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Abstract xiii

Interplanetary transfers with low consumption using the properties of the re-
stricted three body problem

Abstract

The first objective of this work is to understand the dynamical properties of the circular restricted
three body problem in order to use them to design low consumptionmissions for spacecraftswith a low
thrust engine. A fundamental property is the existence of invariant manifolds associated with periodic
orbits around Lagrange points. Following the Interplanetary Transport Network concept, invariant
manifolds are very useful to design spacecraft missions because they are gravitational currents. A
large part of this work is devoted to designing a numerical method that performs an optimal transfer
between invariant manifolds. The cost we want to minimize is the L1-norm of the control which
is equivalent to minimizing the consumption of the engines. We also consider the L2-norm of the
control which is easier to minimize numerically. The numerical methods are indirect ones coupled
with different continuations on the thrust, on the cost, and on the final state, to provide robustness.
These methods are based on the application of the Pontryagin Maximum Principal. The algorithms
developed in this work allow for the design of real life missions such as missions between the realms of
libration points. The basic idea is to initialize a multiple shootingmethodwith an admissible trajectory
that contains controlled parts (local transfers) and uncontrolled parts following the natural dynamics
(invariant manifolds). The methods developed here are efficient and fast (less than a few minutes
to obtain the whole optimal trajectory). Finally, we develop a hybrid method, with both direct and
indirect methods, to adjust the position of the matching points on the invariant manifolds for missions
with large energy gaps. The gradient of the value function is given by the values of the costates at the
matching points and does not require any additional computation. Hence, the implementation of the
gradient descent is easy.

Keywords: optimal control, circular restricted three body problem, continuation method, shooting
method, indirect methods, spacecraft mission, invariant manifolds

Transferts interplanétaires à faible consommation utilisant les propriétés du
problème restreint des trois corps

Résumé

Le premier objectif de cette thèse est de bien comprendre les propriétés de la dynamique du problème
circulaire restreint des trois corps et de les utiliser pour calculer des missions pour satellites pourvus de
moteurs à faible poussée. Une propriété fondamentale est l’existence de variétés invariantes associées à
des orbites périodiques autour des points de Lagrange. En suivant l’idée de l’Interplanetary Transport
Network, la connaissance et le calcul des variétés invariantes, comme courants gravitationnels, sont
cruciaux pour le design de missions spatiales. Une grande partie de ce travail de thèse est consacrée
au développement de méthodes numériques pour calculer le transfert entre variétés invariantes de
façon optimale. Le coût que l’on cherche alors à minimiser est la norme L1 du contrôle car elle est
équivalente à minimiser la consommation des moteurs. On considère aussi la norme L2 du contrôle
car elle est, numériquement, plus facile à minimiser. Les méthodes numériques que nous utilisons sont
des méthodes indirectes rendues plus robustes par des méthodes de continuation sur le coût, sur la
poussée, et sur l’état final. La mise en œuvre de ces méthodes repose sur l’application du Principe
du Maximum de Pontryagin. Les algorithmes développés dans ce travail permettent de calculer des
missions réelles telles que des missions entre des voisinages des points de Lagrange. L’idée principale
est d’initialiser un tir multiple avec une trajectoire admissible composée de parties contrôlées (des
transferts locaux) et de parties non-contrôlées suivant la dynamique libre (les variétés invariantes).
Les méthodes mises au point ici, sont efficaces et rapides puisqu’il suffit de quelques minutes pour
obtenir la trajectoire optimale complète. Enfin, on développe une méthode hybride, avec à la fois des
méthodes directes et indirectes, qui permettent d’ajuster la positions des points de raccord sur les
variétés invariantes pour les missions à grandes variations d’énergie. Le gradient de la fonction valeur
est donné par les valeurs des états adjoints aux points de raccord et donc ne nécessite pas de calculs
supplémentaire. Ainsi, l’implémentation de algorithme du gradient est aisée.

Mots clés : contrôle optimal, problème circulaire restreint des trois corps, méthode de continua-
tion, méthode de tir, mission spatiale, méthodes indirectes, variétés invariantes

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France
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Introduction (french version)

Ce travail de thèse traite du design de missions spatiales dans le système solaire, c’est-à-
dire, comment trouver, pour un satellite soumis à l’attraction desN corps du système solaire,
une trajectoire associée à une commande réalisant le voyage souhaité.

Il est usuel et naturel de considérer que le satellite n’a pas une masse suffisamment im-
portante pour influencer les mouvements des N corps massifs que l’on considère. Ceux-ci
se déplacent en suivant des orbites déterminées par leurs influences mutuelles. Le but de
design de trajectoires est de calculer des transferts pour le satellite le faisant passer d’une
orbite de départ à une orbite d’arrivée en contrôlant les moteurs du satellite. De tels trans-
ferts peuvent être entre orbites autour de la Terre, par exemple de l’orbite terrestre basse (ou
LEO) vers l’orbite géostationnaire (GEO), ou une mission depuis une GEO vers une orbite
autour de la lune, autour de Mars, etc. Il y a une multitude de configurations possibles, et
c’est un vrai défi scientifique de pouvoir calculer de tels transferts.

Si l’on considère l’influence de N corps sur le satellite, le problème posé en ces termes
est bien trop ardu pour être résolu. C’est pourquoi les trajectoires de satellites sont toujours
construites par des assemblages d’approximations locales.

Remark 0.1 :

Chorégraphie pour sept corps sur une
fleur.

Il existe de très beaux travaux traitant de l’obten-
tion de solutions périodiques dans le problème
des N -corps. Montgomery et Chenciner [27] ont
déterminé des solutions périodiques pour les-
quelles les masses des N corps sont toutes égales
et également réparties le long de l’orbite. Ces so-
lutions sont appelées des chorégraphies des N
corps. Beaucoup d’efforts ont été fournis aussi
bien pour prouver l’existence de telles trajec-
toires que pour les calculer numériquement. Les
chorégraphies ont été en particulier découvertes
en utilisant des méthodes variationnelles, et plus

récemment des approches topologiques, plus spécifiquement pour établir une classifi-
cation dans le cas d’orbites planaires.
Les formes produites par de telles solutions ainsi que les animations qui en résultent
sont fascinantes, nous renvoyons à [79, 77] pour des tracés et des animations.

1



2 Introduction (french version)

Approximation locales par orbites coniques

On considère donc le mouvement d’un satellite dans un champ gravitationnel produit
par les N corps. Les lois de la gravité de Newton nous donnent alors

Üq(t) =
N∑
i=1

µi

(
q(t) − qi (t)
‖q(t) − qi (t)‖3

)
+
T (t)
m(t) ,

où q est la position du satellite, qi est la position du i-ème corps, µi = Gmi ,G est la constant
gravitationnelle,mi la masse du i-ème corps, T est la poussée du moteur, etm est la masse
du satellite.

Comme nous l’avons déjà dit, pour pouvoir espérer résoudre notre problème initial, on
cherche à déterminer des approximations locales. Pendant des dizaines d’années les tra-
jectoires étaient décomposées en ne considérant l’attraction que d’un seul astre à la fois.
Même pour les trajectoires interplanétaires, et pas uniquement pour des transferts autour
d’un unique astre, cette approximation est suffisante pour de nombreux calculs. De specta-
culaires missions de la NASA telles que la mission Voyager ou Galileo sont basées sur cette
approximation képlérienne, ou approximation locale par orbites coniques. Très récemment,
le projet Rosetta conduit par l’ESA a aussi été calculée avec cette méthode pour un trajet de
plus de 10 ans ! Pour des références sur le sujet, on peut consulter, par exemple, [8, 9].

Remark 0.2 : Assistance gravitationnelle, Swing-by or Fly-by

L’assistance gravitationnelle ou appui gravitationnel, dans le domaine de la mécanique
spatiale, est l’utilisation volontaire de l’attraction d’un corps céleste (planète, Lune) pour
modifier en direction et en vitesse la trajectoire d’un engin spatial (sonde spatiale, satel-
lite artificiel…). L’objectif est d’utiliser ce phénomène pour économiser le carburant qui
aurait dû être consommé par le moteur-fusée du véhicule pour obtenir le même résultat.
(wikipédia)

Ce procédé peut permettre d’augmenter ou de diminuer la vitesse du véhicule ou de
changer sa direction. La figure ci-dessous, pour la mission Cassini-Huygens, illustre
cette méthode.
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Pour choisir à partir de quand nous considérons l’influence d’un corps donné sur le sa-
tellite, le concept de sphère d’influence a été introduit. Cette sphère consiste en la région
entourant un corps céleste et dans laquelle l’influence gravitationnelle est primordiale pour
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tout objet en orbite. La méthode consiste à choisir des parties d’orbites hyperboliques hé-
liocentriques de telle façon que le véhicule entre au bon moment dans la sphère d’influence
d’un autre astre (disons la terre) de façon à ajuster la vitesse comme on le désire, et ainsi
de suite. L’orbite finale, qui est un ensemble d’orbites képlériennes mises bout à bout, peut
être alors utilisée pour initialiser une intégration dans le problème complet en considérant
les N corps.

Poussée forte ou impulsion

Il existe différentes modélisations pour le contrôle du satellite qui dépend de la tech-
nologie utilisée. Pour les impulsions ou poussées fortes, on considère que l’on est capable
de changer instantanément la vitesse du véhicule. Les impulsions sont couramment notées
∆V , et appelées Delta-V. Ces impulsions sont produites par des moteurs à réaction et sont
proportionnelles à la poussée par unité de masse et au temps de poussée.

Le Delta-V est donné pas l’équation de Tsiolkovsky

∆V = ve ln
m0

mf

où
— m0 est la masse totale de l’astronef au début de la phase propulsée,
— mf est la masse totale de l’astronef à l’issue de la phase propulsée.
— ve est la vitesse d’éjection des gaz,
— ∆V est la variation de vitesse entre le début et la fin de la phase propulsée considérée,
— et ln est la fonction logarithme népérien.
De nombreuses méthodes ont été développées pour optimiser à la fois les impulsions et

les fly-bys afin d’établir des missions à faible consommation, les fly-bys étant utilisés pour
économiser des impulsions. On peut citer le travail [67] pour une publication récente sur le
sujet.

Le véhicule Rosetta, lancé en mars 2004, a subi quatre assistances gravitationnelles per-
mettant ainsi d’atteindre la vitesse et la position de la comète 67P/Churyumov–Gerasimenko
en août 2014. Rosetta a été la première mission de rendez-vous avec une comète.

Approximation plus fine
Pour des missions comme Rosetta, Voyager ou Galileo, la vitesse relative du satellite par

rapport aux corps considérés est suffisamment élevée pour que l’approximation considérant
que les orbites képlériennes ne sont que peu perturbées par les autres corps au sien de
la sphère d’influence. Cependant, dès qu’on considère des vitesse faibles, et des poussées
faibles, une approximation plus fine est nécessaire.

Le terme de capture balistique (ou phase balistique) est souvent utilisé (ballistic capture
en anglais).

Definition 1 : La capture balistique (ou phase balistique) signifie qu’aucun contrôle n’est né-
cessaire pour réaliser le transfert, ou une partie du transfert, souhaité. En général, les phases
balistiques sont temporaires et sont en alternance avec des phases contrôlées. Dans ce travail
de thèse, des phases balistiques sont utilisées pour initialiser la résolution d’un problème de
contrôle optimal (cf. le chapitre 3). ♦

Poussée faible

Comme on l’a déjà mentionné, lors de l’utilisation demoteurs à poussée faible, l’approxi-
mation locale par orbites képlériennes n’est plus suffisamment précise. C’est le cas pour ce
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travail de thèse où on considère des moteurs ioniques, c’est à dire à propulsion électrique.
Pour ces moteurs, la poussée est créée par l’accélération électrique d’ions, ils ont ainsi un
rendement plus élevé que les moteurs chimiques, et donc permettent d’augmenter soit la
charge utile, soit la durée de vie du véhicule.

Ce type de moteur est caractérisé par deux paramètres principaux :
— L’impulsion spécifique (Isp) mesure l’efficacité de moteurs à réaction et des moteurs-

fusées et est définie comme l’impulsion totale (ou changement de moment) délivrée
par unité de propergol 1 consommé, son unité est alors la seconde.

— Le champ de pesanteur (д0) est le champ attractif qui s’exerce sur tout corps doté
d’une masse au voisinage de la Terre et qui s’exprime en m/s2.

Grâce à ces deux paramètres, on définit l’inverse de la vitesse d’éjection de la masse propul-
sive β = 1

Ispд0
dont l’unité est s/m. Dans la suite de cette thèse, les valeurs de ces paramètres

sont les suivants :
Isp = 2000 s, and д0 = 9.81m/s2.

Le principal inconvénient des moteurs ioniques est la poussée maximale autorisée qui
notée Tmax. En effet, celle-ci est très faible et nous considérons ici qu’elle varie entre 10 et
0.1 Newtons. Pour plus de détails sur les différentes propulsions possibles, nous renvoyons
à [82].

L’approximation des trois corps

Lorsque l’on considère un moteur à poussée faible et des trajectoires à faibles énergies,
une bien meilleure approximation du problème avec N corps est celle dite des trois corps.
En suivant les travaux de Belbruno et Miller [10], on peut imaginer mettre, bout à bout,
des solutions locales dans le problème des trois corps reproduisant ainsi ce qui est fait pour
les approximations képlériennes. Cette idée est développée en profondeur dans [52]. Par
exemple, si on considère un satellite, la lune, la Terre et le soleil, alors localement on va ne
prendre en compte que l’influence de la Terre et de la lune (lorsqu’on est proche de ces deux
corps), puis ailleurs l’influence du soleil et de la Terre. Cependant pour pouvoir mettre bout
à bout les trajectoires issues des approximations des trois corps à la manière des approxima-
tions képlériennes, il est nécessaire d’avoir une connaissance précise des trajectoires dans
le problème restreint des trois corps.

Dans ce travail de thèse, nous considérons le problème circulaire restreint de trois corps
(CRTBP pour l’acronyme anglophone). Cette approximation est discutée en détails dans le
chapitre 1. L’étude de ce problème date des travaux de Poincaré [69] à la fin du 19e siècle
dans lesquels il a développé la théorie moderne de l’étude des systèmes dynamiques ainsi
que la notion de chaos.

L’approximation CRTBP consiste donc à considérer deux corpsmassifs appelés primaires
(par exemple la Terre et la lune), se déplaçant en cercle autour de leur centre de masse, et un
troisième corps, le satellite, de masse négligeable se déplaçant dans le champ gravitationnel
ainsi créé. On se place alors dans un repère tournant dans lequel les deux primaires sont
fixes le long de l’axe x . On donne ici les points clés d’une telle approximation, plus de détails
seront donnés dans le chapitre 1. Bien que le mouvement des deux primaires soit planaire,
on considère le cas 3D où le mouvement du satellite peut aussi être selon l’axe z.

Avec un peu de mécanique élémentaire, les équations de la dynamique du satellite sou-
mis à ce champs gravitationnel sont facilement obtenues. En normalisant le système par
rapport à la distance entre les deux primaires, par rapport au temps de révolution de celle-
ci, et par rapport aux masses considérées, le système dynamique s’écrit d’une façon simple

1. Un propergol est un produit de propulsion, constitué d’un mélange de comburant et de combustible, les
ergols. La réaction chimique, entre cet oxydant et ce réducteur, fournira l’énergie au moteur-fusée.
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et élégante. On introduit ainsi le paramètre de masse

µ =
m2

m1 +m2
,

oùm1 etm2 sont les masses respectives de la plus grande et de la plus petite primaire. Les
positions des deux primaires sont alors (−µ, 0, 0) et (1−µ, 0, 0), et on note (x ,y, z) la position
du satellite.

On peut montrer qu’il s’agit d’un système hamiltonien, associé à un lagrangien qui peut
s’écrire :

L(x ,y, z, Ûx , Ûy, Ûz) = K(x ,y, z, Ûx , Ûy, Ûz) −U (x ,y, z),

où K est l’énergie cinétique

K(x ,y, z, Ûx , Ûy, Ûz) = 1

2

[
( Ûx − y)2 + ( Ûy + x)2 + Ûz2

]
,

etU est l’énergie potentielle

U (x ,y, z) = −1 − µ
r1
− µ

r2
,

avec r1 la distance entre le satellite et la première primaire (r1 =
√
(x + µ)2 + y2 + z2) et r2

la distance entre le satellite et la seconde primaire (r2 =
√
(x − 1 + µ)2 + y2 + z2).

On peut alors montrer, en utilisant les outils de l’étude des systèmes dynamiques comme
la transformation de Legendre (voir [62, 55]), que l’énergie de notre particule est

E = 1

2

(
Ûx2 + Ûy2 + Ûz2

)
+U (x ,y, z),

où on a introduit le potentiel effectif

U (x ,y, z) = U (x ,y, z) − x2 + y2

2
.

Le système dynamique s’écrit alors 

Üx − 2 Ûy = ∂U
∂x
,

Üy + 2 Ûx = ∂U
∂y
,

Üz = ∂U
∂z
.

Équilibres

Les équilibres sont des zéros du système dynamique. Ceci est équivalent à trouver des
points critiques du potentiel effectif préalablement défini. Nous présentons en détails cette
analyse à la section 1.2. Le résultat est qu’il existe cinq points d’équilibre appelés points
de Lagrange. En effet, les premières études de ces équilibres ont été faites par Lagrange
suivies par des travaux d’Euler autour de 1750 et 1760. Nous renvoyons à [54] et [34] pour
les travaux originaux. Il y a donc trois points colinéaires et notés L1, L2 et L3, et deux points
équilatéraux notés L4 et L5. Ces points sont aussi appelés points de libration.
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Position des points de Lagrange.

La connaissance de la stabilité de ces
points d’équilibre est crucial pour qui veut
construire des missions spatiales. En ef-
fet, nous allons voir dans le chapitre sui-
vant que pour certaines configurations du
problème restreint des trois corps (par
exemple, pour le système {Soleil-Jupiter}),
les points équilatéraux sont inutilisables
pour la construction de missions car étant
stables, un grand nombre de débris se
trouve tout autour de ces points et empêche
ainsi d’imaginer faire transiter un satellite à
cause du trop fort risque de collisions. Les
points d’équilibre colinéaires eux sont in-
stables pour tous les systèmes considérés ce
qui les rend finalement beaucoup plus inté-
ressants.

Nous allons aussi voir que les points
d’équilibre du système restreint des trois corps présentent d’autres propriétés très in-
téressantes. En effet, l’étude du système linéarisé autour des points L1 et L2 montre
qu’il s’agit de points d’équilibre de type center-saddle. Ainsi, le théorème bien connu de
Lyapunov-Poincaré nous assure l’existence d’une famille d’orbites périodiques autour
de ces points d’équilibre. Les orbites périodiques planaires sont alors appelées orbites de
Lyapunov alors que dans le cas 3D, elles sont appelées en fonction de leurs propriétés topo-
logiques, soit orbites de Halo soit orbites de Lissajous. On peut noter que ce type d’orbites
périodiques autour des points de Lagrange a déjà été utilisé dans la construction de mis-
sions réelles telle que la mission SOHO (voir [75]).

Des courants gravitationnels

Pour notre travail, l’existence de variétés invariantes associées à ces orbites périodiques
autour des points de Lagrange est une propriété des plus intéressantes dans notre contexte.

Definition 2 (Variétés invariantes) : Une variété invariante stable (resp. instable) d’une
orbite périodique est l’ensemble des points de l’espace des phases dont la demi-orbite future
(resp. passée) converge vers l’orbite périodique. ♦

Notons que dans la littérature dédiée, ces variétés invariantes sont appelées tubes de
Conley-McGee. Nous allons voir que ces variétés invariantes sont des séparatrices de la
dynamique, c’est-à-dire qu’elles séparent l’espace des phases, et donc qu’elles peuvent être
considérées comme des courants gravitationels dans le problème restreint des trois corps.
Dans les travaux de Conley et McGehee, et leurs extensions dans [52], le réseau d’orbites
homoclines 2 ou hétéroclines 3, obtenues par l’étude des variétés invariantes, reliant les or-
bites périodiques est étudié précisément.

En s’inspirant des méthodes utilisées pour l’approximation par orbites coniques, on peut
connecter des problèmes restreints des trois corps grâce aux variétés invariantes. L’obten-
tion des ces variétés invariantes permet d’établir une carte des connexions entres différentes
régions du système solaire par exemple. La connexion entre les variétés invariantes se fait
généralement en cherchant une intersection en espace (et non en vitesse), puis en réalisant

2. Une orbite homocline est une trajectoire qui relie un point d’équilibre de type selle, à lui même, ici une orbite
périodique.

3. Une orbite hétérocline est une trajectoire reliant deux différents points d’équilibre, ici des orbites périodiques.
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le transfert avec une impulsion ∆V . Ce principe est l’outil principal pour construire le réseau
de transport interplanétaire de la NASA (Interplanetary Transport Network (ITN)) qui est
une collection d’ensembles de trajectoires naturelles (ou ne nécessitant que peu de contrôle
pour être suivies par un satellite) à travers le système solaire (voir la figure 1).

Figure 1 – Schéma reprenant la carte de métro montrant différentes connexions entre dif-
férentes régions du système solaire à faible énergie. Source : NASA, Gary L. Martin, Space
Architect.

Depuis la fin des années 70, de nombreux travaux ont été consacrés à l’étude des orbites
périodiques autour des points de Lagrange. En effet, plusieurs missions telles que ISEE-3
(NASA) en 1978, SOHO (ESA-NASA) en 1996, GENESIS (NASA) en 2001, PLANK (ESA) en
2007 etc. ont mis en pratique l’utilisation des propriétés que l’on vient de décrire. De plus,
une meilleure compréhension des possibilités de missions interplanétaires a été possible
grâce à l’analyse théorique, ainsi que les avancées dans les méthodes numériques pour les
divers aspects du design de missions autour des points de Lagrange.

Il existe un grand nombre de références concernant le problème du calcul de trajectoire
à faible coût utilisant les propriétés des points de Lagrange. Par exemple, les auteurs des
travaux [53, 40, 90] ont développé des méthodes très efficaces pour calculer des trajectoires
gratuites entre des orbites autour de points de libration. Les méthodes issues de la théorie
des systèmes dynamiques y sont utilisées pour construire des orbites hétéroclines ou ho-
moclines à partir de la connaissance des variétés invariantes entre les points de librations.
Ceci permet d’obtenir des trajectoires connectant sans contrôle deux orbites périodiques
asymptotiquement et donc en temps infini. Ces orbites ont été utilisées pour construire des
missions en temps fini en utilisant des impulsions pour joindre l’hétérocline ou en sortir.

Avec les moteurs à poussée faible

Les impulsions nécessaires pour les transferts entre variétés invariantes ou pour at-
teindre une orbite homocline ou hétérocline ne sont plus possibles lorsque l’on considère
des moteurs à poussée faible. Un des problèmes auquel nous nous sommes intéressés est
le transfert entre variétés invariantes à poussée faible. C’est un problème à part entière et
nous avons développé une méthode numérique s’appuyant sur un transfert impulsionnel
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pour construire un problème de contrôle optimal. Sa résolution nous permet alors de réali-
ser le transfert entre variétés invariantes, et ainsi connecter en poussée faible les cartes du
type ITN. Ceci est le sujet du chapitre 2.

De plus, les trajectoires naturelles (non contrôlées) appartenant aux variétés invariantes
peuvent servir à initialiser la résolution d’un problème de contrôle optimal utilisant ainsi
une connaissance a priori que la dynamique naturelle nous donne. Il s’agit en fait d’un su-
jet général, à savoir, comment améliorer la convergence des méthodes indirectes pour les
problème de contrôle optimal. En effet, les méthodes indirectes telles que les méthodes de
tir utilisées grâce au Principe du Maximum de Pontryagin (voir la prochaine section), ont
besoin d’une initialisation suffisamment proche de la solution recherchée pour espérer la
convergence. Le sujet du chapitre 3 est de construire des missions en utilisant la dynamique
naturelle pour initialiser la résolution par méthode indirecte.

Théorie du contrôle optimal

Du fait de la modélisation du moteur et de sa poussée dans notre problème, il est naturel
d’utiliser la théorie du contrôle optimal et les méthodes numériques associées et basées sur le
Principe du Maximum de Pontryagin (PMP). En effet, d’un point de vue physique, la quantité
que l’on souhaite optimiser est la masse du satellite car plus le satellite est lourd, plus il est
cher à envoyer. Durant le transfert, l’évolution de la masse est modélisée par

Ûm(t) = −β ‖T (t)‖ ,

où T (·) ∈ R3 est le contrôle du satellite qui agit sur l’accélération de celui-ci à travers la
dynamique suivante 

Üx − 2 Ûy = ∂U
∂x
+
T1(t)
m(t) ,

Üy + 2 Ûx = ∂U
∂y
+
T2(t)
m(t) ,

Üz = ∂U
∂z
+ +

T3(t)
m(t) ,

Ûm(t) = −β ‖T (t)‖ .

Le coût que l’on cherche alors à minimiser est la norme L1 du contrôle∫ tf

0

‖T ‖ dt ,

où tf est le temps de transfert que l’on considère fixé, la poussée étant bornée par la poussée
maximale du moteur notée Tmax

∀t , ‖T (t)‖ 6 Tmax.

Cette formulation du problème colle parfaitement avec la théorie du contrôle optimal et nous
pouvons alors appliquer les résultats connus et les méthodes numériques associées pour le
résoudre. Dans ce travail de thèse nous avons développé des algorithmes et des méthodes
pour calculer à la fois des transferts optimaux entre variétés invariantes mais aussi pour
calculer des missions complètes, le principal avantage de nos méthodes résidant dans la
rapidité de résolution.

Rappelons que le PMP nous fournit des conditions nécessaires d’optimalité. Pour cela,
un état adjoint est introduit, ainsi qu’un hamiltonien qui nous permet d’établir la dynamique
de l’état, de l’état adjoint, et de nous fournir le contrôle optimal comme fonction de l’état
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et de l’état adjoint. On peut alors reformuler notre problème comme la recherche d’un zéro
d’une certaine fonction dite fonction de tir, l’inconnue étant, dans la plupart des cas traités,
l’état adjoint initial. Évidemment, la formulation de la fonction de tir dépend du problème
considéré, du coût, des conditions terminales. Les principaux avantages des méthodes in-
directes sont la rapidité et la précision, cependant elles sont très sensibles à l’initialisation.
Pour rendre plus robustes ces méthodes, nous utilisons des méthodes de continuation qui
consistent à déformer continûment notre problème initial avec un paramètre réel dans le
but d’obtenir un problème plus simple à résoudre. Ensuite, en commençant par résoudre le
problème plus simple et en discrétisant par exemple le paramètre réel, de proche en proche,
nous nous servons de la solution du problème précédent pour initialiser la résolution du
problème suivant. La dernière résolution étant alors le problème objectif initial.

En particulier, dans le contexte de mission de satellite, il est commun d’utiliser la mini-
misation de la norme L2 du contrôle comme problème plus simple à résoudre comparé à la
minimisation de la norme L1. Le coût à minimiser est alors∫ tf

0

‖T ‖2 dt .

Ce problème est plus simple pour la bonne raison que le contrôle optimal est, dans cas,
continu (contrairement à la minimisation L1), et donc numériquement plus facile à résoudre.

