

1++/1+4LB,
2L

Now, aki1 = and Bxi1 = Bk + aky1. By induction we deduce that 8x > k?/(4L). Indeed, if

true, it implies:

1+vVk2Z+1 K+2+2vVk2+1 (VK2 +1+1)2 _ (k+1)2
et 22— and B 2 il = al TR



Accelerated Mirror descent

Remarks

Continuous
(convex)
optimisation

A. Chambolle

o A “backtracking” technique is available if one does not know L in advance;
@ Requires increasing sequence «: might become harder and harder to compute
as k increases;
o Better rate if g is relatively strongly convex (or f, possibly modifying the
algorithm). Linear with w ~ 1 — \/u/L if u << L (with varying or fixed o, 3);
@ “Relatively” strongly convex might not be very interesting in general. (Main
e example: “smoothing”.)



Nonlinear primal-dual algorithm

Continuous
(convex)

EFEIEEIE: One can extend also the primal-dual algorithm to the non-linear case. In fact, it is
Sl even simpler. We introduce strongly convex Legendre functions &, &, for both x

and y and assume we want to solve

min  sup g(x) + (y, Kx) — F*(y).
xedom &x yedom &
Algorithm: Bregman PDHG
. 1

s et xk*1 = argmin g(x) + <yk, Kx> + ;Dx(x,xk) ,

a * 1
yk* = argmin f*(y) — <Ya K(2x T — Xk)> * ;Dy(y,yk)




Nonlinear primal-dual algorithm: descent rule

Continuous
(convex)

e With the same notation as in the previous lecture:

A. Chambolle

- . . 1 _
y =argminf*(y) = {y, KX) + —Dy(y.¥),
1
k% =argming(x) + (¥, Kx) + —Dy(x, X)
x T

we can deduce the same descent rule: for all x € dom¢,, y € dom¢,,, one has:

].JrT/JgD(
77_ X

£0) + (Kx,9) + D1 %) 2 8(3) + (K%,9) + ZDu(5,%) + %)

. 3 1 e w1 1doue
Nonnear rimabdal () = (KX y) + —Dy(y,y) 2 £7(9) = (K%, §) + —Dy(§,9) + ————

algorithm

D}/(Y7}A’)~

reproducing the same computation and using the 3-points inequality (here if g is
ftg relatively strongly convex wr &, and f* is ¢ relatively strongly convex wr &, ).
Then the convergence proofs are identical. For instance, we get:



Nonlinear primal-dual algorithm

Continuous
(convex)
optimisation

Rate for Nonlinear PDHG

We let ZN = (XN, YN)T .= L 527, 2. Then for all x € dom&, and y € dom &,

A. Chambolle

£OXM,y) = £ YY) £ 3 (700 + 20,05 = (¥ = ¥ K(x = %))

provided 0'7'[.2 < 1, where L := SUp”XHSLHyHSI <y, KX>

Remark: under this condition, one has

et (y — y0, K(x — x°%)) < Di(x,x°)/7 4+ Dy(y,y°)/o so that one can also bound the
rate by

2 /1 1
Sy (DX(X,XO) + gDy(y,y°)> :

T



Continuous
(convex)
optimisation

A. Chambolle

Nonlinear primal-dual
algorithm

(Accelereated) Nonlinear primal-dual algorithm

If in addition g is ju, relatively strongly convex, then, as in the Euclidean case, one

k k+1

can update y* with x* + 0, (x* — x*~1) and then x* with y

Accelerated rate

Choosing x 1 = x°, 0g79L? < 1 and for k >0, k1 = 1/\/T+ pig7x,
Tkt1 = TkOk+1, Ok+1 = 0k/Ok+1, one has:

T(LXM, y) = L0 YY) + TN = xIP < Z2Dx(x,x%) + Dy (3,
0

27N

where Ty = N3 oy ~ pgk?/1%, ZV = TN SN L orzktt (z = (x,y)).