Pour des références sur les techniques que nous utilisons dans cette thèse telles que les
continuations, les techniques de régularisation du problème, les techniques et algorithmes
d’optimisation, nous renvoyons à [44, 49, 12, 84, 13, 3, 13, 31], bien que la liste soit loin d’être
exhaustive. Dans le chapitre 2 nous faisons un bref rappel de la théorie du contrôle optimal
ainsi que des méthodes numériques associées.
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Figure 2 – Illustration du système {Terre-Lune} : région de Hill, orbites périodiques autour
des points de Lagrange, et variétés invariantes.
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État de l’art

Tout d’abord, il est à noté que le premier travail combinant l’utilisation de variétés in-
variantes et de poussée faible est [63].

Les variétés invariantes ont déjà été utilisées dans des travaux tels que [64, 65]. Des
ensembles atteignables y sont définis en introduisant la poussée faible (avec un contrôle
tangent à la trajectoire), et ces ensembles sont couplés aux variétés invariantes pour définir
des solutions admissibles. Ensuite, ces solutions sont optimisées en utilisant un formalisme
du contrôle optimal.

Beaucoup d’efforts ont été dédiés à l’élaboration de méthodes efficaces pour atteindre
des orbites périodiques autour des points de Lagrange (comme des orbites de Halo). Par
exemple, dans les travaux [78, 68], les auteurs utilisent des méthodes indirectes et des mé-
thodes directes de tir multiple pour atteindre un point d’insertion sur une variété invariante
et ainsi atteindre asymptotiquement l’orbite périodique considérée dans le système {Terre-
Lune}. De plus, en utilisant des conditions de transversalité du PMP (voir le chapitre 2), la
position du point d’insertion sur la variété invariante est optimisée. Le travail [80] traite
aussi du transfert à poussée faible utilisant les variétés invariantes stables vers des orbites
de Halo et des méthodes numériques similaires.

Dans des travaux comme [63], des méthodes directes (que nous présentons dans le cha-
pitre 2) sont utilisées pour atteindre une variété invariante stable d’une orbite de Halo à
partir d’une orbite GTO. De plus, un transfert d’une orbite de Halo vers une orbite autour
de la lune est aussi calculée. Dans ce travail, le norme L2 du contrôle est minimisée par une
discrétisation directe du problème et de la programmation non-linéaire. Dans la continuité
de ce travail, dans [61], la position d’insertion sur la variété invariante est optimisée.

Dans les très intéressants travaux [31, 23], des méthodes indirectes couplées avec des
méthodes de continuation sont utilisées pour calculer des missions depuis une orbite autour
de la Terre (GTO), vers une orbite autour de la lune. Dans un premier temps, le problème
de temps minimal est étudié, puis les problèmes de minimisation de la norme L1 et L2 du
contrôle. Plusieurs continuations sont alors utilisées, une continuation sur la dynamique,
introduisant ainsi la perturbation de la lune, une continuation sur la poussée et une conti-
nuation sur le coût comme il est usuel de faire. De plus, des résultats de contrôlabilité y sont
démontrés.

Les méthodes développées dans [91] consistent aussi à considérer les trois problèmes
que sont le temps minimum de transfert, la minimisation de l’énergie (norme L2) et la mi-
nimisation de la consommation (norme L1). Des continuations sur la poussée, ainsi que des
méthodes de Newton et des méthodes indirectes sont aussi utilisées. Notons que dans les
deux dernières contributions, la connaissance a priori de la dynamique naturelle par les va-
riétés invariantes n’est pas utilisée, cependant, dans notre travail de thèse, ce sont les mêmes
techniques numériques qui sont utilisées.

Pour finir, dans l’article [32], l’auteur a développé récemment une méthode très effi-
cace pour calculer un transfert optimal à poussée faible en temps fini entre deux orbites
périodiques autour des points L1 et L2. La méthode consiste en trois étapes (que nous ne
décrivons pas ici), et utilise des méthodes indirectes ainsi que des continuations en com-
mençant par établir une trajectoire admissible avec une structure imposée au contrôle. Les
résultats obtenus sont très bons, et là aussi, les variétés invariantes ne sont pas utilisées.

Comme nous l’avons déjà évoqué, la philosophie des méthodes que nous avons dévelop-
pées dans ce travail de thèse est d’utiliser la connaissance a priori de la dynamique avec les
variétés invariantes, qui nous fournissent des trajectoires gratuites, pour initialiser la réso-
lution plus « globale ». La contrainte de rester sur les variétés invariantes est alors libérée.
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Organisation du manuscrit

Dans le premier chapitre nous établissons le paradigme dynamique dans lequel nous
nous plaçons, à savoir, le problème circulaire restreint des trois corps, et nous rappelons les
résultats connus. Nous décrivons le calcul des points d’équilibres, dit points de Lagrange,
en suivant le travail [83]. Nous introduisons ensuite un outil très utile pour l’analyse de
missions, à savoir les régions de Hill. Ces régions nous fournissent des informations sur
le mouvement possible d’une particule libre dans le CRTBP. Nous présentons aussi les ré-
sultats sur les orbites périodiques autour des points de Lagrange et les méthodes numé-
riques pour les calculer, méthodes basées sur des méthodes de tir issues des travaux [74, 6,
50]. On rappelle la méthode de Lindstedt-Poincaré qui permet d’obtenir des approxima-
tions analytiques des orbites périodiques qui sont utilisées pour initialiser la méthode de tir
afin d’obtenir numériquement les orbites périodiques. Grâce à l’application du théorème de
Lyapunov-Poincaré, nous obtenons l’existence d’une famille d’orbites périodiques autour
des points de Lagrange que nous calculons grâce à une méthode de continuation. Une des
contributions de cette thèse est d’avoir introduit l’énergie comme paramètre de continuation
pour obtenir toute la famille. En effet, si on utilise la continuation sur l’excursion comme
dans d’autres travaux, on s’aperçoit que la continuation échoue lorsqu’on atteint une excur-
sion trop petite, alors que pour la même énergie, la continuation sur l’énergie fonctionne
parfaitement. La dernière section du chapitre 1 traite des variétés invariantes. On y rappelle
les résultats théoriques et les études faites sur ces objets et nous introduisons les méthodes
numériques utilisées pour les calculer. On conclut le chapitre en rappelant une propriété
fondamentale qui permet d’interpréter les variétés invariantes comme des courants gravita-
tionnels : les variétés invariantes sont des séparatrices de la dynamique. Il est à noter qu’une
partie de cette thèse a été dédiée à développer un code de calcul pour Airbus Defense and
Space qui permet de calculer efficacement les variétés invariantes ainsi que plusieurs sec-
tions de Poincaré (voir l’annexe B).

Dans le chapitre 2, on présente la méthode qu’on a développée pour calculer le transfert
optimal entre variétés invariantes. On rappelle dans un premier temps la méthode utilisée
pour construire des missions spatiales en utilisant les variétés invariantes et des moteurs à
poussée forte et donc en utilisant des impulsions comme décrit dans [52]. Nous présentons
ensuite la modélisation de la dynamique contrôlée en poussée faible. Nous donnons des
résultats concernant la contrôlabilité du système comme établi dans [31, 23]. Après un rapide
rappel de quelques résultats fondamentaux de la théorie du contrôle optimal ainsi que les
principales méthodes numériques utilisées dans ce contexte, en particulier les méthodes de
continuation (voir, par exemple, [84, 1, 71, 13, 3, 39]), nous présentons l’algorithme que nous
avons développé pour résoudre un problème de contrôle optimal réalisant le transfert entre
deux variétés invariantes. Pour cela nous utilisons plusieurs continuations, sur l’état final,
sur la poussée maximale autorisée, et sur le coût à minimiser nous permettant de rendre la
méthode robuste tout en restant très rapide. On construit le problème de contrôle optimal
en s’appuyant sur la solution en poussée forte (avec un ∆V ), mais la méthode obtenue est
plus générale et peut être appliquée à des cas où il n’existe d’intersection ni en position ni en
vitesse entre les deux variétés invariantes considérées. Pour illustrer notre méthode, nous
donnons quelques résultats numériques pour deux systèmes, le système {Terre-Lune} et le
système {Soleil-Terre}. Enfin, nous présentons une courte analyse numérique sur l’impact
du paramètre de temps de transfert que nous devons fixer dans notre méthode, et de la
convergence vers le transfert impulsionnel quand ce paramètre tend vers 0.

Dans le chapitre 3, nous appliquons la méthode que nous avons développée couplée à
une méthode de tir multiple pour calculer des missions entre orbites périodiques autour
des points de Lagrange L1 et L2. Dans un premier temps nous introduisons la mission test
que nous considérons et nous formulons le problème de contrôle optimal correspondant.
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On calcule une orbite hétérocline entre les deux orbites de Lyapunov de même énergie que
l’on considère. Ensuite, en fixant les points de départ et d’arrivée sur les orbites périodiques,
et avec une poussée suffisamment grande (60N), nous réalisons deux transferts locaux, du
point de l’orbite périodique autour de L1 vers un point fixe de la trajectoire hétérocline, puis
d’un point fixe de la trajectoire hétérocline vers le point choisi sur l’orbite périodique autour
de L2. Grâce à cela nous obtenons une trajectoire admissible en trois parties dont une est non
contrôlée. Ensuite, en utilisant une méthode de tir multiple, on relâche les contraintes de po-
sitions sur les points de raccords initialisés sur l’orbite hétérocline (ainsi nous ne forçons plus
la trajectoire complète à passer par la trajectoire hétérocline), et nous réalisons la continua-
tion sur la poussée pour atteindre la poussée maximale de 0.3 N. La dernière étape est alors
d’optimiser la position (en espace et vitesse) des points terminaux, c’est-à-dire, les points
de départ et d’arrivée sur les orbites périodiques pour satisfaire les conditions d’optimalité
de transversalité données par le Principe du Maximum de Pontryagin. Nous présentons une
autre mission construite avec une orbite hétérocline à deux révolutions autour de la lune.
Pour conclure ce chapitre, nous appliquons la méthode à une mission plus générale dans
le cas 3D reliant deux orbites de Halo avec des énergies différentes. Dans ce cas, il n’existe
pas de trajectoire hétérocline, et donc nous construisons une trajectoire admissible en 5 par-
ties. Deux d’entre elles sont des trajectoires des variétés invariantes instables et stables des
deux orbites périodiques, et les trois autres sont des parties contrôlées : 1/ un transfert de-
puis la premier orbite de Halo vers une trajectoire de sa variété invariante instable, 2/ un
transfert entre les deux variétés invariantes, et 3/ un transfert entre la trajectoire de la va-
riété invariante stable vers l’orbite de Halo autour de L2. Grâce à cette trajectoire admissible
en 5 bouts, nous arrivons à initialiser une méthode de tir multiple qui converge vers une
trajectoire optimale réalisant le transfert souhaité (et qui n’est pas contrainte à rester sur
les variétés invariantes). De plus, comme précédemment, nous optimisons les positions des
points de départ et d’arrivée sur les orbites périodiques.

Dans le dernier chapitre de cette thèse, le chapitre 4, nous développons une méthode
d’optimisation hybride à deux niveaux utilisant à la fois des méthodes d’optimisation di-
rectes et indirectes pour calculer des missions partant de l’orbite géostationnaire (GEO) de
faible énergie vers une orbite autour de la lune (LO) ou vers des orbites périodiques autour
de L1. Encore une fois, nous utilisons les variétés invariantes pour initialiser la méthode en
construisant une trajectoire admissible. En effet, on choisit une trajectoire connectant les
deux régions de la Terre et de la lune à l’intérieur d’une variété invariante (ou une trajec-
toire sur une variété invariante stable pour les transferts vers les orbites périodiques autour
de L1). On calcule alors deux transferts locaux de l’orbite GEO vers la trajectoire libre de
transit, puis de la trajectoire libre vers l’orbite objectif (LO ou une orbite périodique autour
de L1). Cette trajectoire admissible, calculée en seulement quelques minutes, est sous opti-
male. En effet, aux points de connexion sur la trajectoire libre, l’état adjoint est discontinu
car nul sur la partie non contrôlée. La méthode de tir multiple utilisée dans le chapitre 3
échoue en raison des écarts trop importants d’énergie entre les différentes parties et des
temps d’intégration trop longs. Pour dépasser cette difficulté, nous optimisons la position
(en espace et vitesse) des points de raccords de la trajectoire admissible sans les contraindre
à appartenir à la trajectoire non contrôlée. Un résultat bien connu en contrôle optimal est
que la sensibilité de la fonction valeur (le coût pour une trajectoire optimale) par rapport aux
variations sur l’état initial et final est donnée par les valeurs de l’état adjoint aux temps ini-
tial et final. Ainsi, sans aucun calcul supplémentaire, nous avons le gradient par rapport aux
variations des points de raccord de la fonction de coût globale (comme somme des trois coûts
des trois parties de la trajectoire), et donc l’implémentation d’un algorithme du gradient est
facile. Remarquons que si on obtient la condition nécessaire d’optimalité pour l’algorithme
du gradient, à savoir, le gradient nul, alors, nous obtenons une trajectoire qui satisfait les
conditions d’optimalité du PMP pour le transfert total, en particulier la continuité de l’état
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adjoint aux points de raccord. Malheureusement, bien que la méthode permette d’améliorer
le coût (minimisation L2), l’algorithme du gradient ne converge pas en temps raisonnable.
De plus, lors des itérations, la norme L1 du contrôle augmente, et comme il s’agit du coût
réellement intéressant d’un point de vue industriel, la trajectoire, partiellement optimisée,
obtenue n’est pas intéressante physiquement. On finit le chapitre en donnant des trajectoires
admissibles à très faible coût (énergétique ou de consommation) pour atteindre l’orbite LO
ou des orbites de Lyapunov ou de Halo depuis l’orbite GEO. La méthode pour obtenir des
trajectoires admissibles à très faible coût se révèle très rapide et efficace, et prend seulement
quelques minutes pour tous nos tests numériques.

On finit par conclure et nous donnons quelques perspectives à ce travail de thèse.
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Introduction

This thesis is about the design of trajectories for a spacecraft in the gravitational field of the
N bodies of the solar system. With words, we search trajectories and associated controls
that perform the wanted travel.

A very standard and obvious assumption is to assume the spacecraft has a small enough
mass so that it does not influence the motion of the N massive bodies which move on pre-
scribed orbits under their mutual gravitational attraction. The goal of trajectory design is to
find a transfer trajectory which takes the spacecraft from a prescribed initial orbit to a pre-
scribed final orbit using some control applied by the engine. Missionsmay be between orbits
around the Earth: from a Low Earth Orbit (LEO), which is the cheapest orbit to reach from
Earth’s surface, to a Geostationary Earth Orbit (GEO), or from a GEO to an orbit around the
Moon, around Mars, etc. There are many possible configurations, and it is a real challenge
to design these trajectories.

Considering the influence of the N bodies on the spacecraft leads to a problem that is far
too complex to be treated directly. This is why spacecraft trajectories are always constructed
using building blocks which are local approximations.

Remark 0.3:

Choreography seven bodies on a flower.

Note that there exists beautiful work about find-
ing periodic orbits that are solutions of a N -body
problem. Montgomery and Chenciner [27] in-
troduced periodic orbits in which all the bodies
are equally spread out along a single orbit. They
are called N -body choreographies. A lot of ef-
fort has been devoted to proving the existence of
such periodic orbits and numerically exploring
them. Choreographies can be discovered using
variational methods, and more recently, topolog-
ical approaches have been also used to attempt a
classification in the planar case.

The shapes and animations of these orbits are fascinating, and we refer to [79, 77] to
see plots and animations.

Patched Conic Approximation
We consider the motion of a spacecraft in the gravitational field of N bodies. Newton’s law
gives us

Üq(t) =
N∑
i=1

µi

(
q(t) − qi (t)
‖q(t) − qi (t)‖3

)
+
T (t)
m(t) ,

15
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where q is the position of the spacecraft, qi is the position of the i-th body, µi = Gmi , G
is the gravitational constant, mi is the mass of the i-th body, T is the thrust, and m is the
spacecraft mass.

As already stated, we need to use local approximation to build the different parts of the
trajectory that we want to design. For decades, people have simplified the general trajectory
problem by considering the gravitational force between the spacecraft and only one other
body at a time. Even for the case of interplanetary transfer (and not only transfer between
orbits around one body), this simplification suffice for many calculations. Note that NASA’s
spectacular missions such as Voyager and Galileo are based on this Keplerian decomposi-
tion of the solar system, known as the patched conic approximation (or patched two-body
approximation). Very recently, the ESA project Rosetta was built using this simplification
for a travel that lasted more than 10 years! For references on the subject, see [8, 9].

Remark 0.4: Gravity Assist Maneuver, Swing-by or Fly-by

In orbital mechanics and aerospace engineering, a gravitational slingshot, gravity assist
maneuver, or swing-by is the use of the relative movement (e.g. orbit around the Sun)
and gravity of a planet or another astronomical object to alter the path and speed of a
spacecraft, typically in order to save propellant, time, and expense. (wikipedia)

This process can increase or decrease the speed of the spacecraft or redirect its path.
The figure below, for the Cassini-Huygens mission, illustrates this method.
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To choose where to consider the influence of only one body, we need to define its “sphere
of influence” which is the radius at which the forces exerted on a particle with negligible
mass by the body and the sun are approximately equal. Themethod consists in choosing the
heliocentric hyperbolic trajectory such that the spacecraft enters the sphere of influence at
the right moment to increase or decrease the speed, and so on. This patched conic solution
could be used as an initial guess for a numerical procedure to integrate a full trajectory in
the N -body problem.

High Thrust and Impulse

There are different modelization of the spacecraft control depending on the technology of
the engine. Impulses are instantaneous changes in velocity performed by a high thrust
engine. Usually, an impulse is denoted by ∆V , and called Delta-V. Delta-V is produced by
reaction engines and it is proportional to the thrust per mass unit and to the burn time.
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The Delta-V is given by the Tsiolkovsky rocket equation, or ideal rocket equation

∆V = ve ln
m0

mf

where

• m0 is the initial total mass of the spacecraft, including propellant.

• mf is the final total mass without propellant, also known as dry mass.

• ve is the effective exhaust velocity,

• ∆V is the maximum change of velocity of the vehicle (with no external forces acting),

• and ln refers to the natural logarithm function.

A lot of effort has been devoted to optimizing the use of both impulses and fly-bys in
interplanetarymissions. The fly-by is used to save propellant by providing like free impulses
(changes of velocity). For instance, a recent publication is [67].

The Rosetta probe, launched in March 2004, used four gravity assist maneuvers to accel-
erate throughout the inner Solar System - enabling it tomatch the velocity of the 67P/Churyu-
mov–Gerasimenko comet at their rendezvous point in August 2014. Rosetta is the first space-
craft to match orbit with a comet.

Need for a Better Approximation
For missions like Rosetta, Voyager or Galileo, the speed of the spacecraft relative to the
bodies is sufficiently high to allow the assumption of a minor perturbation of the conic
solution in the sphere of influence. Unfortunately, when we consider low propulsion, or
unpropelled motion where the relative speed is low, a better approximation is necessary.

It is common to use the term ballistic capture.

Definition 3: Ballistic capture means that no propulsion (or control) is needed to achieve a
capture orbit. In general, a ballistic capture is only temporary. In this work, ballistic captures
will be used to initialize an optimization problem (see chapter 3). ♦

Low Propulsion

The conic approximation is not useful when, instead of impulse control, we use a low
thrust engine. We consider here the ion thrusters which are spacecraft engines with electric
propulsion. The thrust is created by accelerating ions with electricity. These engines have
a better yield than chemical ones, and so, one can extend the payload or the lifetime.

These engines are characterized by two parameters Isp and д0. The specific impulse (Isp)
is a measure of the efficiency of rockets and jet engines. It is defined by the total impulse (or
change of momentum) delivered per unit of propellant 4 consumed. Its unit is the second. д0
is the acceleration at the Earth’s surface in m/s2. The inverse of the average exhaust speed,
β , is equal to 1

Ispд0
. The unit of β is s/m. In this thesis, we use the following values for these

parameters
Isp = 2000 s, and д0 = 9.81m/s2.

The main drawback of such engines is that the maximal thrust, denoted byTmax, is very
low. It could be considered to be between 10 to 0.1 Newtons. For references, see [82].

4. A propellant or propellent is a chemical substance used in the production of energy or pressurized gas that is
subsequently used to create movement of a fluid or to generate propulsion of a vehicle, projectile, or other object.
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The Three Body Approximation

With low thrust and low energy trajectories, a better local approximation for the N -body
problem is the three bodymodel. Indeed, motivated by thework of Belbruno andMiller [10],
we can think about patching three body problems to design missions in an N -body problem.
This idea is well developed in [52]. For instance, for the Sun, Earth, Moon and spacecraft
system, we consider in a certain realm that the principal gravitational attraction is exerted
by Earth and the Moon (close to these two bodies) and in a other realm (further away from
the Moon orbit), we consider the attraction of the Sun and Earth. To patch three-body
solutions as it is done for the conic patching, one needs a very accurate knowledge of the
solution in each three-body problem.

In this thesis, we consider the Circular Restricted Three Body Problem (CRTBP) approx-
imation. It is discussed in details in Chapter 1. Note that the study of this problem is by
itself an interesting topic. It goes back to the work of Poincaré [69] in the late 1800s. In this
context, he developed the modern dynamical systems theory and the notion of chaos.

The CRTBP approximation consists in considering two bodies called primaries (e.g.,
Earth and Moon) moving in circles around their center of mass, and the smaller third body
(the spacecraft) moving in the gravitational field of the two others without perturbing it.
We place ourselves in a rotating frame so that the two primaries appear to be fixed. We
describe in details this problem in Chapter 1, but we give here some notions. Although the
motion of the two primaries is planar, we consider the 3D case, where the motion of the
spacecraft can be along the z-axis. Note that a better approximation is to consider elliptic
trajectories for the two primaries (see [38, 20, 58]).

We consider the system composed by two primaries and a spacecraft. With some ele-
mentary mechanics, one can derive the dynamics. The system is written in an elegant way
when we normalize it with respect to the distance between the two primaries, their period
of revolution, and the masses. We introduce the mass parameter

µ =
m2

m1 +m2
,

wherem1 andm2 are respectively the mass of the bigger and smaller primary. The position
of the two primaries are then (−µ, 0, 0) and (1 − µ, 0, 0). The position of the third body is
denoted by (x ,y, z).

The system is a Hamiltonian system, with an associated Lagrangian that can be written
as

L(x ,y, z, Ûx , Ûy, Ûz) = K(x ,y, z, Ûx , Ûy, Ûz) −U (x ,y, z),

where K is the kinetic energy

K(x ,y, z, Ûx , Ûy, Ûz) = 1

2

[
( Ûx − y)2 + ( Ûy + x)2 + Ûz2

]
,

andU is the gravitational potential

U (x ,y, z) = −1 − µ
r1
− µ

r2
,

with r1 denoting the distance between the spacecraft and the first body

r1 =
√
(x + µ)2 + y2 + z2
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and r2 denoting the distance between the second primary to the spacecraft

r2 =
√
(x − 1 + µ)2 + y2 + z2.

Thanks to that, there exists a conserved energy that can be computed via Legendre trans-
formation (see [62, 55])

E = 1

2

(
Ûx2 + Ûy2 + Ûz2

)
+U (x ,y, z),

where we have introduce the effective potential

U (x ,y, z) = U (x ,y, z) − x2 + y2

2
.

The dynamics can then be written as

Üx − 2 Ûy = ∂U
∂x
,

Üy + 2 Ûx = ∂U
∂y
,

Üz = ∂U
∂z
.

Equilibria

x

y

L2L3 L1

L4

L5

P2P1

Localization of Lagrange points.

Equilibria are zeros of the dynamics. This
is equivalent to finding the critical points
of the effective potential. We discuss
this analysis in Section 1.2. The result
is that there exist five equilibrium points
called Lagrange points. Indeed, one of
the first studies of these equilibrium points
was done by Lagrange (followed by Euler)
around 1750 and 1760, see [54] and [34].
There are three collinear points denoted by
L1, L2 and L3 and two equilibrium equilat-
eral points denoted by L4 and L5. These
points are also called libration points.

Knowledge of the stability properties
of these points is crucial to design space-
craft missions. Indeed, as we will see in
the next chapter, one can show that for
some three body problems (for instance, the

{Sun-Jupiter} system), the equilateral points are stable. Hence, such points are useless be-
cause there is debris all around these points, and a spacecraft, in their vicinity, would be
certain to collide with asteroids orbiting around the stable equilibrium points. The other
points, the collinear ones, are unstable which is a more interesting property.

The equilibrium points also exhibit other interesting properties. Indeed, a linearized
analysis shows the two points L1 and L2 closest to the secondary body, are center-saddle
points. The well known Lyapunov-Poincaré theorem ensures that there is a family of peri-
odic orbits around these points. These periodic orbits is called Lyapunov orbits if they are
planar, while their counterparts in 3D are called Halo and Lissajous orbits. This kind of orbit
has already been used to design real life missions such as SOHO (see [75]).
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Tubes as Gravitational Currents

The most interesting property for the study performed in this thesis is that there exist in-
variant manifolds associated with these periodic orbits around Lagrange points.

Definition 4 (Invariant Manifolds): A stable manifold (respectively, unstable) of a peri-
odic orbit is the set of the phase space consisting of all points whose future (respectively, past)
semi-orbits converge to it (asymptotic orbits). ♦

Note that in the dedicated literature, they are calledConley-McGee tubes. Wewill see that
these invariant manifolds are separatrices of the dynamics, and so, they can be interpreted
as gravitational currents in the three body problem. In work by Conley and McGehee, and
its extension in [53], the network of homoclinic 5 and heteroclinic 6 orbits obtained thanks
to the study of the invariant manifolds, connecting these periodic orbits is studied. This
gives us very interesting tools to design free trajectories with prescribed itineraries.

Following what was done for the patched conic approximation, we can connect re-
stricted three body problems and, thanks to the invariant manifolds, it is possible to design
a map of connections between areas in the solar system. Indeed, intersections in the posi-
tion variables between invariant manifolds can be computed and with an impulse, ∆V , it is
possible to pass from one to another. This principle is the main tool to design the Interplane-
tary Transport Network (ITN) which is a collection of gravitationally determined pathways
through the Solar System that require very little energy for an object to follow.

Figure 3 – A metro map showing hubs connected by low energy passageways. Source:
NASA, Gary L. Martin, Space Architect.

Since the late ’70s, the study of Lagrange point orbits has been of great interest. In-
deed, several missions such as ISEE-3 (NASA) in 1978, SOHO (ESA-NASA) in 1996, GENESIS
(NASA) in 2001, PLANK (ESA) in 2007 etc. have put this knowledge into practice. A more
profound understanding of the available mission options has also emerged due to the theo-
retical, analytical, and numerical advances in many aspects of libration point based mission
design.

5. A homoclinic orbit is a flow trajectory of a dynamical system that joins a saddle equilibrium point to itself.
6. A heteroclinic orbit (sometimes called a heteroclinic connection) is a path in the phase space which joins

two different equilibrium points.
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There exist a huge number of references on the problem of determining low-cost trajec-
tories by using the properties of Lagrange equilibrium points. For instance, the authors in
[53, 40, 90] have developed very efficient methods to find “zero cost” trajectories between
libration point orbits. Dynamical system methods are used to construct heteroclinic or-
bits from invariant manifolds between libration point orbits, they allow to obtain infinite
time uncontrolled transfers. These orbits have been used with impulse engine spacecrafts
to construct finite time transfers.

With Low Thrust

The impulse needed to go from one invariant manifold to another cannot be achieved with
a low thrust engine. One of the problems that we have been interested in is how to connect
two invariant manifolds from the described map with a low thrust engine. This is a question
of its own, and we have developed a generic method to answer. we start with an impulsive
transfer to build an optimal control problem that yields a low thrust transfer. This is the
subject of chapter 2.

Moreover, the trajectories belonging to the invariant manifolds (or to their inside) can
serve as an initialization to solve optimal control problems with the a priori knowledge of
the dynamics. Note that this is a general research topic: improving the convergence of
indirect methods for optimal control problems. Indeed, indirect methods such as shooting
methods need an accurate initialization which can be obtained by different means and in
particular with the information given by the dynamics. The subject of chapter 3 is precisely
to design missions using the natural dynamics as an initialization for an indirect method.
These indirect methods can be applied thanks to a formulation of the problem obtained by
applying the Pontryagin Maximum Principle (PMP) (see below).

Optimal Control Theory

Because of the modelization of the thrust and the problem, in this thesis, we apply the
optimal control theory and some associated numerical methods based on the Pontryagin
Maximum Principle (PMP). Indeed, physically, the crucial parameter we want to optimize is
the mass of the spacecraft because the heavier the satellite, the more expensive the launch.
The mass evolution modelization is

Ûm(t) = −β ‖T (t)‖ ,

where T (·) ∈ R3 is the control of the spacecraft which modifies the acceleration through
the following controlled dynamics

Üx − 2 Ûy = ∂U
∂x
+
T1(t)
m(t) ,

Üy + 2 Ûx = ∂U
∂y
+
T2(t)
m(t) ,

Üz = ∂U
∂z
+ +

T3(t)
m(t) ,

Ûm(t) = −β ‖T (t)‖ .

The natural cost to minimize is then the L1-norm of the control∫ tf

0

‖T ‖ dt ,
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where the time tf is the fixed transfer time and the thrust is bounded by the maximal thrust
Tmax

∀t , ‖T (t)‖ 6 Tmax.

This formulation of the problem fits the framework of optimal control theory and we can
apply available results and numerical techniques to solve our problem. In this thesis, we
have developed algorithms and methods to perform transfers between invariant manifolds,
and also some complete missions. The main advantage of our techniques is the speed of
resolution.

Let us recall that the PMP gives us necessary conditions of optimality. To do that, a
costate is introduced, and an associated Hamiltonian that allows to express the state and
costate dynamics. Moreover, the optimal control can also be written as a function of the
state and the costate. Basically, one can reformulate the problem using a shooting function
where, in most cases, the initial costate has to be found to reach the targeted orbit. Note that
the formulation of the shooting function depends on the problem, the cost, and the terminal
conditions (the set of the initial and final conditions of our problem). Indirect methods are
very precise and fast but they are also very sensitivewith respect to the initialization. Hence,
we use continuation methods which consist in continuously deforming the problem with a
real parameter in order to get an easier problem. Then, starting with the resolution of the
easiest problem, one can solve the whole family of problems (indexed by a discretization of
the parameter) step by step, by using the solution of the previous one to initialize the next
one. The final solve is for the difficult targeted problem.

In particular, in the context of spacecraft missions, the minimization of the L2-norm of
the control is used as an easier problem compared to the L1-norm minimization. The cost
to minimize is then ∫ tf

0

‖T ‖2 dt .

Indeed, the corresponding optimal control is continuous (this is not the case for the L1-
minimization), hence, numerically the problem is easier to solve.

For references on techniques used in our work such as continuation on cost, smoothing
techniques and, optimization techniques one may read [44, 49, 12, 84, 13, 3, 13, 31] and
references therein. In chapter 2, we briefly recall the theory of optimal control and the
numerical methods that we use.

State of the Art

First, one can note that [63] is the first work that combines invariant manifolds and low-
thrust in the Earth-Moon system.

Invariant manifolds were used in low-thrust missions in [64, 65]. The low-thrust propul-
sion is introduced by means of special attainable sets that are used in conjunction with in-
variant manifolds to define a first-guess solution. Then, the solution is optimized using an
optimal control formalism.

Much effort has been dedicated to the design of efficient methods to reach periodic orbits
around equilibrium points in the three body problem (e.g., Halo orbits). For example, in [78,
68], the authors use indirect methods and direct multiple shooting methods to reach an
insertion point on an invariant manifold and then asymptotically reach a Halo orbit in the
Earth-Moon system. Moreover, using transversality conditions, the position of the insertion
point on the invariant manifold is optimized. Low-thrust stable-manifold transfers to Halo
orbits are also shown in [80] using similar numerical methods.

On the same topic, in [63], the authors use direct methods (presented in chapter 2) to
reach a point on a stable manifold of a Halo orbit from a GTO orbit. A transfer from the
Halo orbit to a Lunar-Orbit is established as well. The L2-norm of the control is minimized
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Figure 4 – Illustration of an {Earth-Moon} system: periodic orbits around Lagrange points,
and associated invariant manifolds.

by a direct transcription and non linear programming. In [61], the position of the insertion
point on the manifold is optimized.

We notice that in the interesting work [31, 23], indirect methods combined with con-
tinuation methods were used to design missions from the Earth Geostationary Orbit to a
Lunar Orbit. First, the minimum time problem is studied, and then the minimization of the
L1 and L2-norms of the control. Continuations are used from the two body problem to the
three body problem as well as a continuation on the thrust, and a continuation between en-
ergy minimization and fuel consumption minimization. Moreover, the authors prove some
controlability results for the CRTBP.

The methods developed in [91] involve the minimum-time problem, the minimum en-
ergy problem and the minimum fuel problem to reach a fixed point on a Halo orbit starting
from a periodic orbit around Earth. Continuations on the thrust are used, as well as Newton
and bisection methods (indirect methods). In these last two contributions, a priori infor-
mation of the natural dynamics with manifolds is not used to help solve the formulated
problem. However, in our work, we use similar numerical methods.

In [32], the author recently developed an efficient method to compute an optimal low-
thrust transfer trajectory in finite time without using invariant manifolds of the three body
problem. It is based on a three-step solution method using indirect methods and continu-
ations methods and it gives good results. The first-guess solution is designed by forcing a
certain structure for the control.

As already mentioned, the philosophy of the method developed in this work is to use
the natural dynamics as invariant manifolds, providing free parts for transfer, and then to
initialize a “global”resolution method by freeing the constraints to stay on the manifold.
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Organization of the Thesis

The first chapter is devoted to stating the dynamical paradigm and recalling well known
results on the circular restricted three body problem. We describe how to compute the
equilibrium points following the work in [83]. Then, we introduce a very useful tool to
analyze trajectories: the so-called Hill’s regions. These regions give us information about
the possible motion of a free particle in the CRTBP. We discuss results on periodic orbits
and the numerical method to compute them based on shooting method and work in [74, 6,
50]. We recall the Lindstedt-Poincaré method to obtain the analytical approximations of the
periodic orbits that are used to initialize the shootingmethodwhich computes them. Thanks
to the Lypunov-Poincaré theorem, the existence of a family of periodic orbits is ensured.
Therefore, by a continuation method, we are able to compute the whole family of orbits.
One of the contributions of this work is to introduce the energy as a continuation parameter
to obtain the entire family. Indeed, with the continuation on the excursion parameter used
in other work, the continuation fails when the targeted excursion is close to zero whereas,
for the same energy, the continuation on energy succeeds. The last section of chapter 1 is
about invariant manifolds. We recall theoretical results and the study of these objects and
we introduce the numerical methods to compute them. We finish by stating the property
that allows to see invariant manifolds as gravitational currents: they are separatrices of
the dynamics. Note that as part of this thesis, a code was developed for Airbus Defense
and Space that efficiently computes the invariant manifolds and some Poincaré cuts (see
appendix B).

In chapter 2, we establish the method to compute an optimal transfer between invariant
manifolds. We first recall the method used to design spacecraft missions using invariant
manifolds and impulse propulsion as described in [52]. We then introduce precisely the
modelization of the controlled dynamics with low thrust. We give some results for the
controllability of the system stated in [31, 23]. After a very short introduction of some
fundamental results in optimal control theory as well as the associated numerical methods
and continuation methods (see, for instance, [84, 1, 71, 13, 3, 39] and references therein),
we introduce the algorithm that we have designed to solve an optimal control problem
performing the transfer between two invariant manifolds. We use different continuations
on the final state, on the thrust and on the cost to improve robustness and to still obtain a
solution in a very short computation time. We build an optimal control problem starting
with the impulse solution, but our method is more general and can be extended to cases
where neither position or velocity intersections exist between the two invariant manifolds
considered. To illustrate the method, we give some numerical results for two three body
problems: the {Earth-Moon} and {Sun-Earth} system. Finally, we present a short study of
the impact of the chosen transfer time and the relation with the impulsive transfer when
the transfer time goes to 0.

In chapter 3, we apply the method that we developed and couple it with a multiple
shootingmethod to compute somemissions between periodic orbits around Lagrange points
L1 and L2. First, we introduce the mission that we consider and state our optimal control
problem. We then compute then a heteroclinic orbit between the two Lyapunov periodic
orbits sharing a same energy. Then, fixing the departure point near L1 and the arrival point
near L2 and with a not too small thrust (60N), we perform two small transfers from the
Lyapunov orbit around L1 to the heteroclinic one, and from the heteroclinic orbit to the
Lyapunov orbit around L2. This way, we obtain a three-part admissible trajectory with one
uncontrolled part. Then, thanks to a multiple shooting method, we release the constraint
on the position of the matching points on the heteroclinic orbit and decrease the thrust to
the targeted one (0.3 N). The last step is to optimize the departure and arrival points on the
periodic orbits to satisfy the necessary transversality conditions given by the Pontryagin
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Maximum Principle. Then, we present another mission with a heteroclinic orbit with two
revolutions around the Moon. Finally, we apply the method to a more general mission: a
Halo to Halo mission for two periodic orbits with different energies. In this case, there is
no heteroclinic orbit, so we construct a five-part admissible trajectory. Two of the parts
are trajectories on invariant manifolds, and the three others are local transfers: 1/ from
one of the Halo orbits to a free trajectory of the unstable manifold, 2/ between both free
trajectories and 3/ from the second free trajectory of the stable manifold to the second Halo
orbit. Thanks to this five-part admissible trajectory, we are able to initialize a multiple
shooting method that computes an optimal trajectory (which is not constrained to reach
any invariant manifolds). As previously, we optimize the terminal points on Halo orbits.

In chapter 4, we develop a hybrid bi-level optimization method using both indirect and
direct methods to compute a mission from a very low energy geostationary Earth orbit
(GEO) to a Lunar Orbit (LO) or to periodic orbits around L1. Once again, we use the invari-
ant manifolds to initialize the method building an admissible trajectory. Indeed, we choose a
trajectory connecting the realm of the Earth and the realm of the Moon (such a trajectory is
inside the stable manifold of the Lyapunov orbit around L1). We compute two “local” trans-
fers from the GEO to the free trajectory inside the manifold, and one from the free trajectory
to the LO.This trajectory, computed in just a few minutes, is a sub-optimal trajectory, or ad-
missible trajectory. Indeed, at the matching points on the free trajectory, the costate vector
is discontinuous because it is zero on the uncontrolled part. The multiple shooting method
used in Chapter 3 fail in this case because of the long transfer time and the too important
energy gap. To overcome this difficulty, we optimize the matching point positions (in space
and velocity) without constraining them to belong to a free trajectory. A well known result
in optimal control is that the sensitivity of the value function (the cost for an optimal trajec-
tory) with respect to the endpoints is given by the value of the costate at the initial and final
times. Hence, without any additional computation, we get the gradient of the “global” cost
function (as the sum of the three cost functions on each part) with respect to the variation
of the two matching points and so, the implementation of a gradient descent algorithm is
easy. We note that if we manage to nullify the gradient of this global cost function, then
we obtain the optimal necessary condition given by the PMP for the “global” transfer, in
particular, the continuity of the costate at the matching points. Unfortunately, even though
this method allows to decrease the cost (L2-norm of the control), we do not converge with
a gradient descent. Moreover, the L1-norm of the control increases (which is the physical
cost we want to minimize, the L2-norm is just a related cost that is numerically easier to
minimize). We finish the chapter with different admissible trajectories to reach the LO orbit,
Lyapunov orbit or Halo orbit starting from the GEO orbit. Note that the method to get an
admissible trajectory is really fast and only takes a few minutes on all our numerical tests.

We finally conclude and give some perspectives raised by this work.
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This chapter in inspired by the description in [52]. We consider two bodies revolving
around their center of mass on circular orbits under the influence of their mutual gravita-
tional attraction. The purpose is to characterize the motion of a third body with negligible
mass, attracted by the two previous bodies without influencing their motions. This is the
Circular Restricted Three-Body Problem (CRTBP).

The two massive bodies are called primaries and we denote byM1 andM2 their respec-
tive masses. Assuming that they may be considered as point masses, we denote by P1 and P2
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their positions. In some cases, P1 can be referred to as the primary and P2 as the secondary.
Figure 1.1 illustrates the problem configuration.

P1 P2

P

Figure 1.1 – Illustration of the CRTBP, two primaries P1 and P2 revolving around their
center of mass in circular orbits under their mutual attraction, and the spacecraft P with a
negligible mass.

The CRTBP is an approximation of the general three-body problem. In the general prob-
lem, each of the three bodies influences the others and there is no assumption on their
respective motions. We note that a more realistic approximation is the Elliptic Restricted
Three-Body Problem as in [38].

In this thesis, we focus on particular aspects of the three-body problem. We refer to
the books by Szebehely [83], Marsden and Ratiu [60], and Meyer, Hall, and Offin [62] for a
general introduction and coverage of the literature on the subject.

The reader may think of systems such as {Earth, Moon, spacecraft}, {Sun, Earth, Moon},
{Sun, Jupiter, spacecraft}, etc. Throughout this work, we mostly consider the system {Earth,
Moon, spacecraft}. In this chapter, the equations of motion for the CRTBP are introduced
in two important coordinate systems: Cross coordinates and Richardson coordinates. The
fundamental dynamical properties like Lagrange points (equilibrium points of the CRTBP),
Lyapunov orbits (periodic orbits around Lagrange points), and invariant manifolds are intro-
duced, and we use them to construct the mission and to help the resolution of the associated
optimal control problem in the next chapters.

Finally, numerical methods to compute periodic orbits around Lagrange points (Lya-
punov orbits) and their invariant manifolds are introduced.

Remark 1.1:

All of these properties have been previously used to construct spacecraft missions. For
instance, the authors in [53, 40, 90] developed very efficient methods to find “zero cost”
trajectories between libration point orbits. They also used dynamical system methods
to construct heteroclinic orbits from invariant manifolds between libration point orbits
and managed to get infinite time uncontrolled transfers. These orbits, coming from the
dynamical study of the CRTBP, have been used with impulse engine spacecrafts to
construct finite time transfers.



1.1. Equations of Motion 29

1.1 Equations of Motion

We consider a spacecraft in the gravitational field of the two primaries. We consider an
inertial frame I = (Ex ,Ey ,Ez ) in which the vector differential equation for the spacecraft
motion is written as:

m
d2R

dτ 2
= −GM1m

R13

R3
13

−GM2m
R23

R3
23

(1.1)

where M1, M2 and m are the masses respectively of Earth, its moon and the spacecraft,
R is the satellite vector position, R13 is the vector Earth-spacecraft and R23 is the vector
Moon-spacecraft, G is the gravitational constant, and τ is the time unit. 1

The system is made adimensional by the following choice of units: the unit of mass is
taken to beM1+M2; the unit of length is chosen to be the constant distance between P1 and
P2; the unit of time is chosen such that the orbital period of P1 and P2 around their center
of mass is 2π . The universal constant of gravitation then becomes G = 1. Conversion of
distances, velocities, and times from the unprimed, normalized unit system to the primed,
dimensionalized unit system is

distance d ′ = l∗d,
velocity s ′ = v∗s,
time t ′ = t∗

2π t ,
(1.2)

where we denote by l∗ the distance between P1 and P2, by v∗ the orbital velocity of P1 and
by t∗ the orbital period of P1 and P2.

The system then depends on only one parameter, denoted by

µ =
M2

M1 +M2
, (1.3)

and we call it the mass parameter, assuming that M1 > M2.
In table 1.1, we summarize the values of all the constants for some systems.

System µ l∗ v∗ t∗

Earth-Moon 1.215 × 10−2 3.850 × 105 km 1.025 km s−1 2.361 × 106 s

Sun-Earth 3.036 × 10−6 1.496 × 108 km 29.784 km s−1 3.147 × 107 s

Sun-Jupiter 9.537 × 10−4 7.784 × 108 km 13.102 km s−1 3.733 × 108 s

Table 1.1 – Table of the parameter values for different Three Body Systems. Sources: see
[52]

If we divide equation (1.1) by the spacecraft mass m and use the new unit system, we
get:

d2r

dt2
= −(1 − µ)

r313
r13 −GM2

µ

r323
r23. (1.4)

We denote by the non caps r and ri j the distances previously introduced in the normalized
system.

Now, following [31], we rewrite equation (1.4) in a rotating frame R = (ex ,ey ,ez ) such
that the angular velocity of the frame is the one of the two primaries around their center of

1. Here, we use τ for the time unit because we will normalize the time, and use the normalized time during the
remainder of this manuscript. It will be more natural then to use the usual symbol t .
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mass which is also the coordinate origin. In this frame, the two primaries are fixed and the
frame is chosen so that they belong to the x-axis. This way, the two coordinates of the two
primaries are

P1 = (−µ, 0, 0) and P2 = (1 − µ, 0, 0).

We denote by ω ∈ R3 the angular velocity of the rotating frame R with respect to the
inertial frame I, and because the time is normalized by the period of the two primaries, it
holds thatω = Ez = ez . Hence, it follows that(

d2r

dt2

)
I
=

(
d2r

dt2

)
R
+ 2Ez ×

(
dr

dt

)
R
+ Ez × Ez × r . (1.5)

Now, let us consider the vector r and its derivatives expressed in the rotating frame,
they can be written as

r = xex + yey + zez ,(
dr

dt

)
R
= Ûxex + Ûyey + Ûzez ,(

d2r

dt2

)
R
= Üxex + Üyey + Üzez .

From (1.5), this leads to(
d2r

dt2

)
I
= ( Üx − 2 Ûy − x)ex + ( Üy + 2 Ûx − y)ey + Üz.

In the rotating frame, because the two primaries are fixed along the x-axis, it holds that

r13 = (x + µ)ex + yey + zez ,

r23 = (x − 1 + µ)ex + yey + zez ,

and injecting all of this into (1.4), we finally obtain the dynamical system expressed in the
rotating frame: 

Üx = 2 Ûy + x − 1 − µ
r313
(x + µ) − µ

r323
(x − 1 + µ),

Üy = −2 Ûx + y − 1 − µ
r313
(y) − µ

r323
y,

Üz = −1 − µ
r313

z − µ

r323
z.

As usual we write this system as an ordinary differential equation of order one, we
introduce the variables

ξ = (x1,x2,x3,x4,x5,x6) = (x ,y, z, Ûx , Ûy, Ûz),
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and we get 

Ûx1 = x4,

Ûx2 = x5,

Ûx3 = x6,

Ûx4 = x1 + 2x5 − (1 − µ)
x1 + µ

r313
− µ x1 − 1 + µ

r323
,

Ûx5 = x2 − 2x4 − (1 − µ)
x2

r313
− µ x2

r323
,

Ûx6 = −(1 − µ)
x3

r313
− µ x3

r323
.

(1.6)

Remark 1.2:

This coordinate system is called Cross coordinates. As we have seen, in such a coordi-
nate system, the two primaries have the following coordinates

• xP1
= (−µ, 0, 0, 0, 0, 0),

• xP2
= (1 − µ, 0, 0, 0, 0, 0).

Moreover, their respective masses are

• µ1 = 1 − µ,

• µ2 = µ.

If we introduce the potential function

Uµ (x1,x2,x3) = −
1

2

(
x2
1 + x

2
2

)
− 1 − µ

r13
− µ

r23
− 1

2
µ (1 − µ) ,

we can write the system as 

Ûx1 = x4 = f1(ξ ),
Ûx2 = x5 = f2(ξ ),
Ûx3 = x6 = f3(ξ ),

Ûx4 = 2x5 −
∂Uµ

∂x1
= f4(ξ ),

Ûx5 = −2x4 −
∂Uµ

∂x2
= f5(ξ ),

Ûx6 = −
∂Uµ

∂x3
= f6(ξ ),

(1.7)

where we define F0 = (fi )16i66 the vector field of the CRTBP dynamics.

1.1.1 Frame transition maps
In this section, we will write the transition map between the inertial and rotating frames.
Let us denote by (X ,Y ,Z ) the coordinates in the inertial frame I:

r = XEx + YEy + ZEz .
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According to Figure 1.2, it holds that

©­«
X
Y
Z

ª®¬ = At
©­«
x
y
z

ª®¬ ,
where

At =
©­«
cos t sin t 0
− sin t cost 0

0 0 1

ª®¬ .

X

Y

x

y

t

•
P

Figure 1.2 – Inertial and rotating frames.

Moreover, a simple computation gives us

©­«
ÛX
ÛY
ÛZ
ª®¬ = ÛAt

©­«
x
y
z

ª®¬ +At
©­«
Ûx
Ûy
Ûz
ª®¬ ,

= −At J
©­«
Ûx
Ûy
Ûz
ª®¬ +At

©­«
Ûx
Ûy
Ûz
ª®¬ ,

= At
©­«
Ûx − y
Ûy + x
Ûz

ª®¬ .
where

J =
©­«
0 1 0
−1 0 0
0 0 0

ª®¬ .
Hence we have ©­­­­­­­«

X
Y
Z
ÛX
ÛY
ÛZ

ª®®®®®®®¬
=

(
At 03×3
−At J At

) ©­­­­­­­«

x
y
z
Ûx
Ûy
Ûz

ª®®®®®®®¬
.
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1.2 Libration Points (Lagrange Points)

In this section, we investigate the equilibrium points of the CRTBP.They are called Lagrange
points or libration points. Euler in [34] and Lagrange in [54] showed that there exist five
equilibrium points

• three collinear equilibria on the x-axis, called L1, L2 and L3;

• two equilateral points called L4 and L5 (each forms an equilateral triangle with P1 and
P2).

See Figure 1.3 for an illustration.

x

y

L2L3 L1

L4

L5

P2P1

Figure 1.3 – Localization of Lagrange points.

For a complete derivation of the coordinates of the Lagrange points, one may see Sze-
behely [83] in Theory of Orbits - The Restricted Problem of Three Bodies.

Here, we give a sketch of how te compute the coordinates of these points. They corre-
spond to the zeros of F0(·) defined in (1.7): find ξ = (x1,x2,x3,x4,x5,x6) such that

x4 = x5 = x6 = 0,

2x5 −
∂Uµ
∂x1
= 0,

−2x4 −
∂Uµ
∂x2
= 0,

− ∂Uµ
∂x3
= 0.

Immediately, we get
x3 = x4 = x5 = x6 = 0,

and we are left to find (xe ,ye ) such that
xe − (1 − µ) xe+µr313

− µ xe−1+µr323
= 0,

ye − (1 − µ) yer313 − µ
ye
r323
= 0.
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1.2.1 Localization of collinear points

We consider ye = 0, hence we have to solve the following equation

xe −
1 − µ
(xe + µ)

− µ

(xe − 1 + µ)
= 0. (1.8)

Let us focus on the three parts of the x-axis: first, the part between the two primaries,
then, the part defined by xe > xP2

, and finally the part defined by xe < xP1
.

Point L1. We look for an equilibrium point between the two primaries , and denote it by
L1. We denote the distance between P2 and L1 by γ1, so

xL1
= xP2

− γ1 = 1 − µ − γ1.

Injecting this into (1.8), one obtains the following equation

γ 5
1 − (3 − µ)γ 4

1 + (3 − 2µ)γ 3
1 + µγ

2
1 − 2µγ1 + µ = 0.

Point L2. We look for an equilibrium point with xe > xP2
, and denote it by L2. As before,

we denote the distance between P2 and L2 by γ2, so

xL2
= xP2

+ γ2 = 1 − µ + γ2.

Injecting this into (1.8), one obtains the equation

γ 5
2 + (3 − µ)γ 4

2 + (3 − 2µ)γ 3
2 − µγ 2

2 − 2µγ1 − µ = 0.

Point L3. We look for an equilibrium point with xe < xP1
, and denote it by L3. This time,

we denote the distance between P1 and L3 by γ3, which implies

xL3
= xP1

− γ3 = −µ − γ3.

Injecting this into (1.8), one obtains the equation

γ 5
3 + (2 + µ)γ 4

3 + (1 + 2µ)γ 3
3 − (1 − µ)γ 2

3 − 2(1 − µ)γ3 − (1 − µ) = 0.

Historically, much effort has been put toward finding the series expansions of such so-
lutions. From Szebehely [83], we get the expression of the two values that we use in this
work

γ1 = rh

(
1 − 1

3
rh −

1

9
r2+· · ·h

)
,

γ2 = rh

(
1 +

1

3
rh −

1

9
r2+· · ·h

)
,

where rh =
( µ
3

) 1/3 is called the Hill radius 2

2. The corresponding Hill sphere is the ’bubble’ in 3D position space surrounding P2 inside which the satellite
with a negligible mass will not be captured by the primary P1.



1.2. Libration Points (Lagrange Points) 35

1.2.2 Richardson Coordinate System for the CRTBP
We introduce here a new coordinate system that proves very useful to compute periodic
orbits around Lagrange points (see Section 1.4). As for the Cross coordinate system (see
remark 1.2), we define the (Ox)-axis as the line defined by the two primary positions P1 and
P2, and the (Oy)-axis as the orthogonal. We choose one Lagrange point Li , i ∈ ~1, 2� as the
origin, and we normalize the distance by the distance between the Lagrange point and the
second primary P2 (for the Cross system it is the distance between the two primaries).

Change of Coordinates between Cross and Richardson Systems

We consider one of the 2 collinear points Li of the CRTBP around the second primary P2
(L1 or L2). We denote by d the distance between the two primaries and by di the distance
between Li and P2. In this section only, we denote respectively by (xC ,yC , zC , ÛxC , ÛyC , ÛzC )
and (xR ,yR , zR , ÛxR , ÛyR , ÛzR ) the coordinates in the Cross and Richardson systems.

To convert a set of coordinates from the Cross system to the Richardson system, the
following formula holds

xR =
xC ± di − (1 − µ)d

di
, yR =

d

di
yC , zR =

d

di
zC ,

ÛxR =
d

di
ÛxC , ÛyR =

d

di
ÛyC , ÛzR =

d

di
ÛzC .

The + sign is for L1 and the − sign for L2.
Conversely, it holds that

xC =
dixR ∓ di + (1 − µ)d

d
, yC =

di
d
yR , zC =

di
d
zR ,

ÛxC =
di
d
ÛxR , ÛyC =

di
d
ÛyR , ÛzC =

di
d
ÛzR .

Now that we have introduced the dynamics of the CRTBP, we can study some of its
dynamical properties.

1.2.3 Stability by Linearization
Stability properties of the Lagrange points have been discussed by Szebehely [83]. This is
achieved by studying a linearized system. In this section both the planar and the 2D cases
are considered.