%)

and we obtain:




Application of Bregman (primal-dual) descent

Continuous
(convex)

optimisation
A. Chambolle Example: Complexity for “optimal transportation” problems.
Problem: optimal assignment:
min {C:X : X1=41,XT1=41,Xx >0}
where C is an N x N cost matrix (in general > 0 but this is not important), X is
an N x N matrix with 37, X;; =1, C: X =37, G ;Xj;and 1 = (1,.. ., nr.
Then one can show that this problem is solved by a permutation matrix
Xij = 0c(iyj for € € S(N), which minimizes the cost >>; C; (;. More general
ISP problem: X1 =1, X1 = v where p, v are discretized probability measures

(35; i = 1): convexification of “optimal transportation” problem (then X might
not be a permutation anymore).



Optimal assignment

Continuous
(convex)

e o Primal-dual and dual formulation:

A. Chambolle

min sup C:X+f-(u—X1)+g-(v—X"1)

XZOf,gER’V
= f- : inX:(C—fol-1 = f- .
Wl erevigRXCofelmieg =, mag farey

Then, one can show that there is a solution (X*, f*, g*) with:

X,',j>0:>fi+gj:C,'7j
f,'+gj<C,-L,-¢X,-,J-:0.

Nonlinear primal-dual
algorithm

In particular:
e (f,g) solution = (f + c,g — c) solution for any constant c;
@ One can find a solution with |fi|,|gj| < |C|x/2 (|C|ec = max;; G ).



Optimal assignment

Continuous
(convex)
optimisation
EEREN  Primal-dual algorithm, for A = |C|y/2:
min sup C: X—-X:(fel-1®g)+f -pt+g-v:
XZ20|f|,|g[<A
We pick X, %, g% and let for k > 0:
1
el ghtly = i = (De(f, £+ D, N —fp—gv-X:(fe1-1 :
(FK,g" ) = ar |f|,|?|lgx/2r( ((F, )+ Dr(g.8") —f - n—g-v (fol-1@g)
(FKFL, gFHh) = 2(FKF1, g%ty — (FK, %)
Nonlinear primal-dual Xk+1 =arg min EDX()<7 Xk) + X (C _ fk+1 ®R1-1® gk+1) )
algorithm X>0 0

(the minimizations wr f and wr g are uncoupled).



Optimal assignment

Continuous
(convex)
optimisation

A. Chambolle

One obtains a rate of the form:
2 /1 1 1
GapX < Z [ ZDx(X, X%) + =D¢(f, )+ =D °>.
ap_k(a X(7 )+T f(a )+7_ g(g7g)

with o712 < 1. Let us consider two cases:
@ & =& = |-[2/2, & = |- /2 (Euclidean case);

Q &r=¢& =1-7/2 & =X, Xijlog Xij with 3, ; X; j = 1 (Entropy case), and
Nonlinear primal-dual the norm HXH — HX”]_ — Zl,j |XI,J’

algorithm



Optimal assignment

Euclidean

Continuous

(convex) In the first case:

optimisation
i i i

ij

A. Chambolle

so one needs 7o < 1/N. Then, one has (assuming X° = %1 ® 1 or 0)

—_

1
sup ~(If1* + |g]?) < NA?

1 02
sup X = X" < =,
2 I If1lgl<A 2

xzo,zl_jx,-,,-=1

hence the rate is less than (2/k) times:

Nonlinear primal-dual
algorithm

1 NN 1
min — + — = min — + N2)\20 = V2N)
or=1/N 20 T o>0 20

and the optimum is for o = 1/(NAV2), 7 = V2.



Optimal assignment

Non-linear

c(ontinuo)us In the second case:

optimisation

 Chambolle L =sup {ZX,-J(f,- +g): Z IXij| <1, Z f2+g? < 1} = sup mizjlx fitg =2
i i i 7

so one needs 70 < 1/2. One recalls that (for 37, ; Xij = > Yij = 1):

Xij
Yij

Dx(X,Y) = ZX:',/ log Xi,j — Yi,jlog Vi, — (log Yij + 1)(Xij — Vi) = in,j log
ij ]

so that one has (assuming X° = 7,1 ® 1)

X;
»J 2
sup ZX;JIogWSIogN.
Nonlinear primal-dual XZO’ZiJ Xi’j:1 i’j hJ
algorithm

Hence, the rate is less than (2/k) times:

2log N N)\z_ . 2log N

min + = min

+2NX20 = v/Nlog NA
or=1/2 O T o>0 o

and the optimum is for o = \/log N/N/X, 7 = (A\/2)\/N/log N.
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