Planar case

One can easily write the linearization of the dynamics around a Lagrange point Li , i ∈
~1, 5�. We get

©­­­«
δ Ûx
δ Ûy
δ Üx
δ Üx

ª®®®¬ =
©­­­­«

0 0 1 0
0 0 0 1

∂Uµ
∂x∂x (ξi )

∂Uµ
∂x∂y
(ξi ) 0 2

∂Uµ
∂x∂y (ξi )

∂Uµ
∂y∂y (ξi ) −2 0

ª®®®®¬
©­­­«
δx
δy
δ Ûx
δ Ûx

ª®®®¬ ,
where ξi is the coordinate of Li . If we evaluate the matrix of the linearized system at the
collinear points L1, L2 and L3, we obtain that the matrix has four eigenvalues: two real ones
including one which is non negative, and two purely imaginary ones that are conjugates.
This proves the instability of the collinear points.
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If we evaluate the matrix at the equilateral points L4 and L5, we get that if µ < µ∗ where

µ∗ =
1

2

(
1 −
√
69

9

)
= 0.03851, (1.9)

then the matrix has purely imaginary eigenvalues.
If µ = µ∗, the eigenvalues of the matrix of the linearized system are multiples of ±i

√
2/2

with non trivial Jordan blocks. Finally, for µ > µ∗, the eigenvalues are λ, −λ, λ, and −λ
where λ is not purely imaginary.

In this last case, clearly L4 and L5 are unstable. Using results on dynamical systems as
in Meyer, Hall, and Offin [62], one can show that L4 and L5 are stable when µ < µ∗. In
addition to Szebehely [83], the reader may refer to Bonnard, Faubourg, and Trélat [18] for
a precise study of the planar case.

Remark 1.3:

Image Wikipedia.

If we consider the {Sun–Jupiter} system, one can show
that the equilateral points are stable and this is coherent
with reality.
Indeed, in 1906 a German astronomer Max Wolf discov-
ered the first asteroid captured by the equilibrium region
of point L5. This kind of asteroid is called a Trojan as-
teroid . In the region of L4, it is called Greek asteroid .
A total of 6,178 Jupiter Trojans had been found in Jan-
uary 2015. The total number of Jupiter Trojans larger
than 1 km in diameter is believed to be about 1 million,
approximately equal to the number of asteroids larger
than 1 km in the asteroid belt.

This illustrates why stable equilibrium points cannot be considered in the design of
spacecraft missions because of the collision potential.

3D case

The linearized dynamics around Lagrange points can be written as follows

©­­­­­­­«

δ Ûx
δ Ûy
δ Ûz
δ Üx
δ Üy
δ Üz

ª®®®®®®®¬
=

©­­­­­­­­­«

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂Uµ
∂x∂x (ξi )

∂Uµ
∂x∂y (ξi )

∂Uµ
∂x∂z (ξi ) 0 2 0

∂Uµ
∂x∂y (ξi )

∂Uµ
∂y∂y (ξi )

∂Uµ
∂y∂z (ξi ) −2 0 0

∂Uµ
∂x∂z (ξi )

∂Uµ
∂y∂z (ξi )

∂Uµ
∂z∂z (ξi ) 0 0 0

ª®®®®®®®®®¬

©­­­­­­­«

δx
δy
δz
δ Ûx
δ Ûy
δ Ûz

ª®®®®®®®¬
,

where ξi is the coordinate of Li .

• At L1, L2 and L3, eigenvalues of this matrix are (±λ,±iωp ,±iωv ), where λ > 0,ωp > 0,
and ωv > 0. Since one of these values is non negative, collinear points are unstable.

• For L4 and L5, the spectrum is of the form (±iω1,±iω2,±iω3), where 0 < ω1 6 ω2 6
ω3 and the study of stability is harder and depends on the relation between the values
ωi .
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1.3 Jacobi Integral and Hill’s Region

In this section, to better convey a physical understanding of the phenomena, we denote the
state in terms of position and velocity (x ,y, z, Ûx , Ûy, Ûz).

1.3.1 Jacobi Integral
TheCRTBP dynamics areHamiltonian and autonomous, hence, an energy integral ofmotion
holds

E(ξ ) = 1

2
( Ûx2 + Ûy2 + Ûz2) +Uµ (x ,y, z), (1.10)

i.e., dE
dt = 0.
The celestial mechanics and dynamical astronomy communities use −2E which is called

the Jacobi integral and is defined from (1.10) as

J (x ,y, z, Ûx , Ûy, Ûz) = −2E(ξ ) = −( Ûx2 + Ûy2 + Ûz2) − 2Uµ (x ,y, z).

Note that the time-independency of the Jacobi integral can be derived by a straightforward
computation of dJ

dt .

1.3.2 Hill’s Region
Along trajectories of the CRTBP system, the Jacobi integral is constant, hence one can define
the energy surface.

Definition 5 (Energy surface): For a given µ and a constant e , we consider the energy
surface, or energy manifold M(µ, e), as the five-dimensional surface embedded in the six-
dimensional phase space defined by

M(µ, e) = {(x ,y, z, Ûx , Ûy, Ûz); E(x ,y, z, Ûx , Ûy, Ûz) = e} . ♦

Then, one can define Hill’s region from the previous definition.

Definition 6 (Hill’s region): The projection of the energy surface onto the position space in
the rotating frame is the region of possible motion for a particle of energy e in the CRTBP
gravitational field of mass parameter µ. We denote by M(µ, e) this projection

M(µ, e) =
{
(x ,y, z); Uµ (x ,y, z) 6 e

}
. (1.11)

This is historically known as Hill’s region. The boundary ofM(µ, e) is known as the zero velocity
curve. ♦

Let us finish by giving one more definition.

Definition 7 (Zero velocity curves): The zero velocity curves (or boundaries of Hill’s re-
gion) are the locus of the points in the (x ,y, z)-space where the kinetic energy vanishes, i.e., for
a given energy e and a mass parameter µ{

(x ,y, z); e −Vµ (x ,y, z) = 0
}
,

where Vµ = 1
2 ( Ûx2 + Ûy2 + Ûz2). ♦

From (1.11), we see that the motion of the spacecraft is possible only on one side of one
of these surfaces. Indeed, motion is possible for positive kinetic energy. The other side of
the curve is known as the forbidden realm.
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By multi-variable calculus, one can show that there exist five critical points where the
slope of the potential vanishes: three saddle points along the x-axis and two points that are
symmetric with respect to the x-axis. Obviously, they correspond to the Lagrange points
introduced in Section 1.2.

We denote by Ei the energy of a particle (a spacecraft) at rest at the libration point Li
(i ∈ ~1, 5�). It holds that

E5 = E4 > E3 > E2 > E1.

Hill’s region can be represented as a level section of the graph of the potential Uµ . We
plotted the potential for the planar case in Figure 1.4. To have a better understanding of
these properties, let us consider the restricted planar case. The extension for the 3D case is
easy although we cannot easily represent the different cases.

The intersection of plane z = e with the graph of the effective potential Uµ gives the
representation of the different possible zero velocity curves.

−1

0

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1.8

−1.6

L1
L2

L3

L4
L5

Figure 1.4 – Plot of the potential in the planar case for system {Earth-Moon}. The five
equilibrium points Li , i ∈ ~1, 5� are the critical points.

For a given mass parameter µ there are five basic configurations for Hill’s region. See
Figure 1.5 for a graphical representation.

Case 1. e < E1: If the energy of the spacecraft is lower than E1, the regions around the
two primaries are separated and a spacecraft without control cannot move from one
to another. See Figure 1.5a.

Case 2. E1 < e < E2: In that case, a “neck” between the realms around the two primaries
opens up. We can note that the equilibrium point L1 is in this neck. The spacecraft is
still contained in the interior realm and cannot go to the exterior realm. See Figure 1.5b.

Case 3. E2 < e < E3: Here we have a second opening between realm around the point L2.
This allows to go from the interior realm to the exterior realm. See Figure 1.5c.

Case 4. E3 < e < E4 = E5: Here, there are only two separated forbidden realms around
the two equilateral points L4 and L5. A third neck appears around point L3. See
Figure 1.5d.

Case 5. E4 = E5 < e: The forbidden realm disappears. The spacecraft is free to move in the
entire (x ,y)-plane.
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µ = 0.1 • J = 3.7
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(a) Case 1: e < E1.

µ = 0.1 • J = 3.5
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(b) Case 2: E1 < e < E2.

µ = 0.1 • J = 3.17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) Case 3: E2 < e < E3.

µ = 0.1 • J = 3.06
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(d) Case 4: E3 < e < E4 = E5.

Figure 1.5 – Realms of possible motion (images J.-M. Sarlat).

In this work, we focus on the low thrust transfer in the CRTBP. The study of Hill’s
regions is crucial because of the good intuition it gives us. Indeed, because we are

using low thrust, it will be very interesting to known what regions are accessible without
any control. This will become clearer in Section 1.5 about invariant manifolds.

1.4 Periodic Orbits

The equilibrium points in the CRTBP have been known for centuries. As we have seen,
Euler in 1767 [34] and Lagrange in 1772 [54] first computed their positions. In 1950, Arthur
C. Clarke first suggested that point L2 could be an ideal place for relaying TV and radio
signals.

In 1966, Robert Farquhar discovered trajectories around L2 on which a communication
satellite could be placed to establish a continuous link between Earth and the far side of the
Moon. He named such a trajectory a “Halo orbit”. Then NASA became very interested in
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the subject and Farquhar published numerous scientific articles covering topics related to
Halo orbits (see for instance [35, 36]).

Periodic orbits have been used for real missions such as ISEE-3 (NASA) in 1978, SOHO
(ESA-NASA) in 1996, GENESIS (NASA) in 2001, PLANK (ESA) in 2007 etc.

In this section, we will investigate the periodic orbits around the collinear points of the
CRTBP. We will introduce the Lyapunov-Poincaré center theorem that ensures that families
of periodic orbits exist around the equilibrium points.

1.4.1 Lyapunov-Poincaré Theorem

Let us write the linearized system in the spatial case (the planar case can be easily deduced
from it). It is standard to expand the nonlinear terms 1

r1
and 1

r2
as series in Legendre poly-

nomials, using the formula:

1√
(x −A)2 + (y − B)2 + (z −C)2

=
1

D

∞∑
n=0

( ρ
D

) n
Pn

(
Ax + By +Cz

Dρ

)
,

where D2 = A2 + B2 +C2, ρ2 = x2 +y2 + z2 and Pn is the Legendre polynomial of degree n
(see Jorba and Masdemont [50]). Then, using a Richardson coordinate system centered on
the equilibrium point Li introduced in Section 1.2.2, for i = 1, 2, the equations of motion
(1.6) can be written as 

Üx − 2 Ûy − (1 + 2c2)x =
∂

∂x

∑
n>3

cnρ
nPn

(
x

ρ

)
,

Üy + 2 Ûx − (c2 − 1)y =
∂

∂y

∑
n>3

cnρ
nPn

(
x

ρ

)
,

Üz + c2z =
∂

∂z

∑
n>3

cnρ
nPn

(
x

ρ

)
,

(1.12)

where

cn =
1

γn+1i

(
µ +
(1 − µ)γn+1i

(1 − γi )n+1

)
.

As previously, γi denotes the distance between the Lagrange point Li and the second pri-
mary.

Hence, at Lagrange points Li , i = 1, 2, 3, the linearized version of (1.12) is
Üx − 2 Ûy − (1 + 2c2)x = 0,

Üy + 2 Ûx − (c2 − 1)y = 0,

Üz + c2z = 0.

(1.13)

This is of the kind saddle×center×center. Indeed, a simple computation leads to the
eigenvalues (±λ,±iωp ,±iωv ):

λ2 =
c2 − 2 +

√
9c22 − 8c2

2
, ω2

p =
c2 − 2 −

√
9c22 − 8c2

2
, and ω2

v = c2. (1.14)

The following theorem ensures the existence of periodic orbits around equilibriumpoints
(see [62, 18] and references therein).
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Theorem 1 (Lyapunov-Poincaré center theorem) Let Ûx = H(x) be a hamiltonian
system in R2n , x0 an equilibrium point identified with 0, and A = ∂H

∂x (0) the lin-
earized system matrix. Assume that the eigenvalues of A are

σ(A) = {±iω,λ3, . . . ,λ2n } ,

where ω > 0. If λj/iω < Z for j ∈ ~3, 2n�, then there exists a one-parameter
family of periodic orbits around 0. Moreover, when approaching the equilibrium
point along the family, the periods go to 2π/ω and the nontrivial multipliers go to
exp(2πλj/ω), j ∈ ~3, 2n�.

Themultipliers are, by definition, the eigenvalues of themonodromymatrix (see Section 1.5.2),
and the non-trivial multipliers are themultipliers left after dropping two+1multipliers from
the list of eigenvalues (for references, see [62]).

This theorem can be applied to the planar circular restricted three body problem and to
the spatial circular restricted three body problem.

Planar case

Let us apply it to the planar case.

• For the collinear points L1, L2 and L3, we have seen that the eigenvalues of the lin-
earized system are a pair of real eigenvalues and a pair of pure imaginary eigenvalues
(for details, see Meyer, Hall, and Offin [62]). Thus, the Lyapunov-Poincaré theorem
implies that there is a one-parameter family of periodic solutions emanating from
each of these libration points.

• For the points L4 and L5, for µ < µ∗ defined in (1.9), we have two pairs of purely
imaginary eigenvalues (±iω1,±iω2) with 0 < ω1 < ω2. Applying theorem 1 twice,
we obtain the following :

– since ω2/ω1 < 1: there exists a one-parameter family of periodic orbits emanat-
ing from the equilibrium point with a period approaching 2π/ω1. This family is
called the short period family.

– If ω2/ω1 < N: there exists a family of periodic orbits emanating from the equi-
librium point with period approaching 2π/ω2. This family is called the long time
period family.

Spatial Case

We have seen that eigenvalues of the spatial circular restricted three body problem are
(±λ,±iωp ,±iωv ) with λ, ωp and ωv non negative values. Thanks to theorem 1, we obtain
the following

• because λ/ωv < Z, there exists a one-parameter family of periodic orbits;

• moreover, if ωp/ωv < Z, we can apply the theorem once again and we obtain another
one-parameter family.

When c2 > 1, as for the {Sun-Earth} system, ωp/ωv < Z, and there exists a family of
periodic orbits with two parameters around L1 and L2. We will see in the next sections an
example of such a periodic orbit: the eight-shape orbit.

Definition 8 (Terminology): There exists specific terminology for periodic orbits around La-
grange points.
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• In the spatial case, periodic orbits which are homeomorphic to a circle are called Halo
orbits, other families of periodic orbits are called Lissajous orbits.

• In the planar case, periodic orbits which are homeomorphic to a circle are called Lyapunov
orbits. ♦

1.4.2 Numerical Method to Compute Periodic Orbits

In Richardson coordinates, the dynamics satisfy a property of symmetry: if ξ (t) is a solution
of (1.6), then so is ξ (−t). Hence, if there exists a trajectory on one side of the plane y = 0,
then its mirror part on the other side propagating backward is also a trajectory.

Consider a trajectory beginning at t = 0 in the plane y = 0 with an orthogonal velocity
vector. If there exists a time tξ at which the trajectory crosses the plane y = 0 with again
an orthogonal velocity, then we get a periodic orbit of period 2tξ .

This can be written in the following way: considering a periodic solution of (1.12)

ξ (t) = (x(t),y(t), z(t), Ûx(t), Ûy(t), Ûz(t))

of period 2tξ , it holds that

ξ (0) = (x0, 0, z0, 0, Ûy(0), 0) and ξ (tξ ) = (x1, 0, z1, 0, Ûy1, 0).

Shooting Function

To compute these periodic orbits numerically, we use aNewton-likemethod. More precisely,
the problem can be stated as finding the zero of a shooting function. Indeed, let us denote
by ϕ the flow of the dynamical system, we search for the initial values for ξ (0) that yield

©­«
y(tξ )
Ûx(tξ )
Ûz(tξ )

ª®¬ = ©­«
ϕ2(tξ , ξ (0))
ϕ4(tξ , ξ (0))
ϕ6(tξ , ξ (0))

ª®¬ = 0.

Because we have more degrees of freedom than the dimension of the function that we
want to nullify, we fix one parameter, usually, the excursion z0 (see Archambeau, Augros,
and Trélat [6]). Having done that, the shooting function for this problem can be defined as

Sz0 (tξ ,x0, Ûy(0)) =
©­«
ϕ2(tξ , ξ (0))
ϕ4(tξ , ξ (0))
ϕ6(tξ , ξ (0))

ª®¬ . (1.15)

To find the solution of Sz0 (tξ ,x0, Ûy0), we use a Newton-like method. Of course, to allow
such a method to converge, we have to initialize it with a point in the convergence domain.
This is the subject of the next section.

1.4.3 Analytical Initialization

To initialize the Newton-like method for finding the zeros of the shooting function defined
in (1.15), we initialize the algorithm with an analytical approximation of the periodic orbits
that we want to compute.
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Lindstedt-Poincaré Method

The method we follow to compute an analytical approximation is the Lindstedt-Poincaré
Method (see Poincaré [70] and Lindstedt [57]).

Let us explain the method on the standard example of the Duffing equation

Üq + q + ϵq3 = 0, (1.16)

where ϵ � 1. For ϵ = 0, we can easily show that a periodic solution is q(t) = a cos(t) for
initial condition q(0) = a and Ûq(0) = 0.

For ϵ , 0, a very naive approach would be to search for solutions of the form

q =
∞∑
n=0

ϵnqn(t),

with q0(0) = a, Ûq0(0) = 0 and qn(0) = 0, Ûqn(0) = 0 for every n > 1. Then, we could solve,
recursively, the equations to the same order of ϵ

Üq0 + q0 = 0,

Üq1 + q1 = −q30,
Üq2 + q2 = −2q20q1,
· · · · · ·

Having performed computations, we get for q1

q1(t) = −
3

8
a3t sin(t) + 1

32
a3(cos(3t) − cos(t)).

Because of the so-called secular term (t sin t ), the first-order approximation grows to infinity
in time. Hence, this approach is not valid to compute an approximation of the solution.

The Lindstedt-Poincaré method allows for the creation of an approximation that is ac-
curate at all time. A scaled time is defined

τ = ν (ϵ)t ,

where ν = 1+ϵν1+ϵ
2ν2+ · · · . Then, with respect to the scaled time, equation (1.16) becomes

q′′ + ν−2(q + ϵq3) = 0,

with the same initial conditions. Now, a solution is sought in the form

q =
∞∑
n=0

ϵnqn(τ ).

The obtained zero-th and first order solution in ϵ are

q0(τ ) = a cos(τ ) and q1(τ ) = (ν1 −
3

8
)a3t sin(t) + 1

32
a3(cos(3t) − cos(t)).

The secular term can be removed bymaking the choice: ν1 = 3/8. Higher orders of accuracy
can be obtained by propagating this perturbation analysis recursively.

In the end of this very short introduction, this method allows for the removal of the
secular terms at any approximation order.
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Much effort has been put toward computing analytical approximations of Lissajous or-
bits around Lagrange points using the Lindstedt-Poincaré method. Let us present the re-
markable contributions of Jorba and Masdemont [50], Archambeau, Augros, and Trélat [6],
and Richardson [74].

Halo Orbit Case

In this section, we recall the method that Richardson used in [74] in 1980. He computed
analytical approximations for Halo orbits.

Consider the linearized spatial motion equations (1.13)
Üx − 2 Ûy − (1 + 2c2)x = 0,

Üy + 2 Ûx − (c2 − 1)y = 0,

Üz + c2z = 0.

A simple computation yields the eigenvalues of this system: (±λ,±iωp ,±iωv ). If initial
conditions are restrained to the non-divergent mode, we obtain solutions for the linearized
system of the form 

x(t) = −Ax cos(ωpt + ϕ),
y(t) = κAx sin(ωpt + ϕ),
x(t) = Az cos(ωvt +ψ ),

(1.17)

where κ =
ω2
p+1+c2
2ωp

= 2λ
λ2+1−c2 and, Ax and Az refer to the excursions respectively in x and

z.
One can immediately see that if the ratio between ωp and ωv is rational, then the

bounded solutions of the linearized system are periodic.
Because there are four purely imaginary eigenvalues, classical theorems stating equiv-

alence between the non-linear system and its linearized form do not hold.
However, a generalization of the Lyapunov theorem, established by Moser [66], ensures

that for a certain energy greater than the energy of the considered Lagrange point, the
behavior of non-linear solutions is qualitatively equivalent to that of the linear solutions.
Hence, periodic orbits in the non-linear system are perturbations of the periodic orbits of
the linearized system around Lagrange points.

In equation (1.17), values of the frequencies ωp and ωv are fixed and “naturally given”
by the parameters of the system and the Lagrange point we consider. The non-linearity
can induce changes on these two frequencies. Following the work of Richardson and the
Lindstedt-Poincaré method we sketch the different steps needed to obtain an approximation
of the Halo orbits for which the ratio between the two proper frequencies is equal to one.
For other rational ratios, the orbits are referred to as Lissajous orbits.

The first step is to rewrite the system of equations (1.12), enforcing the relationωp = ωv
for the linearized part

Üx − 2 Ûy − (1 + 2c2)x =
∂

∂x

∑
n>3

cnρ
nPn

(
x

ρ

)
,

Üy + 2 Ûx − (c2 − 1)y =
∂

∂y

∑
n>3

cnρ
nPn

(
x

ρ

)
,

Üz + ω2
pz =

∂

∂z

∑
n>3

cnρ
nPn

(
x

ρ

)
+ ∆z,

(1.18)
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where ∆ = ω2
p − ω2

v . Equations (1.18) approximated to the fourth order are
Üx − 2 Ûy − (1 + 2c2)x =

3

2
c3(2x2 − y2 − z2) + 2c4x(2x2 − 3y2 − 3z2) +O(ρ4),

Üy + 2 Ûx + (c2 − 1)y = −3c3xy −
3

2
c4y(4x2 − y2 − z2) +O(ρ4),

Üz + ω2
pz = −3c3xz −

3

2
c4z(4x2 − y2 − z2) + ∆z +O(ρ4).

We look for a periodic solution as a series expansion in the excursions
x = Ax0(τ ) +A2x1(τ ) +A3x2(τ ) + · · ·
y = Ay0(τ ) +A2y1(τ ) +A3y2(τ ) + · · ·
z = Az0(τ ) +A2z1(τ ) +A3z2(τ ) + · · ·

(1.19)

where An =
∑
l,p, l+p=n λl,pA

l
xA

p
z , and λi, j are the polynomial coefficients. We then define

the scaled time τ = νt where

ν = 1 +
∑
n>1

νn , νn < 1.

Recursively, we adjust the parametersνn to cancel secular terms that appear in the expansion
of each approximation. Equations (1.19) become

ν2x ′′ − 2νy ′ − (1 + 2c2)x =
3

2
c3(2x2 − y2 − z2) + 2c4x(2x2 − 3y2 − 3z2) +O(ρ4),

ν2y ′′ + 2νx ′ + (c2 − 1)y = −3c3xy −
3

2
c4y(4x2 − y2 − z2) +O(ρ4),

ν2z ′′ + ω2
pz = −3c3xz −

3

2
c4z(4x2 − y2 − z2) + ∆z +O(ρ4).

Following the Lindstedt-Poincaré method and with quite long calculations, we obtain
that ν1 = 0 and ν = s1A2

x + s2A
2
z where s1 and s2 are defined in appendix A. We also obtain

an approximation of the period of the periodic orbit T = 2 π
ωp
ν .

Unfortunately, all secular terms are not canceled, we have to add two more equations

l1A
2
x + l2A

2
z + ∆ = 0

ψ − ϕ = nπ/2, n ∈ {1, 3}
(1.20)

where l1 and l2 are also defined in appendix A. For computational details, see [74, 6].
The resulting third order analytical approximation is

x = a21A
2
x + a22A

2
z −Ax cos(τ1) + (a23A2

x − a24A2
z ) cos(2τ1) + (a31A3

x − a32AxA
2
z ) cos(3τ1),

y = κAx sin(τ1) + (b21A2
x − b22A2

z ) sin(2τ1) + (b31A3
x − b32AxA

2
z ) sin(3τ1),

z = δnAz cos(τ1) + δnd21AxAz (cos(2τ1) − 3) + δn(d32AzA
2
x − d31A3

z ) cos(3τ1)
where τ1 = ωpτ + ϕ, δn = 2 − n, n gives the orbit class, which can be interpreted as the
direction of rotation. One again, coefficients ai, j , bi, j and di, j are defined in appendix A.

Eight-Shape Periodic Orbit

We will not present the very general method explained in [50, 41] but, an interesting kind
of periodic orbit is the “Eight-Shape” periodic orbit. These orbits are nearly vertical and we
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will see that their invariant manifolds are very stable compared to the Halo manifolds. This
is proved thanks to the study of the local Lyapunov exponents (see Archambeau, Augros,
and Trélat [6]).

Despite a mistake in the work in [6] 3, the author, following the ideas of Richardson’s
study, gives an analytical approximation for eight-shape periodic orbits that is accurate
enough to initialize a Newton-like method and achieve convergence. The author derives
the following expression of the approximation
x = a21A

2
x + a22A

2
z −Ax cos(τ1) + (a23A2

x − a24A2
z ) cos(2τ1) + (a31A3

x − a32AxA
2
z ) cos(3τ1),

y = κAx sin(τ1) + (b21A2
x − b22A2

z ) sin(2τ1) + (b31A3
x − b32AxA

2
z ) sin(3τ1),

z = δrAz cos(τ2) + δnd21AxAz (cos(2τ2) − 3) + δn(d32AzA
2
x − d31A3

z ) cos(3τ2),
where τ1 = ωpτ +ϕ and τ2 =

ωp
2 τ +ψ . Relations between excursion and phase are the ones

introduced in (1.20).

Numerical results

In figures 1.6 and 1.7, we see different periodic orbits for different CRTBPs: the Halo orbit in
the {Sun-Earth} system, and an eight-shape orbit in the {Earth-Moon} system. In Figure 1.8,
we plot a planar Lyapunov orbit in the {Earth-Moon} system. All examples are computed
around L1 but it could easily be done for L2. Thanks to the two analytical approximation
for periodic orbits, the Newton-like method converges easily.
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Figure 1.6 – Halo orbit in the {Sun-Earth} system in Richardson coordinates obtained by a
Newton-like method. The fixed excursion is Az = 240 × 103 km.

3. Indeed, the argument to cancel the secular term for z20 does not hold for the eight-shape periodic orbit.
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Figure 1.7 – Eight-shape orbit in the {Earth-Moon} system in Richardson coordinates ob-
tained by a Newton-like method. The fixed excursion is Az = 630 × 103 km.

1.4.4 Families of Periodic Orbits

To design spacecraftmissions, it is very useful to be able to compute the family of all periodic
orbits, providing a variety of orbits that have different energies. In order to achieve this, we
first introduce the continuationmethods. Thesemethodswill be used throughout this thesis,
here we introduce the basic concept.

Continuation Method

To compute the family of periodic orbits, we introduce continuation methods also known
as homotopy methods. We consider a problem P1 that we want to solve. The principle
is to embed this problem into a family of problems depending on a parameter λ ∈ [0, 1]:
(Pλ)λ∈[0,1]. The initial problem P0 is assumed to be easy to solve, while the final problem
P1 is the one we actually want to solve (and too hard to solve directly).

The continuation method is to follow the zeros of the problems (Pλ)λ∈[0,1] using shoot-
ing functions from λ = 0 to λ = 1 to finally obtain a solution for P1. There are many types
of continuation methods, for a complete presentation, see Allgower and Georg [3]. First,
we consider discrete continuation.

Let us assume that we have solved P0 numerically, and consider a subdivision 0 = λ0 <
λ1 < · · · < λp = 1 of the interval [0, 1]. The solution of P0 is used to initialize the Newton-
like method applied to Pλ1

. And so on: solution of Pλi−1 is used to initialize Pλi . Of course,
the sequence (λi ) has to be well chosen, and should be refined if necessary. See Section 2.5
for general explanations on discrete continuation methods.

Theoretically, for this method to converge, we need the family of problems to depend
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Figure 1.8 – Lyapunov orbit in the {Earth-Moon} system in Richardson coordinates obtained
by a Newton-like method. We are in a planar case.

continuously on the parameter λ. See [18, chap. 9] for some justification of the method.
We note that there exist many continuation codes available on the web, such as the well-

known Hompack90 [89] or Hampath [30]. For a survey of different results, challenges and
issues on continuation methods, see [85].

Application to the family of orbits

Since we had to choose a parameter the excursion z0 to write the zero function Sz0 in (1.15),
it seems natural to use this parameter to perform the continuation that computes the family
of orbits. We choose to reach a certain z

obj
0 (respectively x

obj
0 in the planar case). So we

define our continuation as

Pλ :


zλ0 = (1 − λ)z0 + λz

obj
0

Sλz0 (tξ ,x0, Ûy0) =
©­«
ϕ2(tξ , ξ λ0 )
ϕ4(tξ , ξ λ0 )
ϕ6(tξ , ξ λ0 )

ª®¬ = ©­«
0
0
0

ª®¬
where ξ λ0 = (x0, 0, zλ0 , 0, Ûy0, 0). Thanks to the analytical approximation provided by [74] or
[50], we can solve the initial problem P0 as described in the previous section. Note that
such an analytical approximation does not work for every z0, in particular for small ones.
Using the continuation method described previously, we derive a family of periodic orbit.

Unfortunately, for some periodic orbits (Halo family), we observe that the contin-
uation fails when we converge to the equilibrium point (zobj0 → 0). A much better

continuation parameter is energy. It releases the constraint on the parameter z0, and al-
lows us to reach any periodic orbit. In particular the algorithm converges to the energy
of Li , i ∈ {1, . . . , 3}.
We can explain the failure of the continuation on the z-excursion by the fact that for,
energy value close to the one of the libration point, the z-excursion is too small. Moreover,
the energy parameter provides monotony to the path of zeros.
Moreover, it is a significantly more natural parameter, keeping in mind the fact that we
will construct a controlled transfer method. To the author’s knowledge, this is the first
time that this continuation is performed with the energy as the continuation parameter.
This avoids numerical problems when reaching energies close to Li .

Thanks to the analytical approximation, we get a first periodic orbit with energy E0, and
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we want to reach a prescribed energy E1 so we define the following family of problems:

PEλ : SλE(tχ ,x0, z0, Ûy0) =
©­­­«
ϕ2(tξ , ξ0)
ϕ4(tξ , ξ0)
ϕ6(tξ , ξ0)
E(ξ0) = Eλ

ª®®®¬ =
©­­­«
0
0
0
0

ª®®®¬
where E(ξ0) is the energy of the trajectory starting at ξ0 and

Eλ = (1 − λ)E0 + λE1.

See Algorithm 1.1 for a precise description of the method.

Algorithm 1.1: Orbit Continuation Algorithm

Require: the objective energy E1, ϵ > 0, ϵmin and ϵmax.
Require: ξ0 = (x0, 0, z0, 0, Ûy0, 0) and tξ provided by the first shoot (with the analytical

approximation initialization).
1: E0 = E(ξ0), λ = 0.
2: xs = x0, zs = z0, Ûys = Ûy0 and ts = tξ .
3: i = 0.
4: while λ < 1 and ϵ > ϵmin do
5: ϵ = min(ϵ, 1 − λ)
6: we increase : λ← λ + ϵ .
7: we initialize : (tc ,xc , zc , Ûyc ) ← (ts ,xs , zc , Ûys )
8: Eλ ← (1 − λ)E0 + λE1
9: Newton-like Method to solve SλE(tc ,xc , zc , Ûyc ) = 0.

10: if success then
11: we keep the solution : (ts ,xs , Ûys ) ← (tc ,xc , Ûyc )
12: we increase : ϵ = min(αϵ, ϵmax), α > 1.
13: else
14: we restore : λ← λ − ϵ .
15: we decrease : ϵ = βϵ , β < 1.
16: end if
17: end while

Numerical Results

In Figures 1.9 and 1.10, we plotted, respectively, the family of Halo orbits for decreasing en-
ergies in the {Sun-Earth} system, and the family of eight-shape orbits for decreasing energies
in the {Earth-Moon} system. In Figure 1.11, we see the family of planar Lyapunov orbits in
the {Earth-Moon} system. All examples are computed around L1 but the same could easily
be done for L2. One may note that this continuation is a discrete one with no linear pre-
diction. We can obviously improve this continuation but because the computation time is
very small (around 0.01 s including the printing of each orbit during the continuation), we
did not add this feature.
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Figure 1.9 – Family of Halo orbits in the {Sun-Earth} system in Richardson coordinates
obtained by a Newton-like method and continuation on the energy. The first fixed excursion
is Az = 240 × 103 km and the final energy is −1.500 42 in normalized units (corresponding
to a quasi-null z-excursion).

1.5 Invariant Manifolds

In this section, we introduce the concept of invariant manifold of a periodic orbit. In the
next chapters, it will become apparent that the existence of such mathematical object is of
a great interest. Indeed, the invariant manifolds can be considered as gravitational currents,
and so, they can be used in interplanetary missions.

1.5.1 Mathematical Definition
We consider a periodic orbit around a libration point Li , i ∈ ~1, 3�. Let us begin with the
mathematical definition of these objects.

Definition 9 (Invariant Manifolds): A stable manifold (resp., unstable) of a periodic orbit
is the set of the phase space consisting of all points whose future (resp., past) semi-orbits converge
to it (asymptotic orbits). ♦

Because there is no analytical expression for the periodic orbits around libration points,
there is no analytical way of computing the associated invariant manifolds. However, the
computation of the stable and unstable invariant manifolds can be accomplished numeri-
cally. The procedure is based on the monodromy matrix discussed next.
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Figure 1.10 – Family of eight-shape orbits in the {Earth-Moon} system in Richardson coor-
dinates obtained by a Newton-like method and continuation on the energy. The first fixed
excursion is Az = 630 × 103 km and the final energy is −1.59 in normalized units (corre-
sponding to a quasi-null z-excursion).

1.5.2 Linear Approximation

Let us introduce some basic dynamical tools.

Monodromy Matrix

The monodromy matrix gives us information about the influence of perturbations around
the periodic orbit. Let us consider a periodic solution x∗(·) of period T , the flow from the
initial point x∗0 = x∗(0) is denoted by ϕ(t ,x∗0).

We consider a small perturbation δx∗0, and we defined the evolution of the perturbation
for t > 0

δx(t) = ϕ(t ,x∗0 + δx∗0) − ϕ(t ,x∗0).

At time T , it holds that
δx(T ) = ϕ(T ,x∗0 + δx∗0) − ϕ(T ,x∗0),

which first-order approximation is

δx(T ) =
∂ϕ(T ,x∗0)
∂x0

δx∗0.

This leads to the definition of the monodromy matrix.
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Figure 1.11 – Family of planar Lyapunov orbits in the {Earth-Moon} system in Richardson
coordinates obtained by a Newton-like method and continuation on the energy. The final
energy is −1.6001 in normalized units.

Definition 10 (Monodromy matrix): The matrix

M =
∂ϕ(T ,x∗0)
∂x0

determines whether initial perturbations x∗0 from the periodic orbit x∗(·) decay or grow. This
matrix is called the monodromy matrix. ♦

For a complete presentation, see [46].
Next, a well known property of the monodromy matrix is introduced.

Proposition 1 : Let us consider the dynamical system Ûx = f (x) and a periodic solution x∗.
The monodromy matrix M is the matrix Φ(T ) where Φ is a solution of the linearized system{

∂Φ
∂t =

∂f (x ∗)
∂x Φ,

Φ(0) = Id.

Proof : The flow satisfies the following equation

∂ϕ

∂t
(t ,x0) = f (ϕ(t ,x0))

with the initial condition ϕ(0,x0) = x0. We differentiate this equation with respect to the initial
condition and obtain

∂

∂t

∂ϕ(t ,x0)
∂x0

=
∂ f (ϕ)
∂ϕ

∂ϕ(t ,x0)
∂x0

.

Eigenvalues of Monodromy Matrix

Definition 11 (Floquet multipliers): The eigenvalues of the monodromy matrix are called
the Floquet multipliers (or characteristic multipliers). ♦

Using the Floquet theorem (see [46]), it can be proved that the monodromy matrix has
+1 as an eigenvalue with a corresponding eigenvector f (x∗0)which is tangent to the periodic
orbit at x∗0 (see [52, p. 101]).

Drawing a connection between the monodromy matrix and the Poincaré map, one can
show that +1 is an eigenvalue of the matrix. Moreover, because the CRTBP is a Hamiltonian
system (see Meyer, Hall, and Offin [62] and Vogtmann, Weinstein, and Arnold [87]), this
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eigenvalue has algebraic multiplicity of at least 2. Because the monodromy matrix of an
autonomous Hamiltonian system is symplectic, it holds that, if λ is an eigenvalue, then so
are λ−1, λ and λ

−1
with the same multiplicity. For details about all these properties, refer

to [52, section 4.3].
This leads to the following property for the CRTBP system.

Proposition 2 : For the CRTBP, eigenvalues of the monodromy matrix satisfy

λ1 > 1, λ2 < 1, λ3 = λ4 = 1, λ5 = λ6, |λ5 | = 1,

where λ1 and λ2 are reals.

Note that this is true for the restricted planar system without the complex eigenvalues λ5
and λ6.

Stability of Periodic Orbits

Let us introduce another dynamical tool: the Poincaré map.

Definition 12: Let Σ be a section surface of co-dimension 1 chosen in such a way that all
trajectories that cross Σ in a neighborhood of q ∈ Σ meet two requirements

• the trajectories intersect Σ transversely,

• they cross Σ in the same direction.

Let tΣ(q) be the time taken for a trajectory ϕ(t ,q) to first return to Σ. The Poincaré map is
defined by

P(q) = ϕ(tΣ(q),q). ♦

We remark that a periodic orbit is a fixed point of P(·).
Note that the monodromy matrix has 1 as an eigenvalue with corresponding eigenvec-

tors tangent to the transversal periodic orbit. Since this eigenvector is not in Σ, one can
choose an appropriate basis such that the remaining (n − 1) eigenvalues of M are those of
∂P (q∗)
∂q . These eigenvalues are independent of the choice of Σ. As a result of this indepen-

dence, the periodic orbit is stable if the remaining (n − 1) eigenvalues ofM are smaller than
1 in modulus. The orbit x∗(·) is unstable if there exists one eigenvalue λ with |λ | > 1. The
eigenvalues of the Poincaré map determine what happens to small perturbations around q∗
within Σ.

1.5.3 Numerical Computation
Local Approximation

Using the Poincaré map it can be shown that the eigenvectors corresponding to eigenvalues
other than 1 of the monodromy matrix are linear approximations of the invariant mani-
folds of the periodic orbit. The eigenvector associated with eigenvalue λ1 is in the unstable
direction and the eigenvector associated with eigenvalue λ2 is in the stable direction.

Algorithm

Based on that, the method to compute invariant manifolds is the following:

1. First, for ξ0 a point of the periodic orbit, we compute the monodromy matrix and its
eigenvectors. Let’s denote by Y s (ξ0) the normalized stable eigenvector and by Yu (ξ0)
the normalized unstable eigenvector.
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2. Then, let
ξ s±(ξ0) = ξ0 ± αY s (ξ0),
ξu±(ξ0) = ξ0 ± αYu (ξ0),

(1.21)

be the initial guesses for (respectively) the stable and unstable manifolds. The mag-
nitude of α should be small enough to be within the validity of the linear estimate
but not too small to keep a reasonable time of escape or convergence (for instance,
see [42] for a discussion on the value of α ).

3. Finally, we integrate numerically the unstable vector forward in time, using both α
and −α to generate the two branches of the unstable manifold denoted byW u±(ξ0).
We do the same for the stable vector only backward in time, and we obtain the two
branches of the stable manifoldW s±(ξ0) (see Figure 1.12).

ξ0

ξ s+

Y s+

W s−(ξ0)

W s+(ξ0)

W u−(ξ0)

W u+(ξ0)

Figure 1.12 – Illustration of the method to compute invariant manifolds.

With this procedure, we are able to compute the invariant manifolds of any Lissajous,
Halo, or Lyapunov orbit for any energy greater than the energy of Li . The complete algo-
rithm is described in Algorithm 1.2. We present an algorithm to propagate the invariant
manifolds during a given time parameter. We can easily adjust this algorithm to propagate
until a certain plane, for instance the set defined by x = 1 − µ, etc. (see Chapter 2).

Algorithm 1.2: Numerical Computation of Invariant Manifolds

Require: α : parameter defined in (1.21) (depends on the CRTBP)
Require: (ξi )i ∈I : set of points of the considered periodic orbit
Require: T : time of prapagation
1: for all i ∈ I do
2: Compute the monodromy matrix by finite differences
3: Compute the normalized stable eigenvector Y s (ξi ) and the normalized unstable

eigenvector Yu (ξi )
4: Perturb in the four directions to get four branches

ξ s±i ← ξi ± αY s (ξi ),
ξu±i ← ξi ± αYu (ξi )

5: Propagate the trajectories with the initial conditions ξ s±i and ξu±i

ϕ(T , ξ s−i ), ϕ(T , ξ s+i ), ϕ(T , ξu−i ), ϕ(T , ξu+i ).

6: end for
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Some examples

In appendix B, we present a software developed in FORTRAN90 for Airbus Defence and
Space. This software computes periodic orbits with prescribed energy, and its associated
invariant manifolds.

Invariant manifolds can be seen as tubes, especially in the spatial case. Here we plot
some manifolds coming from the periodic orbits that we presented in the previous sec-
tions. In Figure 1.13, we plotted the manifolds for the previous Halo orbit with an energy of
−1.50042. We propagate the manifolds during a time equal to 5.0 in the normalized system.
The perturbation parameter introduced in (1.21) is α = 1 × 10−4.
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Figure 1.13 – Invariant manifolds of energy E = −1.50042 of the Halo orbit around L1 in
the {Sun-Earth} system. On the left: an unstable manifold near the second primary. On the
right: the four manifolds. The propagation time is equal to 5.0 in the normalized system,
and the perturbation parameter α is equal to 1 × 10−4.

In Figure 1.14, we plot the manifolds for an “eight-shape” periodic orbit around L1 in the
{Earth-Moon} system. We propagate the manifolds during a time of 6.0 in the normalized
units. We used the same perturbation parameter as for the Halo manifolds.

To finish, we plot in Figure 1.15 the invariant manifolds of a Lyapunov orbit (in planar
case) in the {Earth-Moon} system. We have chosen an energy of −1.60. We propagate the
invariant manifolds during a time equal to 8.0. Once again, we used the same perturbation
parameter α .

1.5.4 Stability of Manifolds

The study of the stability of invariant manifolds is of great interest. Indeed, in order to
design spacecraftmissions using invariant manifolds, the general rule is: the more stable the
manifolds, the better they can be followed. There are two kinds of stability. The first one is
shape conserving stability. We observe in with Figures 1.13, 1.14 and 1.15 that this stability
depends on the system considered and the periodic orbit type. We see that manifolds of
Halo orbits are not very stable and cannot be used for long time propagation whereas the
invariant manifolds of eight-shape orbits are very stable but with low amplitude. Finally,
the invariant manifolds of Lyapunov orbits are stable but for very low energy.

Another stability concept is measured by Lyapunov exponents. The concept of Lya-
punov exponents (also known as characteristic exponents) was introduced in [59] to in-
vestigate the stability properties of solutions of differential equations, and has been used
extensively and studied in the literature. Lyapunov exponents measure the exponential
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Figure 1.14 – Invariant manifolds of the eight-shape orbit around L1 in the {Earth-Moon}
system of energy E = −1.59. Top: a 3D view of the manifolds. Left: an unstable manifold
near the second primary. Right: The four manifolds. The propagation time is equal to 6.0
in normalized system, and the perturbation parameter α is equal to 1 × 10−4.

convergence or divergence of nearby trajectories in a dynamical system, and provide in-
dications on the behavior in large time of solutions under infinitesimal perturbations. We
refer to Archambeau, Augros, and Trélat [6] for a study in the case of the eight-shape orbits.

1.5.5 Theoretical Existence of Invariant Manifolds as Separatrices
To finish this chapter, we sketch the study of the linear flow around equilibrium points.
Indeed, this study gives us crucial information for designing spacecraft missions. Studying
the linearization of the dynamics near the equilibria is an essential ingredient for under-
standing the more complete nonlinear dynamics. It can be shown that for a value of energy
just above that of Li (where Li is the equilibrium point we are considering), the nonlinear
dynamics in the equilibrium region is qualitatively the same as the linearized one, we will
briefly describe this in the remainder of this section. See [29, 46, 50] and [52, chap. 9].

Canonical Transformation

By a canonical (symplectic) transformation, the linearized Hamiltonian can be written. It is
the second-order part of the general Hamiltonian

H2 = λq1p1 +
ωp

2
(q22 + p22) +

ωv
2
(q23 + p23), (1.22)

where λ, ωv and ωp are the ones defined in (1.14). Variables qi and pi are the canonical
variables, see Jorba and Masdemont [50] for the details of the canonical transformation.
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Figure 1.15 – Invariant manifolds of the Lyapunov orbit in the {Earth-Moon} system of
energy E = −1.60. Left: an unstable manifold near the second primary. Right: The four
manifolds. The propagation time is equal to 8.0 in the normalized system, and the pertur-
bation parameter α is equal to 1 × 10−4.

A short computation gives the linearized equations in the form

Ûq1 = λq1, Ûp1 = −λp1,
Ûq2 = ωpp2, Ûp2 = −ωpq2,
Ûq3 = ωvp3, Ûp3 = −ωvq3.

Then solutions can easily be written as

q1(t) = q01eλt , p1(t) = p01e−λt ,
q2(t) + ip2(t) = (q02 + ip02)e−iωp t ,
q3(t) + ip3(t) = (q03 + ip03)e−iωv t .

Invariant Manifolds as Separatrices

For positive h and c , we defined the region denoted by R as

H2 = h, |p1 − q1 | 6 c .

This region is homeomorphic to the product of a 4-sphere by an interval I : S × I . Indeed,
for each value of (p1 − q1) in [−c, c], the equation (1.22) can be written as

λ

4
(q1 + p1)2 +

ωp

2
(q22 + p22) +

ωv
2
(q23 + p23) = h +

λ

4
(q1 − p1)2.

The bounding 4-phere of R for p1 −q1 = −c is denoted by n1 and the one for p1 −q1 = c by
n2.

Following the nomenclature of [52], we call the set of points where q1 + p1 = 0 the
equator and the sets where q1 + p1 > 0 and q1 + p1 < 0, the northern and the southern
hemispheres, respectively.

Classification of orbits for the linear flow. To analyze the flow in R, we consider the
different projections onto the (q1,p1)-plane, the (q2,p2)-plane, and the (q3,p3)-plane. In
Figure 1.16, we only plot the representation of the saddle projection onto the (q1,p1)-plane,
the two other projections are only circles.

Note that each point in the projection (q1,p1)-plane corresponds to a 3-sphere S3 in R
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Figure 1.16 – Saddle projection of the flow in the equilibrium region. Only the projection
onto the (p1,q1)-plane (with axis titled by 45°).

given by
ωp

2
(q22 + p22) +

ωv
2
(q23 + p23) = h − λq1p1.

We distinguish 4 categories of orbits:

1. The points q1 = p1 = 0 correspond to an invariant 3-sphere S3h of bounded orbits
(periodic and quasi-periodic) in R.

2. The four half open segments on the axes, q1p1 = 0, correspond to four cylinders
of orbits asymptotic to the previous invariant 3-sphere (q1 = p1 = 0). They are
called asymptotic orbits and form the stable (for p1 = 0 and increasing time) and the
unstable (for q1 = 0 and decreasing time) manifolds presented in definition 9. The
stable manifolds are given by

ωp

2
(q22 + p22) +

ωv
2
(q23 + p23) = h, q1 = 0.

We denote byW s
+ (S3h) the branch going from right to left (p1 > 0) and byW s

− (S3h) the
branch going from left to right (p1 < 0).

The unstable manifolds are given by

ωp

2
(q22 + p22) +

ωv
2
(q23 + p23) = h, p1 = 0.

We denote byW u
+ (S3h) the branch going from right to left (q1 > 0) and byW u

− (S3h) the
branch going from left to right (q1 < 0).

3. The hyperbolic segments defined by q1p1 equal to a positive constant corresponds to
orbits which cross the regionR from one bounding 4-sphere to the other: p1−q1 = −c
to p1 − q1 = +c in the southern hemisphere and p1 − q1 = +c to p1 − q1 = −c in the
northern hemisphere. Because these orbits transit from one realm to another, we call
them transit orbits.
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4. Finally, the hyperbolic segments defined by q1p1 equal to a negative constant corre-
sponds to orbits connecting the two hemispheres on the same bounding-sphere n1 or
n2. Since these orbits return to the same realm, we call them non-transit orbits.

Using the reduction to the center manifold, one can show that these results can be ex-
tended for the nonlinear dynamics. For details, see [52, sec. 9.8].

Remark 1.4: Invariant Manifolds as Separatrices

The main purpose of this section is that, together, the asymptotic orbits form 4-
dimensional stable and unstable manifolds, that can be seen as “tubes” S3 × R to the
invariant 3-sphere S3h in a 5-dimensional energy surface. Moreover, as we have seen,
these manifolds separate two distinct types of orbits: transit and non-transit orbits.
The transit orbits are those inside the 4-dimensional manifold tube. The non-transit
orbits are those outside the tube.
Let us remark that this is coherent with the plot of the Hill region (see Section 1.5). The
forbidden realm can be seen as barrier for non-transit orbits.

This is a very useful property to construct spacecraft missions. Indeed, by computing
the manifolds and interpreting them as gravitational currents, one can easily find which
trajectories realize a transit path or not. This will be the focus of the next chapter.
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In chapter 1, the dynamical paradigm used in this thesis was introduced. We noted that
there exist periodic orbits around equilibrium points of the dynamical system and that in
turn there exist invariant manifolds associated with these periodic orbits.

In the first section of this chapter, we briefly recall how these manifolds can be used to
design spacecraftmissionswith high thrust (or impulse). The principle is to use the invariant
manifolds as a map of gravitational currents and to realize transfers from one current to
another using impulses, i.e., instantaneous changes of velocity usually denoted by ∆V . This
section also contains some results on the state of the art, namely on the homoclinic and
heteroclinic orbits.

In this thesis we consider a low thrust engine, hence, such methods fail. Indeed, as we
will see in Section 2.2, the low thrust model does not allow for instantaneous changes in
velocity. We then introduce tools from optimal control theory (Section 2.3) and associated
numerical methods (Section 2.4). We recall the principle of continuation methods and we
develop the corresponding algorithms (Section 2.5) because we use them extensively in the
method that we developed. After that, we explain how we can use an impulsive transfer
to build an optimal control problem (Section 2.6). To do that we define both cost functions
considered in this thesis (that we want to minimize): the L1-norm of the control, which cor-
responds to the physical mass that we want to maximize but which is numerically difficult
to optimize, and the L2-norm of the control, which corresponds to the physical energy and
is smoother. We introduce the continuation performed between these two related problems.

The last sections are about the numerical resolution of the previously formulated prob-
lems and the general method we developed. We use indirect methods based on the applica-
tion of the Pontryagin Maximum Principle (PMP), and because the main difficulty of these
methods is to initialize them, we introduce other continuations for the final state and the
thrust to improve robustness (Section 2.7). The general algorithm is summarized and some
numerical results are presented in sections 2.8 and 2.9.

What we do in this thesis is to use the dynamical information of the invariant manifolds
as gravitational current to initialize the resolution of an optimal control problem of orbital
transfer in the CRTBP. The purpose of this chapter is to introduce the tools that will con-
tribute to our method for interplanetary mission design. One particularly important issue
is how to connect two invariant manifolds with low thrust control.

2.1 Design of Impulsive Transfer Missions using Mani-
folds

The study of invariant manifolds has been of great interest for half a century. The reason is
that invariant manifolds provide a geometric understanding of the dynamics in the CRTBP
which is a local approximation of theN -body problem. Thanks to the computation of invari-
ant manifolds (or tubes), we are able to understand, at a given energy, a part of the capture
region of the moon (with the stable manifolds of the L1 and L2 Halo orbits). Of course, the
Moon is just an example, and this process can be applied to other primaries.

Invariant manifolds also provide a set of natural trajectories connecting regions of the
three body problem. This is because they are separatrices of the dynamics as explained in
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Section 1.5.5. In order to find trajectories that minimize the fuel consumption, the use of
these orbits is crucial. The basic idea is to patch CRTBPs, as is done for two-body problems,
so the knowledge of different invariant manifolds for the different CRTBPs provides a map
of gravitational currents. Using this map, one can then design a mission by minimizing the
sum of the different impulses ∆Vi that allow to go from one manifold to another (or to enter
the interior of the cylinders of asymptotic orbits).

Remark 2.1: Interplanetary Transport Network (Wikipedia)

Image Wikipedia.

The Interplanetary
Transport Network
(ITN) [76] is a collec-
tion of gravitationally
determined pathways
through the Solar Sys-
tem that require very
little energy for an
object to follow.

The ITN makes partic-
ular use of Lagrange
points as locations
where trajectories
through space are redi-

rected using little or no energy. These points have the peculiar property of allowing
objects to orbit around them, despite lacking an object to orbit. While they use little
energy, the transport can take a very long time.

We see in Remark 2.1 that much effort has been devoted to computing a network of
these manifolds. The artistic illustration gives us a good intuition on how this network can
be used. For a precise description of this, one can see [52] and more specifically the article
by Ross [76] in the American Scientist Magazine. Let us note that we can draw a connection
to the gravitational assist used for patching orbits of the 2-body problem.

In this thesis, the instantaneous transfer from one tube to another is not possible. Indeed,
because we want to design spacecraft mission with low thrust, we cannot approximate the
control as an instantaneous change of velocity (∆V ). Hence, we establish a method to go
from one invariant manifold to another (or inside manifolds) using low thrust.

2.1.1 Trajectories with Prescribed Itineraries

Invariant manifolds can be used to find trajectories with prescribed itineraries. To illustrate
the method, we consider the planar motion of a spacecraft in the {Earth-Moon} system.
This is called the planar circular restricted three body problem (PCRTBP). We label the realm
around Earth with RE , the realm around the Moon with RM ant the exterior realm with RX
(see Figure 2.1). Let us describe a method to find a trajectory with a prescribed itinerary.

Step 1. First, we choose an appropriate energy that allows for motion in the area that we
want to reach. Assume that we want the particle to go between all three realms RX , RM and
RE , then we need to choose an energy greater than the one of the point L2 (see Section 1.3):
for instance, E = −1.59.
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Step 2. We compute the L1 and L2 periodic orbits around the two equilibrium points us-
ing the numerical method described in Section 1.4. In Figure 2.1, we have computed two
Lyapunov orbits.

Step 3. We define the four Poincaré surfaces of section Ui , i ∈ ~1, 4� in the general 3D
case but this can easily be restricted to the planar case to obtain the examples shown in
Figure 2.1. The definitions of these surfaces are

U1 = {(x ,y, z); x < 0, y = 0} ,
U2 = {(x ,y, z); x = 1 − µ, y < 0} ,
U3 = {(x ,y, z); x = 1 − µ, y > 0} ,
U4 = {(x ,y, z); x < −1, y = 0} .

This way, theUi are strategically placed (see [52]): if eachUi contains the (non empty) inter-
section between two of the invariant manifolds, then by computing it, we find a trajectory
which connects different realms. This result is based on the fact that invariant manifolds
are separatrices of the dynamics as stated in Remark 1.4.

Step 4. We compute the invariant manifolds associated with the two periodic orbits as
explained in Section 1.5. We propagate them to the different Poincaré surfaces of section
Ui , i ∈ ~1, 4� to obtain the intersection of each manifolds with the Poincaré cuts. Figure 2.1
presents the example of the {Earth-Moon} system. There are eight invariant manifolds, four
for each of the two periodic orbits. Thanks to this method we are able, either to find a
trajectory without any impulse respecting the prescribed itinerary, or, one with a finite
number of impulses (for instance, when we can find an intersection in the positions of two
invariant manifolds but with a velocity gap).

This method can be extended for patched CRTBP. For instance, we may consider in a
close realm of the Earth, the {Earth-Moon} system, then the {Sun-Earth} system and so on.

This method cannot be used with a low thrust engine. Indeed, an instantaneous velocity
change cannot be performed. In this chapter, we develop a methodology to go from one
invariant manifold to another with low thrust.

2.1.2 Heteroclinic and Homoclinic Orbits
Heteroclinic and homoclinic orbits are classical concepts of the dynamical system theory.

Definition 13: In the phase portrait of a dynamical system, a heteroclinic orbit (sometimes
called a heteroclinic connection) is a path in the phase space which joins two different equilib-
rium points. If the equilibrium points at the start and end of the orbit are the same, then the
orbit is called a homoclinic orbit.

This definition is extended to the case where the equilibria are periodic orbits, hence,
in our context, we talk about heteroclinic and homoclinic orbits between periodic orbits
around Lagrange points. Note that such periodic orbits must have the same energy.

Following [52], the method to find heteroclinic or homoclinic orbit in the CRTBP is
to find intersections between invariant manifolds in both position and velocity. Indeed, if
there exists an intersection between the stable and unstable invariant manifolds of the same
periodic orbit around one libration point, then there exists a homoclinic orbit asymptotically
starting and going to the considered periodic orbit. Hence, the trajectory belongs both to
the stable and the unstable invariant manifolds.

If there exists an intersection between stable and unstable manifolds of two different
periodic orbits of the same CRTBP system (i.e., around two different Lagrange points),
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Figure 2.1 –Theeight invariant manifolds associatedwith the Lyapunov orbits of the points
L1 and L2 in the {Earth-Moon} system, at a specific energy of E = −1.59. The different
Poincaré surfaces of section Ui are represented. In such a configuration, one can find a
trajectory with a prescribed itinerary visiting the three realms RX , RM and RE .

then there exists a heteroclinic orbit asymptotically connecting two different periodic orbits
around two different libration points.

To compute these possible intersections, we use the Poincaré surface of section defined
above in Section 2.1.1 step 3, and plotted in Figure 2.1.

There is no general method to find these intersections for the circular restricted three
body problem because of the dimension of themanifolds. Indeed, the spacecraft is embedded
in R6. We saw in Section 1.5.5 that the tubes are topologically S3 × R, so the Poincaré cut
(e.g., Ui ) is a topological 3-sphere S3 (in R4). It is not obvious how to find the intersection
region inside the Poincaré cuts since its projection onto the (y, Ûy)-plane (for U2 or U3) or
the (x , Ûx)-plane (for U1 or U3) and the (z, Ûz)-plane are 2-dimensional disks. To overcome
this difficulty, one can fix for example z = c and impose that Ûz = 0. For details about this
problem, see [52, chap. 9].

To illustrate the method, we consider here the simpler planar circular restricted three
body problem (PCRTBP). Indeed, in that case, z = 0 and Ûz = 0, and the intersection has to
be searched for only in the (y, Ûy)-plane for theU2,3 Poincaré cuts (and in the (x , Ûx)-plane for
theU1,4 Poincaré cuts).

Let’s apply the method to find these connecting orbits in the system illustrated in Fig-
ure 2.1. We consider the {Earth-Moon} system and Lyapunov periodic orbits around L1 and
L2 with an energy E = −1.56. We have changed the energy to allow for the existence of
intersections in each Poincaré cut.

For each Poincaré cut, we have fixed one variable x or y, hence we look for an inter-
section in R3. We are considering invariant manifolds of the same energy, so this reduces
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Figure 2.2 – Different Poincaré cuts, U1 and U4, for the {Earth-Moon} system with two
Lyapunov orbits around L1 and L2 at an energy E = −1.56.

the search space further to R2. Once both variables, (x , Ûx) or (y, Ûy), have been found in the
Poincaré cut, the last one, Ûy or Ûx , is deduced by the energy relation (see equation (1.10))

E = 1

2
( Ûx2 + Ûy2) +Uµ (x ,y).
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Figure 2.3 – Poincaré cutU2 of invariant manifolds from Lyapunov orbits around L1 and L2.
The three intersections correspond to three different heteroclinic orbits connecting the two
periodic orbits. We consider the {Earth-Moon} system with two Lyapunov orbits around L1
and L2 with an energy of E = −1.56. The U3 section is similar.

In figures 2.2 and 2.3, we plot the different Poincaré cuts for the system. Sub-figures 2.2a
and 2.2b illustrate the intersections used to compute homoclinic orbits and Figure 2.3 is for
the computation of heteroclinic orbits between the two Lyapunov orbits around Lagrange
points L1 and L2. Finally, see Figure 2.4 for two examples of the obtained orbits. The two
homoclinic orbits to the Lyapunov orbits around L1 and L2, respectively in the interior and
exterior realms, are plotted in Figure 2.4a. The heteroclinic orbit between the two Lyapunov
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orbits computed with the intersection on theU2-plane is plotted in Figure 2.4b
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(a) Two homoclinic orbits for the two Lyapunov
orbits around L1 and L2. They have been com-
puted using intersections with the Poincaré cuts
U1 andU4.
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(b) One heteroclinic orbit connecting the two
Lyapunov orbits around L1 and L2. It has been
computed using an intersection with the U2

Poincaré cut. A similar symmetric trajectory
can be computed using the Poincaré cutU3.

Figure 2.4 – Examples of homoclinic and heteroclinic orbits for the {Earth-Moon} system
with two Lyapunov orbits around L1 and L2 at energy E = −1.56.
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2.2 Model

Let us first introduce themodel for the controlled spacecraft and some results on the control-
lability of the system. Recall that in chapter 1, we introduced the dynamics of the circular
restricted three-body problem (CRTBP)

Ûx1 = x4,

Ûx2 = x5,

Ûx3 = x6,

Ûx4 = x1 + 2x5 − (1 − µ)
x1 + µ

r313
− µ x1 − 1 + µ

r323
,

Ûx5 = x2 − 2x4 − (1 − µ)
x2

r313
− µ x2

r323
,

Ûx6 = −(1 − µ)
x3

r313
− µ x3

r323
.

Denoting by F0(·) the associated vector field, in condensed form, we write the system as

Ûξ (t) = F0(ξ ),

where ξ = (x1,x2,x3,x4,x5,x6).
Note that, depending on the context, we use the notation ξ = (x ,y, z, Ûx , Ûy, Ûz) or x =

(x1,x2,x3,x4,x5,x6), because it is more standard in the field of optimal control theory to
use the second.

2.2.1 Controlled Dynamics

We first describe the model for the evolution of our spacecraft in the CRTBP. In non nor-
malized coordinates (see (1.6)), the controlled dynamical system is as fallow

m(t)dR(t)
dt
= −GM1m(t)

R13(t)
R3
13(t)

−GM2m(t)
R23(t)
R3
23(t)

+T (t),

whereT is the spacecraft driving force, andm is the time dependent mass of the spacecraft.
The equation for the evolution of the mass is

Ûm(t) = −β ‖T (t)‖ ,

where β is computed from two parameters Isp and д0. The specific impulse parameter (Isp)
is a measure of the efficiency of rockets and jet engines. It is defined by the total impulse
(or change of momentum) delivered per unit of propellant consumed. Its time unit is the
second. д0 is the acceleration at the Earth’s surface in m/s2. The inverse of the average
exhaust speed, β , is equal to 1

Ispд0
. The units of β is second per meter. Throughout this

manuscript we use the following values for these parameters

Isp = 2000 s, and д0 = 9.81m/s2.

Moreover, the thrust is constrained as follows

∀t , ‖T (t)‖ 6 Tmax, Tmax ∈ R∗+.

Tmax is the maximal thrust that the engine can generate.
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Using the normalization parameters (1.2), and denoting by β∗ the normalized counter-
part of β , we obtain the normalized controlled dynamics:

Ûx1 = x4,

Ûx2 = x5,

Ûx3 = x6,

Ûx4 = x1 + 2x5 − (1 − µ)
x1 − x0

1

r31
− µ

x1 − x0
2

r32
+

t2∗
4π2l∗

Tmax
u1(t)
m(t) ,

Ûx5 = x2 − 2x4 − (1 − µ)
x2

r31
− µ x2

r32
+

t2∗
4π2l∗

Tmax
u2(t)
m(t) ,

Ûx6 = −(1 − µ)
x3

r31
− µ x3

r32
+

t2∗
4π2l∗

Tmax
u3(t)
m(t) ,

Ûm(t) = −β∗
t2∗

4π2l∗
Tmax ‖u(t)‖ ,

where for all t , ‖u(t)‖ 6 1. In the remainder of this thesis, we will denote the coefficient
t2∗

4π 2l∗
Tmax by ϵ . Hence, we get :



Ûx1 = x4

Ûx2 = x5

Ûx3 = x6

Ûx4 = x1 + 2x5 − (1 − µ)
x1 − x0

1

r31
− µ

x1 − x0
2

r32
+ ϵ

u1(t)
m(t)

Ûx5 = x2 − 2x4 − (1 − µ)
x2

r31
− µ x2

r32
+ ϵ

u2(t)
m(t)

Ûx6 = −(1 − µ)
x3

r31
− µ x3

r32
+ ϵ

u3(t)
m(t)

Ûm(t) = −β∗ϵ ‖u(t)‖

In condensed form, we write the system as :
Ûx = F0(x) +

ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,

where F0 is defined in (1.7) and

F1(x) =

©­­­­­­­«

0
0
0
1
0
0

ª®®®®®®®¬
, F2(x) =

©­­­­­­­«

0
0
0
0
1
0

ª®®®®®®®¬
, F3(x) =

©­­­­­­­«

0
0
0
0
0
1

ª®®®®®®®¬
.
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Remark 2.2:

This system belongs to a well known class of controlled systems: the affine control
systems. F0 is called a drift vector field while the Fi are called control vector fields. Let
us note that for these systems, the geometric control theory is very efficient (see [51,
48]).

2.2.2 Controllability
Controllability of the system is a natural and primordial question before beginning any
transfer design. At present time, there is no general proof of controllability for the CRTBP.
Next, we present some existing partials results.

In [23], it is proved that the CRTBP is controllable for a suitable sub-region of the phase-
space, denoted by X 1

µ , where the energy is greater than the energy of L1. The authors use
geometric control techniques.

Theorem 2 For any µ ∈ (0, 1), and any positive ϵ , the circular restricted three-body
problem is controllable on X 1

µ .

The proof is based on the Poincaré recurrence theorem. In the next definition, we intro-
duce the notion of recurence.

Definition 14: A vector field F is said to be recurrent on a set X if, for each open set of X ,
there exist orbits that intersect the set infinitely many times

∀x ∈ X ,∀V ∈ V(x),∀T > 0,∃t > T , exp(tF (x)) ∈ V . ♦

We sketch the proof of theorem 2 followed by the authors (see [31] or [23]).

Proof : The authors first defined the subset of the subspace

Qµ =
{
x1,2,3 ∈ R3; x1,2,3 , (−µ, 0, 0),x1,2,3 , (1 − µ, 0, 0)

}
and Xµ = TQµ ' Qµ ×R3. Then, X1

µ is defined as the subset X1
µ =

{
x ∈ Xµ ; E(x) < E(L2)

}
Based on

that, the authors apply the control theorem of recurrent systems from [51] to obtain the following.
• X1

µ is a connected set.
• The control set defined by ‖u‖ 6 1 is a neighborhood of the origin.
• For all x ∈ Xµ , the set

Spanx {F1, F2, F3, [F0, F1], [F0, F2], [F0, F3]}

is of rank 6. The [·, ·] operator is the Lie bracket, and it holds, for i ∈ {1, 2, 3}

[F0, Fi ](x) = F ′i (x)F0(x) − F
′
0(x)Fi (x) = −F

′
0(x)Fi (x) =

∂F0
∂xi+3

.

This leads to

[F0, F1](x) = −

©­­­­­­­«

1
0
0
0
−2
0

ª®®®®®®®¬
, [F0, F2](x) = −

©­­­­­­­«

0
1
0
2
0
0

ª®®®®®®®¬
, [F0, F3](x) = −

©­­­­­­­«

0
0
1
0
0
0

ª®®®®®®®¬
.

Then, it holds that Spanx {F1, F2, F3, [F0, F1], [F0, F2], [F0, F3]} = R6.
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• The crucial point is to show that the vector field F0 (the drift) is recurrent on X1
µ . Indeed, the

uncontrolled CRTBP is a Hamiltonian system, and the system orbits are bounded on X1
µ . To

show the last point, the projection of X1
µ onto the (x1,x2,x3)-space has to be bounded.

The last step of the proof is the key point that cannot be extended to other subsets of
the CRTBP. See [31, 23] for details.

The previous theorem is stated for a system with a non-varying mass. Using [24, prop.
2.2], one can extend it to the system with an evolving mass.

Theorem 3 For any µ ∈ (0, 1) and ϵ > 0, there is a proper mass χ0 > 0 of the
spacecraft (mass without fuel) that makes the system controllable on X 1

µ .

Let us sketch the proof of [24, prop. 2.2].

Proof : Considering the initial massm0, once the controllability is stated for a certain maximal thrust
ϵ/m0, and denoting the control for the non-evolving system by γ , we set

m =m0 exp

(
−β∗ϵ

∫ t

0
‖γ ‖ ds

)
> 0,

u =mγ .

That way, Ûm = −β∗ϵ ‖u‖ and ‖u‖ < ϵ . If T is the resulting transfer time, the proper mass χ0 =
m0 exp(−β∗ϵT /m0) > 0 is such thatm > χ0 on [0,T ].

Remark 2.3:

The controllability of the complete CRTBP has not yet been proved. Although for the
different missions considered in this thesis, we do not satisfy the condition of staying
on X 1

µ , these results give an indication that we can indeed control our spacecraft.

2.3 Optimal Control Theory in a Nutshell

Let us first begin by stating the main theorem of optimal control theory. For references on
Optimal Control Theory, see [84, 1, 16, 11, 56, 19, 71].

2.3.1 General Framework
We introduce a general framework which contains the problems that we consider.

Let n andm be two positive integers and consider a control system in Rn

Ûx(t) = f (t ,x(t),u(t)), (2.1)

where f : R × Rn × Rm → Rn is of class C1, and the controls are measurable essentially
bounded functions of time taking their values in some measurable subset Ω of Rm (the set
of control constraints).

Let f 0 : R × Rn × Rm → R and д : R × Rn → R be functions of class C1. For every
x0 ∈ Rn , every tf > 0, and every admissible control u ∈ Ux0,tf ,Ω , the cost of the trajectory
x(·), solution of (2.1), corresponding to the control u, and such that x(0) = x0, is defined by

Cx0,tf (u) =
∫ tf

0

f 0(t ,x(t),u(t))dt + д(tf ,x(tf )). (2.2)
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Many variants of the cost can be chosen, the one above is already quite general and
covers a very large class of problems. If needed, one could easily add some term penalizing
the initial point. Note also that the term д(tf ,x(tf )) could alternately be written in integral
form and included in the definition of the function f 0.

Let us now define the optimal control problem that we consider. Let M0 and M1 be
two measurable subsets of Rn . We consider the optimal control problem (denoted in short
(OCP) in what follows) of determining a trajectory x(·), defined on [0, tf ] (where the final
time tf can be fixed or not in (OCP)), corresponding to an admissible control u ∈ Ux (0),tf ,Ω ,
solution of (2.1), such that

x(0) ∈ M0, x(tf ) ∈ M1,

andminimizing the cost (2.2) over all possible trajectories steering as well the control system
from M0 to M1.

Formulation of The Generic Problem

We write the problem as follows

P(OCP )



minCx0,tf (u) =
∫ tf

0

f 0(t ,x(t),u(t))dt + д(tf ,x(tf )),

Ûx(t) = f (t ,x(t),u(t)),

u ∈ Ux0,tf ,Ω

x(0) ∈ M0, x(tf ) ∈ M1.

(2.3)

2.3.2 The Pontryagin Maximum Principle (PMP)
Next we formulate the strong version of the PMP.

The historical proof can be found in [71]. As in [1, 16], it is based on the use of needle-
like variations combined with a Brouwer fixed point argument. A concise sketch of the
proof, also based on an implicit function argument as in the proof of the weak PMP (and
using needle-like variations) can be found in [43].

General statement

Theorem 4 Let x(·) be a solution of (OCP), corresponding to a control u on [0, tf ].
Then there exists an absolutely continuous vector-valued function p(·) : [0, tf ] −→
Rn called the adjoint vector or costate and a real number p0 6 0, with (p(·),p0) ,
(0, 0), such that

Ûx(t) = ∂H

∂p
(t, x(t),p(t),p0,u(t)), Ûp(t) = −∂H

∂x
(t, x(t),p(t),p0,u(t)), (2.4)

for almost every t ∈ [0, tf ], where the function H : R × Rn × Rn × R × Rm → R,
called Hamiltonian of (OCP), is defined by

H(t, x,p,p0,u) = 〈p, f (t, x,u)〉 + p0 f 0(t, x,u).

Moreover, the following maximization condition holds

H(t, x(t),p(t),p0,u(t)) = max
v ∈Ω

H(t, x(t),p(t),p0,v), (2.5)

for almost every t ∈ [0, tf ].
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If the final time tf is not fixed in (OCP), then it also holds that

max
v ∈Ω

H(tf , x(tf ),p(tf ),p0,v) = −p0 ∂д

∂t
(tf , x(tf )). (2.6)

Moreover, the adjoint vector can be chosen such that the so-called transversality
conditions hold (if they make sense)

p(0) ⊥Tx (0)M0, (2.7)

p(tf ) − p0 ∂д

∂x
(tf , x(tf )) ⊥Tx (tf )M1, (2.8)

where the notation TxM stands for the usual tangent space to M at point x (these
conditions can be written as soon as the tangent space is well defined).

Let us introduce some vocabulary.

Definition 15: A quadruple (x(·),p(·),p0,u(·)) solution of (2.4) and (2.5) is called an ex-
tremal.

• If p0 < 0, then the extremal is said to be normal. In that case, it is usual (but not
mandatory) to normalize the adjoint vector so that p0 = −1.

• If p0 = 0, then the extremal is said to be abnormal. ♦

Remark 2.4:

Let us insist on the fact that the PMP is nothing but a first-order necessary condition for
optimality. a As already stressed, the PMP states that every optimal trajectory x(·), as-
sociated with a controlu(·), is the projection ontoRn of an extremal (x(·),p(·),p0,u(·)).
However, conversely, an extremal (i.e., a solution of the equations in the PMP) is not
necessarily optimal. The study of the optimality status of extremals can be conducted
with the theory of conjugate points. More precisely, as in classical optimization where
extremal points are characterized by a first-order necessary condition (the vanishing
of some appropriate derivative), there exists in optimal control a theory of second-
order conditions for optimality. It consists in investigating a quadratic form that is the
intrinsic second-order derivative of the end-point mapping: if this quadratic form is
positive definite then this means that the extremal under consideration is locally op-
timal (for some appropriate topology), and if it is indefinite then the extremal is not
optimal; conversely if the extremal is optimal then this quadratic form is non-negative.
Times at which the index of this quadratic form changes are called conjugate times.
The optimality status of an extremal is then characterized by its first conjugate time.
We refer to [17] (and references therein) for a survey on that theory and on algorithms
that compute conjugate times.

a. This is an elaborate version of the first-order necessary condition ∇f (x ) = 0 when minimizing a C1
function over Rn !

Thanks to the PMP, we have a necessary condition to get optimal trajectory. Let us now
see how we can numerically apply this principle.
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2.4 Numerical Methods

In optimal control, there exist two kinds of numerical method: direct and indirect methods.
Direct methods consist in discretizing the state and the control, and hence, consist in solv-
ing a nonlinear optimization problem (nonlinear programming). Indirect methods consist
in solving a boundary value problem that results from the PMP by applying the so-called
shooting method .

In this work, we quasi-exclusively use indirect methods, but for the sake of complete-
ness, and because direct methods can be used to initialize indirect methods, we recall the
principle of direct methods.

For a complete survey on numerical methods (both direct and indirect) see the article
by Trélat [85].

2.4.1 Direct Methods

There exist many different direct methods. By discretizing both the state and the control, the
problem reduces to a nonlinear programming problem in finite dimension. For references
on direct methods, see [13, 15], and for a general introduction to numerical analysis, see [81].

A very common choice of discretization for optimal control problem is to discretize time.
Consider a subdivision of the time interval [0, tf ] during which the transfer occurs into
0 = t1 < t2 < · · · < tN = tf . Then, let us consider the control as piecewise constant, i.e.,
as a sequence (ui )i ∈~1,N � . Meanwhile, the differential dynamics are discretized using, for
instance, an explicit (or implicit) Euler method, midpoint method, Runge-Kutta, etc. We set
hi = ti+1 − ti and we define a discretized cost by an interpolation procedure. This allows to
reduce an optimal control problem to a nonlinear programming problem (NLP) of the form

minC(x1, . . . ,xN ,u1, . . . ,uN−1),
xi+1 = xi + hi f (ti ,xi ,ui ), ∀i ∈ ~2,N − 1� ,
ui ∈ Ω, ∀i ∈ ~1,N − 1� ,
x1 ∈ M1, and xN ∈ M2.

The numerical resolution of such a problem is standard. There exist plenty of methods:
gradient methods, quasi-Newton methods, dual methods, etc. See the book by Bonnans,
Gilbert, Lemaréchal, and Sagastizábal [15] and [13].

Note that there exists some very useful software to solve optimization problems. One
can use the modeling language AMPL [37] coupled with IpOpt [88] for the interior-point
filter line search algorithm. This is a very user-friendly and powerful association, although
a direct use of IpOpt, for instance with C++, allows for finer tuning. Another very easy
to use and powerful tool is the Bocop software. This tool is well designed to solve optimal
control problem. The original Bocop package implements a local optimization method. The
NLP problem is solved by the well known software IpOpt, using sparse exact derivatives
computed by Adol-C. Note that Bocop allows to choose the ordinary differential equation
(ODE) approximation such as Euler (implicit or explicit), midpoint, Gauß, etc. See [14].

Remark 2.5:

Although there exist a variety of software options, direct methods are also quite easy
to implement from scratch. Moreover, the constraints on state and control are not an
issue for such methods.
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2.4.2 Indirect Methods

Single Shooting Method

Let us consider the problem P(OCP ) defined in (2.3). According to the PMP (Theorem 4), and
the maximization condition (2.5), we are able to express the control as a function of the state
and the costate: (x(·),p(·)). Hence, the extremal system can be written as

Ûz(t) = F (t , z(t)),

where z(·) = (x(·),p(·)). The initial and final conditions and the transversality conditions (2.7)
and (2.8) can be written as

R(z(0), z(tf ), tf ) = 0.

Therefore, we have to solve a boundary value problem{
Ûz(t) = F (z(t)),
R(z(0), z(tf ), tf ) = 0.

(2.9)

Denote by z(t , z0) the solution of the Cauchy problem

Ûz(t) = F (t , z(t)), z(0) = z0,

and let us define S(z0) = R(z0, z(tf , z0), tf ). Then, the problem (2.9) is equivalent to finding
z0 such that

S(z0) = 0.

This can be done by using a Newton-like method. Note that we have written the principle
for a general case, but it is the application of the PMP which determines the function R and
its variables (fixed final time, M1 and M2 reduced to one point, etc.).

Multiple Shooting Method

Compared to the single shooting method, the multiple shooting method has a better nu-
merical stability. It consists in dividing the interval [0, tf ] into N − 1 intervals [ti , ti+1]
(with t1 = 0 and tN = tf ). Then, the values of zi = z(ti ) = (x(ti ),p(ti )) are introduced as
unknowns. A standard reference on multiple shooting methods is [81].

The result is a multi-point boundary value problem. Indeed, we add the matching con-
ditions

zi+1 = ϕext(hi , zi ),

where we denote by ϕext the flow of the extremal system and set hi = ti+1 − ti . We denote
this condition by ri (zi+1, zi ,hi ) = 0. Let Z = {z1, z2, . . . , zN } such that we can finally define
the multiple shooting function

Smulti(Z ) =
©­­­«

R(z1, z(tN , z0), tN )
r1(z2, z1,h1)
. . .

rN−2(zN−1, zN−2,hN−2)

ª®®®¬ ,
and the problem (2.9) is equivalent to finding Z such that

Smulti(Z ) = 0.

This problem can also be solved by iterative Newton-like methods.
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For problems which involve discontinuous controls (e.g., L1-minimization), the nodes
of the multiple shooting method may involve switching times, and junction times (entry,
contact, or exit times) with boundary arcs. In this case, an a priori knowledge of the structure
of the optimal solution is required and this in turn requires an a priori knowledge of the
switching times. This can be obtained through geometric analysis of the problem.

For a more precise introduction to multiple shooting method, see [81] as well as [84] for
applications to optimal control.

Remark 2.6: Intialization

In general, the family of Newton-like methods (descent direction method, quasi-
Newton, etc.) allows to achieve a very precise resolution. The accuracy comes from
the integration of the BVP. Unfortunately, to ensure that the method will converge,
the initial guess must be chosen sufficiently close to the researched solution. From the
point of view of optimal control, we need to have some a priori intuition about the
trajectory we are looking for.

For the mission construction, there are different ways to get this intuition.

• One can use a coarse approximation obtained by a direct resolution.

• One can use geometric insight (by applying geometric optimal control tools).

• One can use the properties of the dynamical system as a priori information. For
the problem under consideration, we discussed this idea in chapter 1.

• One can use continuation methods to robustify the shooting method. This will
be introduced in the next section.

For a very good survey on some results and challenges on optimal control and appli-
cations to aerospace, see the article by Trélat [85].

2.5 Numerical Continuation Methods

The principle of continuation methods is to solve a difficult problem using the solution of
a similar, but easier, problem by parameter deformation. The theory of the continuation
method is well known (see, e.g., [5, 3, 2, 4, 22, 73] and a survey in [85]). One can find many
continuation algorithms. For a specific application to controlled systems and spacecraft
missions, we refer to [44]. Here, we introduce briefly two continuation algorithms. The first
one, the discrete continuation, has already been explained in Section 1.4.4. The second one
is a Predictor-Corrector continuation (PC continuation) and more precisely the Piecewise
Linear Method (PL continuation). In the remainder of this thesis, we only use this type of
continuation.

Let us define continuation in the context of indirect methods applied to the optimal
control problem.

Definition 16 (Homotopy/Continuation): Let us consider two smooth maps S0 and S1
from Rn to Rn , where n is the dimension of the unknown zero of the shooting function (single
or multiple shooting) denoted by Z . We define a homotopy or continuation as the following
smooth map

G : Rn × [0, 1] → Rn ,

such that S(·, 0) = S0(·) and S(·, 1) = S1(·). ♦
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Existence result. We next state the result for the existence of the zero paths. Local ex-
istence of zero paths is ensured by the implicit function theorem. To guarantee the global
existence of zero paths, we need some regularity assumptions. Let us state the theorem
presented in [21] and [44].

Theorem 5 (Existence of the zero paths) Let Ω be an open bounded subset of Rn .
Let S : Ω × [0, 1] → Rn be continuously differentiable and such that:

• ∀(Z,λ) ∈ {(Z,λ) ∈ Ω × [0, 1]; S(Z,λ) = 0}, the Jacobian matrix
[

∂S
∂Z1

,
∂S
∂Z2

, . . . ,
∂S
∂Zn

,
∂S
∂λ

]

is of maximum rank n.

• ∀Z ∈ {Z ∈ Ω; S(Z, 0) = 0} ∪ {Z ∈ Ω; S(Z, 1) = 0}, the matrix
[

∂S
∂Z1

,
∂S
∂Z2

, . . . ,
∂S
∂Zn

]

is of maximum rank n.

Then, the set {(Z,λ) ∈ Ω × [0, 1]; S(Z,λ) = 0} consists of paths that are

1. a finite number of loops in Ω × [0, 1];

2. a finite number of paths with end points in the set ∂Ω × [0, 1].

These curves type (1 and 2) are continuously differentiable and disjoint.

In Figure 2.5, an illustration in one dimension of possible and impossible paths is pre-
sented. The proof is in [21, Theo. 2.1].

λ = 0

λ = 1

λ = 0

λ = 1

Figure 2.5 – Possible continuation zero paths (left) and impossible continuation zero paths
(right).

Remark 2.7:

In [85, sec. 4.1.], it is shown that, as long as no minimizing singular control nor conju-
gate point along the continuation procedure is encountered, the continuation method
works locally and the extremal solution is of class C1 with respect to the parameter λ.
These two assumptions ensure the existence of a local solution in the continuation pro-
cedure. In other words, under these two sufficient conditions, the continuation method
is locally feasible.
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2.5.1 Discrete Continuation
Let S : Rn × [0, 1] → Rn be a continuation. We denote by Z λ the solution of S(Z , λ) = 0
where λ is fixed. We assume that there is an algorithm available to find the root of a function
called the “search algorithm” (e.g., a Newton-like method). In other words, we assume that
the solution Z0 of S(Z , 0) = 0 is known. The discrete homotopy consists in constructing an
increasing sequence (λk )k ∈~0,N � with λ0 = 0 and λN = 1. Then, step by step, we look for
a zero Z λk of S(Z , λk ) with the search algorithm initialized by Z λk−1 . The drawback of this
method is that we assume that Z λk−1 is in the convergence radius of the search algorithm.
This problem can generally be overcome by refining the step between λk−1 and λk . The
sequence (λk )k ∈N depends on the different successful or failed iterations of the discrete
continuation algorithm. See Algorithm 2.1 for a precise description as well as Figure 2.6
with an illustration for a one dimensional zero path.

Algorithm 2.1: Discrete continuation algorithm

Require: Z0 solution of S(Z , 0) = 0

1: Initialization: λ = 0
2: Z = Z0

3: ∆λ ∈]0, 1] (e.g. 1 × 10−1)
4: ∆λmin ∈]0,∆λ] (e.g. 1 × 10−9)
5: while λ < 1 and ∆λ > ∆λmin do
6: ∆λ = min(∆λ, 1 − λ)
7: λ̃← λ + ∆λ
8: Z̃ ← Solve(S(Z̃ , λ̃)) with the initialization Z
9: if Success of Solve then

10: Z = Z̃
11: λ = λ̃
12: else
13: ∆λ = ϵ∆λ (e.g. ϵ = 1

2 )
14: end if
15: end while
16: if λ = 1 then
17: The discrete continuation is successful.
18: return Z
19: else
20: The discrete continuation has failed.
21: end if

Of course, one can increase the step ∆λ when the search algorithm succeeds. We ap-
plied this continuation technique to the computation of the family of periodic orbits around
Lagrange points (see Section 1.4.4, algorithm 1.1).

A noticeable drawback of such a method is the detection of the failure to converge of
the search algorithm. Indeed, a Newton-like method is very fast to converge if it is well
initialized but can run for a long time before failing.

2.5.2 Piecewise Linear Continuation
This method is based on a piecewise linear approximation of the zero paths. We refer to [4]
for a precise and complete description. The advantage of this method is that it only requires
the continuity of the zero path. Indeed, more sophisticated methods such as differentiable
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(λ = 0,Z0)

Z5 Z̃

λ5 λ6

(λ = 1,ZN )

λ

Figure 2.6 – Graphic illustration of the discrete continuation method with constant steps.

continuation require the path to be C1. We do not use these methods and we refer to [44]
for an introduction in the context of optimal control.

After the first step of the PL method (which is a discrete step continuation), we predict
the initial guess for the search algorithm with the relation

Z̃c ← Z i + ∆λ(Z i − Z i−1),

as it is written in the line numbered 8 in Algorithm 2.2. In Figure 2.7, we illustrate this
linear prediction for a simple one dimensional zero path. For a complete description of this
algorithm, see algorithm 2.2.

Once again, the step ∆λ can be increased when the search algorithm succeeds.

2.6 Construction of an Optimal Control Problem (OCP)

In the previous sections, we have explained how a mission can be designed using impulse
and invariant manifolds to save a lot of propellant. The fact that invariant manifolds are
separatrices of the dynamics makes them gravitational currents.

Then we introduced the model for the low thrust engine spacecraft. Because of the low
thrust engine, the method for mission design introduced in Section 2.1 cannot be applied.
Indeed, to go from one invariant manifold to another, an instantaneous change of velocity
is not possible anymore.

For this reason, we develop a method to connect two invariant manifolds using low
thrust. With this model, the natural context is the optimal control theory. Indeed, because
the control is permanent during the transfer time, one can write the minimization of the
mass consumption in terms of an integral of the control norm. We will discuss that in the
next sections.

First, let us explain the method we developed to write an optimal control problem to
perform the transfer between two invariant manifolds.
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Algorithm 2.2: Piecewise Linear Continuation algorithm

Require: Z0 solution of S(Z , 0) = 0

1: Initialization: λ = 0
2: Z1 = Z0, i = 1
3: ∆λ ∈]0, 1] (e.g. 1 × 10−1)
4: ∆λmin ∈]0,∆λ] (e.g. 1 × 10−9)
5: while λ < 1 and ∆λ > ∆λmin do
6: ∆λ = min(∆λ, 1 − λ)
7: λ̃← λ + ∆λ
8: Z̃c ← Z i + ∆λ(Z i − Z i−1)
9: Z̃ ← Solve(S(Z̃ , λ̃)) with the initialization Z c

10: if Success of Solve then
11: Z i+1 = Z̃
12: λ = λ̃
13: i ← i + 1
14: else
15: ∆λ = ϵ∆λ (e.g. ϵ = 1

2 )
16: end if
17: end while
18: if λ = 1 then
19: The PL continuation is successful.
20: return Z
21: else
22: The PL continuation has failed.
23: end if

2.6.1 From an Impulse Solution to an Optimal Control Problem

We start with an impulsive transfer between two manifolds. We denote respectively byM0

andM1 the two invariant manifolds that we consider. The goal of this section is to find a
trajectory performing the transfer between these two invariant manifolds.

The choice of the two invariant manifoldsM0 andM1 depends on the complete
mission that we want to design. In chapter 3, we apply the tools developed in this

chapter for real missions.
Of course, the two invariantmanifolds should be chosen such that the transfer from one to
another is useful. For example, they must be “directed” in the same direction. Moreover,
the two chosen invariant manifolds must be such that there exists a section where the
distance in position and velocity is not too big.
These notions are not mathematically well defined here, but the key is the knowledge of
the map of invariant manifolds as explained in Section 2.1.

The Impulsive Transfer

We start with an impulsive transfer betweenM0 andM1. We define a Poincaré surface of
section denoted by U (see, e.g., Section 2.1.1) where there exists an intersection in position
of the two invariant manifolds. Denote by ξU0 = (xU0 ,vU

0 ) and ξU1 = (xU1 ,vU
1 ) the two points
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Zi−1
Zi

Zc

(λ = 0,Z0) (λ = 1,ZN )

λ

Figure 2.7 –Graphic illustration of the Piecewise Linear continuationmethodwith constant
steps. Zc is the prediction constructed with the two previous solutions of intermediary
problems.

in this surface of section where

xUi = (x i1,x i2,x i3) = (xi ,yi , zi ), i ∈ {0, 1},
vU
i = (x i4,x i5,x i6) = ( Ûxi , Ûyi , Ûzi ), i ∈ {0, 1},

and such that
xU0 = xU1 .

Denote by A0 (resp. A1) the orbit to which ξU0 (resp. ξU1 ) belongs. Hence, to go from A0

belonging toM0 to A1 belonging toM1, we just have to perform the impulse

∆V = vU
1 −vU

0 .

Thanks to that, we are able to go from one orbit belonging to the first manifold to another
belonging to the second manifold. See Figure 2.8 for a drawing of this, and Section 2.9 for
real applications.
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ξU1ξU0

∆V

ξ ∗0

ξ ∗1
M0

M1

A0 A1

−tA0

+tA1

Figure 2.8 – Drawing of the construction of the end points of the optimal control problem
starting with an impulsive transfer between invariant manifoldsM0 andM1.

Intersection Problem. Let us enumerate the different cases.

1. If we consider the planar case, then there are four state variables (ξ ∈ R4) on the
surface of section U , we look for an intersection in R3. Moreover, if both manifolds
share the same energy, then a complete intersection in position and velocity is possible
(not guaranteed). In that case, we do not need any control to perform the transfer.
See the section on heteroclinic and homoclinic orbits (Section 2.1.2).

2. If we consider the planar case but without the same energy, then it is possible to find
a position intersection, but with a gap in velocity. Once again, the existence is only
empirical.

3. If we consider the spatial case, then the state ξ ∈ R6 so on the surface of sectionU , we
look for an intersection in R5. In that case, an intersection is difficult to find and, we
actually give up searching for such a point. Instead, we restrict ourselves to finding
an intersection in the position space. Note that the method we describe can be applied
when there is no intersection (nor in position nor in velocity), but with a small

∆ξ = (∆x ,∆V ) = (xU1 − xU0 ,vU
1 −vU

0 ),

where x = (x1,x2,x3) = (x ,y, z) and v = (x4,x5,x6) = ( Ûx , Ûy, Ûz) depending of the
notation. Keeping that in mind, for pedagogical reason, we consider the case when
we only have a ∆V .

Optimal Control Problem

Thanks to the impulsive transfer between the two invariant manifolds, we have two trajec-
tories A0 ∈ M0 and A1 ∈ M1 and two points ξU0 ∈ A0 and ξU1 ∈ A1 such that

ξU1 − ξU0 = (0,∆V ).

Perturbation Time. Starting with these two points ξU0 ∈ R6 and ξU1 ∈ R6, we choose
two times tA0

and tA1
to respectively propagate backward the point ξU0 and forward the

ξU1 . Mathematically, denoting by ϕnat the flow of the (uncontrolled) natural dynamics, we
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define two points in R6 by

ξ ∗0 = ϕ
nat(−tA0

, ξU0 ), and ξ ∗1 = ϕ
nat(tA1

, ξU1 ).

See Figure 2.8 for an illustration of this construction.

The Optimal Control Problem. Let us define a new transfer time tf such that

tf = tA0
+ tA1

.

At this point, the optimal control problem is ready to be constructed. We want to maximize
the final mass (this in turn minimizes the weight of propellant burnt during the mission).
Indeed, because the real cost for the launch of the spacecraft is to send it “away from Earth”,
i.e., to send it to a first parking orbit around Earth (for example a low Earth orbit is the
simplest and cheapest for satellite positioning), the lighter the spacecraft, the cheaper the
launch.

Therefore, the problem we formulate is the following

Pmf



Cmf (u) =m(tf ) → max,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

(2.10)

Application of the PMP. It is obvious that the maximization of the final mass is equiva-
lent to the minimization of the L1-norm of the control u. So problem (2.10) is equivalent to
the following one

PL1



CL1 (u) =
∫ tf

0

‖u‖ dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

(2.11)

2.6.2 Minimization of the L1-norm of the Control

In this section, we apply the Pontryagin Maximum Principle to the problem (2.11) to get the
structure of the control. We introduce the costate denoted by (p0,p,pm) = (p0,px ,pv ,pm)
associated with the state denoted by (ξ ,m) = (x ,v,m). The Hamiltonian of the system
defined in theorem 4 is

H(x ,m,u,p0,p,pm) = (p0 − β∗ϵpm) ‖u‖ + H0 + u1
ϵ

m
H1 + u2

ϵ

m
H2 + u3

ϵ

m
H3,
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where Hi = 〈p, Fi 〉 for i ∈ ~0, 3�. The application of the maximum principle yields

Ûx = ∂H
∂p
(x ,u,p),

Ûp = −∂H
∂x
(x ,u,p),

u(t) = argmax
‖v ‖ 61

H(x ,m,v,p0,p,pm).

The costate dynamics system are too long to write here. They can easily be computed
by a computer algebra system, but using the notation p = (px ,pv ) = (p1,p2,p3,p4,p5,p6),
and the notation F0 = (fi )i ∈~1,6� introduced in Section 1.1, it is easy to see that

Ûp1 =
3∑
i=1

pi+3
∂ fi+3(x)
∂x1

,

Ûp2 =
3∑
i=1

pi+3
∂ fi+3(x)
∂x2

,

Ûp3 =
3∑
i=1

pi+3
∂ fi+3(x)
∂x3

,

Ûp4 = −p1 − 2p4,
Ûp4 = −p2 + 2p5,
Ûp6 = −p3,

Ûpm =
ϵ

m2
〈u, pv 〉.

In order to obtain the structure of the optimal control, we recall results and proofs from
the contributions in [44, 39, 25, 31].

Proposition 3 : If ξ ∗0 and ξ ∗1 do not belong to the same natural trajectory, then ‖pv ‖ has a
finite number of zeros.

Proof : Let us assume that there are an infinite number of zeros, and consequently an infinite sequence
(tk )k ∈N where tk ∈ [0, tf ] such that ‖pv (tk )‖ = 0, for all k ∈ N. Then there exists a convergent sub-
sequence (tϕ(k ))k ∈N of limit t . By the continuity of pv , we have pv (t) = 0.

The costate dynamics imply that pv is continuously differentiable, therefore

pv (tϕ(i)) − pv (t)
tϕ(i) − t

= 0 −−−−−−→
i→+∞

Ûpv (t) = −px (t) +
©­«
2p4(t)
−2p3(t)

0

ª®¬ ,
where we have used the notation p = (p1,p2,p3,p4,p5,p6). Then, pv (t) = 0 implies that px (t) = 0
which implies that, for all t ∈ [0, tf ], px (t) = pv (t) = 0 and Ûpm (t) = 0. Thanks to the transversality
condition (free final mass), pm (tf ) = 0, and for all t ∈ [0, tf ], pm (t) = 0. Because of the non-triviality
of (p0,p,pm ), this implies that p0 , 0, and the maximization of the Hamiltonian gives us u(·) = 0
almost everywhere. This contradicts the hypothesis on the two points ξ ∗1 and ξ ∗2 .

Let us define φ(p) = (H1,H2,H3) = pv = (p4,p5,p6).

Proposition 4 : If tf is greater than the minimum transfer time 1 tmin
f and if ξ ∗0 and ξ ∗1 do

not belong to the same natural trajectory, then p0 , 0.

1. The minimum transfer time is the solution time of the minimum time problem when the cost to minimize is
tf .
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Proof : Assume that p0 = 0, then by the Cauchy-Schwarz inequality, it holds that

H(x ,m,u,p,pm ) 6 H0 +
( ϵ
m
‖φ(p)‖ + β∗ϵpm

)
‖u‖ . (2.12)

Property 3 implies that ‖φ(p)‖ , 0 a.e., and the maximization condition yields u(t) = a(ζ (t)) φ(p)
‖φ(p) ‖

where
ζ (t) = (x(t),m(t),p(t),pm (t)), and a(ζ (t)) ∈ [0, 1].

Then, Ûpm = a(ζ (t)) ϵ
m2(t ) ‖φ(p)‖ > 0, hence, because pm (tf ) = 0, for all t ∈ [0, tf ], pm (t) 6 0.

Therefore, equality in the inequality labeled (2.12) holds if ‖u‖ = 1 almost everywhere and

CL1 =

∫ tf

0
‖u‖ dt =

∫ tf

0
dt ,

with tf > tmin
f by assumption. But the trajectory corresponding to the minimum time problem is

admissible for problem (2.11), and is better since tmin
f < tf , absurd.

Thanks to Property 4, we are considering the normal case (see [16]), that is to say that
p0 , 0, so the costate (p0,p) can be normalized with p0 = −1

Denoting by ζ = (x ,m,p,pm), let us introduce the switching function:

ψ (ζ ) = 1 − β∗ϵpm −
ϵ

m
‖φ(p)‖ .

Then, the control is:

• if ‖φ(p)‖ , 0, then 
u(ζ ) = 0 ifψ (ζ ) < 0,

u(ζ ) = α φ(p)
‖φ(p) ‖ , α ∈ [0, 1] ifψ (ζ ) = 0,

u(ζ ) = φ(p)
‖φ(p) ‖ otherwise,

• if ‖φ(p)‖ = 0, then 
u(ζ ) = 0 ifψ (ζ ) < 0,
u(ζ ) ∈ B(0, 1) ifψ (ζ ) = 0,
u(ζ ) ∈ S(0, 1) otherwise,

where S(a,b) is the R2-sphere centered in a with radius b, and B(a,b) is the R2 ball.

Remark 2.8: Singular Arcs

Note that the case ‖φ(p)‖ = 0 can be a problem. However, Proposition 3 and the
assumption that it remains true on a neighborhood of the solution guarantee that the
numerical evaluation of the control is not problematic as long as there are no singular
arcs. Hence, we assume thatψ has a finite number of zeros.
This assumption can be checked a posteriori, once the numerical computation has been
performed.

Shooting Function

We have established the structure of the control using the maximization condition of the
PMP. Then, as explained in Section 2.4.2, the resolution of the problem is equivalent to
finding the root of a shooting function.
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First, the free final mass transversality conditions gives us pm(tf ) = 0. Because we
consider isolated end points (M0 and M1 in Theorem 4 are reduced to two points ξ ∗0 and
ξ ∗1), transversality conditions for the costate p associated to the state x do not give any
information. The boundary value problem defined by the application of the PMP is re-
duced to find initial costate values (p(0),pm(0)) such that the extremal solution ζ (·) =
(x(·),m(·),p(·),pm(·)) is well defined and reach the final statex(tf ) = ξ ∗1 starting at (x(0),m(0)) =
(ξ ∗0,m∗0). Finally, the shooting function can be written as

SL1
(p(0),pm(0)) =

(
ϕext
1, ...,6(ξ ∗0,m∗0,p(0),pm(0)) − ξ ∗1
ϕext
14 (χ ∗0,m∗0,p(0),pm(0))

)
=

(
0

0

)
.

To solve such a problem, we use aNewton-likemethod. For that kind ofmethod, we need
the shooting function to be differentiable. It can be shown (see [44, 39]) that the regularity
of the shooting function can only be guaranteed around the optimal control structure. This
reduces the convergence domain of the Newton-like method applied to the problem.

With the assumption on singular arcs, the minimization of the L1-norm of the
control leads to a control called bang-bang, indeed ‖u‖ alternates between ‖u‖ = 0

and ‖u‖ = 1.
Numerically, this problem is difficult to solve. Hence, one has to know, a priori, the struc-
ture of the controlled solution, and the search for the zero of the shooting function is very
hard to initialize.

To overcome this difficulty, we use continuation from a simpler problem: the L2-norm of
the control minimization.

2.6.3 Minimization of the L2-norm of the Control

We consider the following problem

PL2



CL2 (u) =
∫ tf

0

‖u‖2 dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

(2.13)

The problem is simpler because the optimal control is not bang-bang anymore (that will
be clearer with the analysis of the structure of the optimal control) and we use it as the initial
problem for a continuation to solve problem (2.11). Problem (2.13) has a cost defined by the
L2-norm of the control. This cost corresponds to the minimization of the energy which is
not too far from the minimization of the consumption.

For the sake of conciseness, we directly introduce the family of problems indexed by
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λ ∈ [0, 1]

PCλ



Cλ(u) =
∫ tf

0

(
(1 − λ) ‖u‖2 + λ ‖u‖

)
dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

(2.14)

Indeed, the analysis of the control structure is the same for problems (2.13) and (2.14) for
λ ∈ [0, 1[. The Hamiltonians of these problems are

Hλ(x ,m,u,p0,p,pm) = (−λ− β∗ϵpm) ‖u‖ − (1−λ) ‖u‖2 +H0 +u1
ϵ

m
H1 +u2

ϵ

m
H2 +u3

ϵ

m
H3.

(2.15)
Let us note that we can extend the previous properties to problem PCλ .

Proposition 5 : Under the same assumptions as for the property 3,


pλv

 has a finite number

of zeros. Moreover, p0λ = 0. The superscript and subscript λ are for the costate of for prob-
lems (2.14).

Note that for λ ∈ [0, 1[, the Hamiltonian is strictly concave with respect to u, so the
control is a continuous function of (x ,m,p,pm). To get the structure of the control, we fol-
low the presentation in [31]. This key point makes the numerical computation easier. By
Cauchy-Schwarz, it holds that

Hλ(x ,m,u,p,pm) 6 H0 +
( ϵ
m
‖φ(p)‖ + β∗ϵpm − λ

)
‖u‖ − (1 − λ) ‖u‖2︸                                                              ︷︷                                                              ︸

дλ ( ‖u ‖ )

.

The maximization condition implies that, for all λ ∈ [0, 1[

д′λ(‖u‖ ) = 0

⇐⇒ 2(1 − λ) ‖u‖ =
( ϵ
m
‖φ(p)‖ + β∗ϵpm − λ

)
⇐⇒ ‖u‖ = ψλ(ζ ) =

ϵ

m
‖φ(p)‖ + β∗ϵpm − λ

2(1 − λ)

We get the structure of the control

• if ‖φ(p)‖ , 0, then 
u(ζ ) = 0 ifψλ(ζ ) 6 0,

u(ζ ) = ψλ(ζ ) φ(p)
‖φ(p) ‖ ifψλ(ζ ) ∈ [0, 1],

u(ζ ) = φ(p)
‖φ(p) ‖ otherwise,

(2.16)

• if ‖φ(p)‖ = 0, then 
u(ζ ) = 0 ifψλ(ζ ) 6 0,
u(ζ ) ∈ S(0,ψ (ζ )) ifψλ(ζ ) ∈ [0, 1],
u(ζ ) ∈ S(0, 1) otherwise,
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where S(a,b) is the R2-sphere centered in a with radius b.

The shooting function is exactly the same as before but the control is different, and so
are the extremal dynamics. The result on the regularity of the shooting function still holds,
because the shooting function for λ < 1 is more regular than the one for λ = 1 (the control
is now continuous).

Let us enunciate a classical but remarkable result on costs for the different problems in
the family (see [39]).

Proposition 6 : Let (xλ ,mλ ,uλ) be a solution of problem PCλ , then for 0 6 λ 6 λ′ 6 1, we
have

1. Cλ(uλ) 6 Cλ′(uλ) 6 CL1 (u1) 6 CL1 (uλ)

2. |CL1 (uλ) − Cλ(uλ)| −−−−→
λ→1

0

3. Cλ(uλ) −−−−→
λ→1

CL1 (u1) and CL1 (uλ) −−−−→
λ→1

CL1 (u1)

2.7 NumericalMethod: From Impulsive Transfer to Low
Thrust Transfer

We have now established the main results for the two problems that we want to solve:
the L1-norm minimization of the problem (PL1 ), the L2-norm minimization of the problem
(PL2 ) as well as all continuations between the two problems with the family of problems
(PCλ ).

However, the transfer is still too difficult to initialize. Indeed, we still do not know how
to initialize the simpler problem PL2 . To manage to achieve this, we have designed a general
method using several continuations.

2.7.1 Final State Continuation

Let us start with the first continuation in our multistep method. We consider the problem
described in Section 2.6.1, that is to say, with the L2-norm of the control as the cost function

PL2



CL2 (u) =
∫ tf

0

‖u‖2 dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

Instead of the final state ξ ∗1 , we consider the point ξ nat1 defined by

ξ nat1 = ϕnat(tf , ξ ∗0).

To say it with words, we have just propagated the initial point by following the natural
dynamics during the transfer time. See Figure 2.9 for an illustration. It is obvious then that
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we know how to solve the following optimal control problem

PL2



CL2 (u) =
∫ tf

0

‖u‖2 dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ nat1 .

Indeed, a constant null control, with a null costate, constitutes the optimal extremal solution
which follows the natural dynamics.

We can then construct a continuation of problems to manage to solve PL2 . We define
the following family of problems depending continuously on the parameter λ ∈ [0, 1] (see
Figure 2.9 for an illustration)

Pλ
FS



CL2 (u) =
∫ tf

0

‖u‖2 dt → min,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = (1 − λ)ξ nat1 + λξ

∗
1 .

This problem is associated to the corresponding shooting function

SλFS(p(0),pm(0)) =
(
ϕext
1, ...,6(ξ ∗0,m∗0,p(0),pm(0)) − ξ λ1
ϕext
14 (χ ∗0,m∗0,p(0),pm(0))

)
=

(
0

0

)
,

where
ξ λ1 = (1 − λ)ξ nat1 + λξ

∗
1 .

ξU1ξU0

∆V

ξ ∗0

ξ ∗1

ξ nat1 = ϕnat (tf , ξ
∗
0 )

ξ λ1

Figure 2.9 – Illustration of the continuation on the final state. ξ nat1 is the propagation of
the initial point ξ ∗0 during the transfer time tf . Step by step, we reach the final point ξ λ1 =
(1 − λ)ξ nat1 + λξ

∗
1 , with λ going from 0 to 1.



90 CHAPTER 2. From Impulsive Transfer to Low Thrust Transfer between Manifolds

2.7.2 Thrust Continuation
The maximal thrust can also be an issue. Indeed, the lower the magnitude of the maximal
thrust, the smaller the attainable set, and so the more difficult the problem is to initialize. To
overcome this difficulty, we use another continuation, but this time, on the maximal thrust.

Let ϵobj be the maximal thrust corresponding to the real engine that we want to use for
the transfer. We also consider a greater thrust ϵinit. For instance, consider the example of
ϵobj = 0.3N and ϵinit = 60N. We denote by

ϵλ = (1 − λ)ϵinit + λϵobj,

the intermediary thrust that allows us to define the following family of problems for all
λ ∈ [0, 1].

Pλ
thrust



CL2 (u) =
∫ tf

0

‖u‖2 dt → min,

Ûx = F0(x) +
ϵλ
m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵλ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0,m(0) =m∗0, and x(tf ) = ξ ∗1 .

2.8 Description of the Algorithm

We designed an algorithm (and implemented it in C++) to solve the problem of performing
the transfer between two natural trajectories of two invariant manifolds (but not only). The
description of the interface is given in appendix C. In this section, we briefly describe the
algorithm.

2.8.1 Principle
The main idea is described by the following items and summarized in Figure 2.10.

• We start with the two points denoted by ξU0 and ξU1 in Section 2.6.1 and Figure 2.8.
These points are chosen in such a way that they minimize the distance between the
two intersections between invariant manifolds and the Poincaré cut we chose.

• We give two times of propagation tA0
and tA1

to build the end-points of the transfer
and an additional parameter αT ∈]0, 1]. This parameter allows to start the resolution
with two points denoted by ξ αT0 and ξ αT1 and defined as

ξ αT0 = ϕ(−αT tA0
, ξU0 ), and ξ αT1 = ϕ(αT tA1

, ξU1 ).

These two points are closer than the two end-points defined as

ξ ∗0 = ϕ(−tA0
, ξU0 ), and ξ ∗1 = ϕ(tA1

, ξU1 )

We then reach the two objective states ξ ∗0 and ξ ∗1 by continuation on the initial and
final state as described in Section 2.7.1. 2

• A (boolean) parameter is given to activate the continuation between the minimization
of the L2-norm of the control and the minimization of the L1-norm. If it is active, then,

2. The continuation on the initial state can easily be derived from the explanation of the final state continuation.
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to overcome some numerical difficulties, we add another parameter, to indicate the
position of this continuation in the algorithm (see Figure 2.10).

• If we give two different maximal thrusts, the algorithm performs a continuation on
the thrust as explained in Section 2.7.2.

• Checking the Li -norm of the control (i ∈ {1, 2}) during the thrust continuation, we
can verify if the border of the accessible set is reached (or at least get an indication of
whether this is the case). If so, then we allow for an increase in the transfer time by
another continuation on this parameter.

Of course, we allow for the initialization of a non zero costate to help convergence of
the first step of the algorithm.

Coding Perspective

Although there exists excellent software to perform continuations for optimal control prob-
lem such as the well-known Hompack90 [89] or Hampath [30], because of the structure of
the algorithm we developed, we chose to write our own code.

We implemented our code in C++, with interfaces to some very efficient FORTRAN
codes. We used:

• the DOP853 explicit Runge-Kutta method developed by Hairer, Nørsett, and Wanner
[45]. To verify our implementation of the method we developed, we added another
integrator, ode.f, by Shampine and Gordon, which can be found on the website http:
//www.netlib.org/ode/ode.f.

• For the Newton-like method, we used the well known FORTRAN90 code: hbrd.f90,
by A. Miller. In this file, there is an implementation of Powell’s Hybrid algorithm
used to solve sets of non-linear equations. This file can be found on the website http:
//jblevins.org/mirror/amiller/#f.

Note that we have not used automatic differentiation for the computation of the costate
dynamics. We could have used, for instance, the very efficient software TAPENADE [47].

Our code is not ready to be published on theweb, but we plan to clean it up and distribute
it in a near future.
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Figure 2.10 –Description of the algorithm to solve the transfer between invariantmanifolds
with low thrust.
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2.9 Numerical Results

In this section, we apply the method that we developed to real transfers between invariant
manifolds.

2.9.1 Transfer between Invariant Manifolds: {Earth-Moon} System,
Halo Orbits

Let us consider once again the {Earth-Moon} system, and two Halo orbits around L1 and
L2 with different energies. In table 2.1, we give the initial conditions and the periods for
the two considered Halo orbits. These two Halo orbits have been computed with the same
z-excursion of 16 × 103 km. Let us recall that the parameters for this CRTBP system can be
found in table 1.1.

x y z

Halo L1 8.23362033247E-01 0.0E+00 4.16230924917E-05

Halo L2 1.12040065667E+00 0.0E+00 4.16230924917E-05

Ûx Ûy Ûz Period

Halo L1 0.0E+00 1.26343508887E-01 0.0E+00 2.74294400617E+00

Halo L2 0.0E+00 1.76071039637E-01 0.0E+00 3.41558381117E+00

Table 2.1 – Initial conditions and periods for the two Halo orbits around L1 and L2 used
to perform the transfer between their invariant manifolds. Values are expressed in the nor-
malized system of units of the {Earth-Moon} system.

We follow the method that was previously described:

1. We compute the manifolds from the two periodic orbits around L1 and L2. Here, we
consider Halo orbits (which are diffeomorphic to a circle). See Figure 1.9, page 50, for
a plot of such an orbit.

2. We compute the intersections with the Poincaré cut U2. See Figure 2.11. We plot
the different projections onto the (y, z)-plane (recall that x is set to 1 − µ on U2), the
(y, Ûy)-plane and the (z, Ûz)-plane.

3. We find the two points ξU0 and ξU1 that minimize ∆ξ =


ξU0 − ξU1 

. Note that we

obtain not only a ∆V = ∆v but also a ∆x . Indeed, we observe in Figure 2.11 that there
is no intersection in the projections onto the (y, Ûy)-plane.

4. We choose two times, previously denoted by tA0
and tA1

. Here, we choose 0.5 for
both times, expressed in the normalized system of units. This corresponds to a travel
time of 4.34 days. Thanks to this choice, the two end-points can be built. We denote
them by ξ ∗0 and ξ ∗1 . The two natural trajectories are plotted in Figure 2.12.

The final state continuation is straightforward as long as the maximal thrust is large
enough. In Figure 2.13a, we plot the norm of the control during each step of the final state
continuation, and we remark that even though the final control is smaller than 0.55N, it
reaches nearly 3N during the continuation.

We compute the transfer starting with a maximal thrust of 60N to reach 0.45N by con-
tinuation. See Figure 2.13b for the plot of the evolution of the control norm with respect
to time during the continuation. We observe that the control is saturated only for the last
step of the continuation. Indeed, for a maximal thrust greater than 0.55N, the control is
not saturated, and so, the continuation on the maximal thrust does not change the optimal
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Figure 2.11 – {Earth-Moon} system: Different projections of the intersection with the
Poincaré cut U2 for the invariant manifolds associated with the two Halo orbits around
L1 and L2. Note that there is no intersection between the two manifolds, and this is obvious
with the (y, Ûy)-plane projection.
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Figure 2.12 – {Earth-Moon} system: Construction and resolution of the transfer problem
between the two invariant manifolds of two Halo orbits around L1 and L2.

control, until reaching the critical value. One can think that it is useless to start this contin-
uation with the value of 60N, but, for instance, if we start with a value of 1N, the final state
continuation fails. Even though the control is not saturated, a large starting value provides
us with a suitable attainable set, and allows the final step continuation to converge. This
way the continuation on the thrust is very fast, and smooth.

The continuation on the cost between the L2-norm and the L1-norm is then performed
and succeeds easily. The different steps in the continuation for the norm of the control are
plotted in Figure 2.13c.

Thefinal trajectories are plotted in Figure 2.12. The trajectories for both theL1-minimization
and the L2-minimization are very close to each other and differences cannot be seen on the
plot. Obviously, the more times we have to perform the transfer (that is to say the choice of
tA0

and tA1
), the smaller both the L1-cost and L2-cost are.

Because we are using exclusively indirect methods, the computation of the transfer,
including all steps and continuations, only takes 13.18 s on a standard desktop computer.
Each of the three continuations is very efficient, and they converge in, respectively, 19, 20
and 22 iterations. We used an initial mass of 1500 kg for the spacecraft, and the final mass
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Figure 2.13 – Different continuations during the resolution of the transfer between invari-
ant manifolds in the {Earth-Moon} system.

is 1492.885 68 kg for the minimization of the L1-norm of the control.

Remark 2.9:

We will see in the next chapter that this transfer method can be used in to design a
complete mission initialized with several controlled and uncontrolled parts, the un-
controlled ones being trajectories belonging to invariant manifolds.
This is the idea of this work: we want to use, as explained in Section 2.1, the invari-
ant manifolds in the Interplanetary Transport Network, connected by small optimal
transfer between invariant manifolds, to initialize the complete mission. The final mis-
sion will consist of several uncontrolled parts (following the invariant manifolds) and
controlled parts (the connection between manifolds computed with our algorithm).

2.9.2 Transfer between InvariantManifolds: {Sun-Earth} System,Halo
Orbits

This time we consider the {Sun-Earth} system, and two Halo orbits around L1 and L2 with
different energies, respectively EL1

= −1.500444 and EL2
= −1.500443. In table 2.2, we

give the initial conditions and the periods for the two considered Halo orbits. Once again,
let us recall that the parameters for this CRTBP system can be found in table 1.1.

Once again, we follow exactly the same method, and perform the computation as eas-
ily as in the previous case. We plot the different projections of the intersection with the
Poincaré cutU2 in Figure 2.14.

As previously, we compute the two end-points ξU0 and ξU1 that minimize the distance
between the two invariant manifolds and we choose the normalized time of propagation
(backward and forward) to build the end-points of the transfer ξ ∗0 and ξ ∗1 . See Figure 2.15
for the plot of the manifolds and the two natural trajectories. Here, we have chosen tA0

=

tA1
= 0.5. This corresponds to approximately 58 days. We choose a starting thrust of 60N

to reach a targeted thrust of 0.3 N.
The final state continuation is smooth and fast thanks to the rather large initial maximal

thrust (see Figure 2.16a). Then, the thrust continuation is easier than for the {Earth-Moon}
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x y z

Halo L1 9.88877586385E-01 0.0E+00 4.01075229212E-06

Halo L2 1.00838140029E+00 0.0E+00 1.61657961732E-05

Ûx Ûy Ûz Period

Halo L1 0.0E+00 8.79724315850E-03 0.0E+00 3.06024482087E+00

Halo L2 0.0E+00 9.75059689672E-03 0.0E+00 3.10252118223039E+00

Table 2.2 – Initial conditions and periods for the two Halo orbits around L1 and L2 used
to perform the transfer between their manifolds. Values are expressed in the normalized
system of unit of the {Sun-Earth} system.
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Figure 2.14 – {Sun-Earth} system: Different projections of the intersection with the
Poincaré cut U2 for the invariant manifolds associated with the two Halo orbits around
L1 and L2. Note that there is no intersection between the two manifolds, this is obvious on
the (y, Ûy)-plane projection.

system, indeed, here we never reach the maximal thrust, and so, this continuation does not
change the control at all (see Figure 2.16b).

The continuation between the L2-minimization and the L1-minimization is straightfor-
ward. Note that we obtain a different structure for the bang-bang control, and here, we do
not start this continuation with a saturated control.

Finally, we obtain an optimal trajectory. As before, the initial mass is of 1500 kg, and
the final mass is 1490.1144 kg. The computational time on a simple desktop computer is
21.86 s for the entire computation of the transfer (from initial states computation to the
last continuation on the cost). The final optimal trajectory is plotted in Figure 2.15 and the
different controls for the different continuations are plotted in Figure 2.16.

2.9.3 Study of the Transfer Time Parameter

Wehave seen that one of the parameters that we fix is the transfer time. Of course, the larger
the transfer time, the lower the cost (L1-norm or L2-norm). Moreover, it seems intuitive that
the larger the time, the lower the maximum of the control norm during the transfer. We
perform a numerical study of the influence of this parameter for the two transfers previously
introduced: the transfer between invariant manifolds from Halo orbits in the {Sun-Earth}
and {Earth-Moon} systems.

We vary the time parameter to test in different cases the efficiency of our algorithm. We
consider the states ξU0 and ξU1 defined for the two transfer problems as the two states mini-
mizing the distance in position and velocity (see Section 2.6.1). We then choose a sequence(
t if

)
i ∈~1,N �

discretizing interval [0.001, 2.914] and we execute the algorithm for each t if .

The method is efficient and succeeds for almost every t if . We plot in Figure 2.17 three sets
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Figure 2.15 – {Sun-Earth} system: Construction and solution of the transfer problem be-
tween the two invariant manifolds of two Halo orbits around L1 and L2.

of tests for the {Sun-Earth} system and in Figure 2.18 for the {Earth-Moon} system. First,
we plot the control for small times, when the norm of the control is high and looks like an
impulse ∆V . The second set is a control for longer times (similar to the control obtained in
the previous section). We observe that when we increase the transfer time, the method fails
for a certain time interval. For the {Earth-Moon} system, the interval is

IEM = [1.724, 2.224]

and for the {Sun-Earth} system the interval is

ISE = [2.126, 2.526].

Note that these two intervals are discrete approximations. If we pass this interval, then
the method succeeds again but it gives a different structure of the control and we observe
that the optimal trajectories obtained have one revolution around the second primary (re-
spectively Earth and Moon). There is a bifurcation in the structure of the optimal trajectory
with respect to the time parameter. We plot the different trajectories for the two systems
in 2.19a and 2.19b.

The time parameter is crucial. We have to pick it very carefully to obtain the desired
result. Note that, whereas there is an interval in which ourmethod fails, it succeeds

for a very large range and so, it is not difficult to pick a suitable time.

Finally, because one can expect that when the transfer time goes to zero (tf → 0), we
converge to the equivalent ∆V corresponding to an impulsive transfer, in Figure 2.20, we
plotted the sequence ηi defined by

ηi =






∫ t if

0

ϵ∗
‖u(t)‖
m(t) dt − ∆V






 ,
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Figure 2.16 – Different continuations during the resolution of the transfer between invari-
ant manifolds in the {Sun-Earth} system.
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Figure 2.17 – Controls for different transfer times for the transfer between invariant man-
ifolds from Halo orbits in the {Sun-Earth} system. Left: Small times, similar to ∆V . Center:
Longer times. Right: After the interval ISE , where the algorithm fails, we get a different
structure for the control corresponding to a trajectory with a revolution.

where ∆V is defined by
∆V =



vU
0 −vU

1



 ,
with ξU0 = (xU0 ,vU

0 ) and ξU1 = (xU1 ,vU
1 )

We observe that in both considered examples, we converge to the ∆V when the transfer
time decrease. Note that, because there is also a ∆x for the {Earth-Moon} example, we can
expect that the convergence may not be to ∆V exactly. However, the main gap concerns the
velocity, hence, in both case the Figure 2.20 shows that when tf goes to 0, then ηi → 0. This
is coherent with the construction of the problem recalling that we have designed an optimal
control problem starting with an impulsive transfer between the two invariant manifolds.

Conclusion

To conclude, we have designed a general algorithm (associated with software written in
C++) that performs the transfer between two invariant manifolds. This relies on a few pa-
rameters that we have to choose. Of course, because we minimize the norm of the control
(L2 or L1), we have to fix the transfer time. This is a crucial parameter. The study of the
influence of this parameter should be done more precisely. Indeed, we know that the longer
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Figure 2.19 – Different optimal trajectories for the two considered systems. We observe a
bifurcation when the time increases, after respectively ISE and IEM , the trajectories perform
a revolution around the second primary.

the transfer time is, the smaller the cost is, but the drawback is that when we choose too
long a transfer time, the first final state continuation can fail. We have seen that there exist
some values of time for which our method fails but these times are sort of transition times
between two structures of the trajectory with and without a revolution around the second
primary. Before these times interval, the method is robust and succeeds for a large range of
transfer times. Moreover, we observe that when the transfer time goes to 0, it seems that the
control converges to the impulse control as expected. Finally, on our two experiments, we
observe that the behavior with respect to the time parameter is independent of the CRTBP
we consider.

We think that this algorithm and this method constitute a brick for designing interplan-
etary missions using invariant manifolds, and more precisely the Interplanetary Transport
Network. We use it in such a way in the next chapter where a complete mission is de-
signed, but we also think that it could be a good first step to initialize missions patching
three body problems with some uncontrolled parts (trajectories in invariant manifolds) and
some controlled parts computed by this method to connect the invariant manifolds.
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The content of this chapter is presented in the article [28] in collaboration with Emmanuel
Trélat and Thomas Haberkorn (accepted for publication online and printed versions in ESAIM:
Mathematical Modelling and Numerical Analysis).

3.1 Dynamical Properties to Initialize the Resolution of
an OCP

In this chapter, we design missions using invariant manifolds. We consider missions be-
tween periodic orbits around the libration points L1 and L2 of the {Earth-Moon} system.

We develop here a method using invariant manifolds to initialize the resolution of an
optimal control problem. Of course, this is built on the algorithm that was introduced in the

101
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previous chapter. Indeed, it has been established how to perform transfers between invari-
ant manifolds, and the same techniques can be applied between every natural trajectories
of the CRTBP dynamical system, and in particular to periodic orbits.

We initialize an L2-minimization optimal control problem with an admissible trajectory
in several parts: controlled ones to perform the transfer between natural trajectories which
are the uncontrolled parts. An admissible trajectory is a sub-optimal trajectory performing
the mission (it does not satisfy the necessary conditions of optimally). The controlled parts,
between natural trajectories (belonging or not to invariant manifolds) are computed follow-
ing the algorithm that we developed. We then use a multiple shooting method initialized
with these different parts. Finally, thanks to the general transversality conditions given by
the PMP, we optimize the start and end-points of the mission on the periodic orbits.

We first design a Lyapunov to Lyapunov mission using an heteroclinic orbit asymp-
totically connecting the two periodic orbits. This is a simple example of a planar mission
between libration points. We consider this case to show that when a heteroclinic orbit ex-
ists, we observe the turnpike structure for the optimal solution (see [86]). Moreover, our
method can be compared to the one in [33]. The author recently developed an efficient
method to compute an optimal low-thrust transfer trajectory in finite time without using
invariant manifolds of the three body problem. It is based on a three-step solution method
using indirect methods and continuations methods and it gives good results.

In Section 3.3, we design two other missions. The first one is also a Lyapunov to Lya-
punov mission, but with a different energy which allows for the existence of a heteroclinic
orbit with two revolutions around the moon. The duration of this heteroclinic orbit is longer
than the duration of the single revolution heteroclinic orbit, hence, we expect a smaller cost
for the optimal solution.

Finally, in Section 3.3.2, we design a more useful mission between two 3D Halo orbits.
We consider a very general case with two different energies for the two periodic orbits.
Since we have chosen 3D periodic orbits and with different energies, there is no heteroclinic
orbit. Hence, we initialize the resolution with three controlled parts, one to go from the first
Halo orbit to the first invariant manifold, one to perform the connection between the two
invariant manifolds, and one to go from the second invariant manifold to the second Halo
orbit. One can note that we do not observe the turnpike property here because there is no
“steady-state” trajectory connecting the two periodic orbits.

3.2 The Lyapunov to Lyapunov Mission as an Optimal
Control Problem

We want to design a mission going from a periodic Lyapunov orbit around L1 to a periodic
Lyapunov orbit around L2 using a low-thrust engine in the {Earth-Moon} system (see Fig-
ure 3.1). A full description of these periodic orbits is given in Section 1.4. Let us recall that
these orbits are planar orbits diffeomorphic to a circle. In order to perform such a mission,
we will use the properties introduced in Section 1.5: the existence of invariant manifolds.
Indeed, if we are able to find an intersection between an “L1 unstable manifold” and an “L2
stable manifold”, we obtain an asymptotic trajectory that performs the mission with a zero
thrust, called a heteroclinic orbit (see Section 2.1.2).

In the classical literature, such amission is usually designed by using an impulse to reach
the heteroclinic orbit from the Lyapunov orbit around L1 and then another impulse to reach
the Lyapunov orbit from the heteroclinic one. Since we design a low-thrust transfer, follow-
ing this method is not allowed. In [32], the author developed a three-stepmethod to perform
a low-thrust, low-energy trajectory between Lyapunov orbits of the same energy without
using invariant manifolds. At his first step, he uses a feasible quadratic-zero-quadratic con-
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trol structure to initialize his method. In this work we will use the knowledge of a zero
cost trajectory, the heteroclinic orbit, to initialize an indirect shooting method (Newton-like
method for optimal control problem) set up by applying the PontryaginMaximum Principle.

3.2.1 Optimal Control Problem (OCP)
Our main goal in this work is to solve an optimal control problem. We want to go from
the Lyapunov orbit around L1 to the Lyapunov orbit around L2 with minimal energy. We
respectively denote by Lya1 and by Lya2 the Lyapunov orbit around L1 and L2. Mathemat-
ically we write this problem as follows

Pд



Cд = min

∫ tf

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) ∈ Lya1, and x(tf ) ∈ Lya2.

(3.1)

Let us summarize the steps in the method we developed to solve this problem :

1. First, we find a heteroclinic orbit from the Lyapunov orbit around L1 to the Lyapunov
orbit around L2. We denote by Het this orbit.

2. Then, we realize a short transfer from a fixed point on the Lyapunov orbit around L1
to the heteroclinic orbit.

3. Similarly, we realize a transfer from the heteroclinic orbit to a fixed point on the Lya-
punov orbit around L2.

4. Then we release the constraint on the position of the matching connections on the
heteroclinic orbit by using a multiple shooting method and we decrease the maximal
thrust.

5. Finally, we optimize the position of the two fixed points on Lya1 and Lya2 to satisfy
the transversality condition for problem (3.1).

We note that in steps 2 to 4 (in which we solve optimal control problems), we have fixed
the departure and arrival points to simplify the problem. The last step consists in releasing
these constraints.

Remark 3.1:

The real problem that we want to solve is the minimization of the fuel consumption
(the maximization of the final mass). This is done by considering the minimization of
the L1-norm of u

CL1
д = min

∫ tf

0

‖u‖ dt .

Unfortunately, this implies numerical difficulties and for simplicity, we only consider
here the L2-minimization problem. One of the perspectives of this work is to use, for
example, another continuation on the cost.

This is due to the very low optimal control that we get after the L2-minimization. In-
deed, the continuation between the L2-minimization and the L1-minimization fails be-
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cause the engine thrust specification of 0.3 N we have picked is far too big to allow for
convergence to a bang-bang control.

3.2.2 Heteroclinic Orbits

Let us first find the heteroclinic orbit between a Lyapunov orbit around L1 and a Lyapunov
orbit around L2. One condition to be able to find such an orbit is to compute an intersection
between twomanifolds. Hence, these twomanifolds should have the same energy. Since the
manifold and the Lyapunov orbit have the same energy, we must compute two Lyapunov
orbits around L1 and L2 at a given, shared, energy.

The study of the well known Hill regions (see [52] and references therein), i.e. the pro-
jection of the energy surface of the uncontrolled dynamics onto the position space gives us
an indication of the interval of energy we can use. Indeed, we have to compute an orbit with
an energy greater than the energy of L2. Because we want to realize a low-thrust transfer,
we choose to keep a low energy. Moreover, we have a smaller region of possible motion,
and so, a possibly shorter transfer.

Using the method described in 1.4.4, we choose to get two orbits with an energy of
−1.592081 in the normalized system.

Finding the intersection. To find an intersection, we introduce two 2D sections U2 =

{(x ,y) ∈ R2, x = 1 − µ, y < 0}, and U3 = {(x ,y) ∈ R2, x = 1 − µ, y > 0}. We represent
them in Figure 3.1.
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Figure 3.1 – Left: Planes U2 and U3 in the {Earth-Moon} system. Right: unstable (red) and
stable (blue) manifolds respectively from L1 and L2 stopping at the planeU2

Then, we compute the intersection of the unstable manifold from L1 and the stable mani-
fold from L2 with the planeU2 (of course, we can do the symmetric counterpart: stable man-
ifold from L1 and unstable manifold from L2 with the plane U3). Since the x-coordinate is
fixed byU2 and because the energies of the twomanifolds are equal, we just have to compute
the intersection in the (y, Ûy)-plan (values of Ûx are deduced from the energy equation (1.10)).

We show in Figure 3.2 theU2-section and the existence of intersections for our particular
energy. To find precisely one intersection point, we have used once more a Newton-like
method. We can parametrize the section of one manifold withU2 with only one parameter,
the parameter of the Lyapunov orbit. We denote by ϕ+x=1−µ , the flow propagating forward
a state point from Lya1 onto the plane U2, and by ϕ−x=1−µ the flow propagating backward
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a state point from Lya2 onto the plane U2. Time of propagation is fixed by the condition
x = 1 − µ.

We want to find two points ξL1
∈ Lya1 and ξL2

∈ Lya2 such that

ϕ+x=1−µ (ξu+(ξL1
)) − ϕ−x=1−µ (ξ s−(ξL2

)) = 0,

where ξu+ and ξ s− are defined in (1.21). This is an equality in R2, and because each of the
Lyapunov orbits is parametrized with a one dimensional parameter (the time), our problem
is well posed.

To initialize the method we use a discretisation (100 points in this particular example)
of the Lyapunov orbits and we take the two points minimizing the Euclidean norm in the
U2 section.
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Figure 3.2 – Section in the plane U2 of a unstable manifold from L1 and a stable manifold
from L2. The energy is −1.592081. On the right, a zoom on the interesting area.

In our case, with a value of energy equal to −1.592081 and α = 1
384402 from (1.21), we

obtain the heteroclinic trajectory represented in Figure 3.3. From now on, we will denote
this heteroclinic orbit by Het. Note that this computation only takes a few seconds on a
standard desktop computer.
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Figure 3.3 – Heteroclinic orbit between two Lyapunov orbits in the {Earth-Moon} system.
We get a travel time of 8.9613933501964 (normalized time) or 38.974 days.
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3.2.3 From One Orbit to Another

Here, we construct two rather simple problems: first we compute an optimal control using
the Pontryagin Maximum Principle reaching the heteroclinic orbit from the Lyapunov orbit
around L1, then we compute an optimal control to reach the Lyapunov orbit around L2 from
the heteroclinic orbit. This way, we get an admissible control that follows the null control
heteroclinic orbit during a certain time.

Around L1

Problem Statement. Consider two points ξ ∗0 ∈ Lya1 and ξ ∗1 ∈ Het, a time t0 and an initial
massm∗0 = 1500 kg. We apply the PontryaginMaximum Principle to the following problem:

PL1



min

∫ t0

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0, m(0) =m∗0 and x(t0) = ξ ∗1 .

(3.2)

Here, we have fixed the two points ξ ∗0 and ξ ∗1 on the Lyapunov orbit and the heteroclinic
orbit. We will see how we choose these points later. We will release the constraint on the
position of these two points by an optimization and satisfy the transversality conditions for
problem 3.1 in the last steps of our method.

If t0 is greater than theminimum time, we can show that we are in the normal case for the
Pontryagin Maximum Principle, that is to say p0 can be normalized to −1 (see proposition 4
page 84). Although we have not proved that this assumption holds, we will see that it is a
reasonable one because of the construction of our two points. Moreover, because normality
of the trajectories relies on the invariance of the target with respect to the zero control
(see [39] and [26]), the normality property holds for the targeted problem (3.1).

We have established the structure of the control given by the maximization condition of
the PMP for this cost on page 87. Hence, we can write this problem as a shooting function.
We denote by ϕext the extremal flow of the extremal system. Hence, we define the shooting
function:

SL1
(p(0),pm(0)) =

(
ϕext
1, ...,4(ξ ∗0,m∗0,p(0),pm(0)) − ξ1
ϕext
10 (ξ ∗0,m∗0,p(0),pm(0))

)
=

(
0

0

)
. (3.3)

We compute the solution, that is to sayp(0) andpm(0) using a shootingmethod (Newton-
like method applied to (3.3)). As we have seen in the previous chapter, the main difficulty
is to initialize the Newton-like algorithm. To do that, we apply the same algorithm that we
developed for the transfer between invariant manifolds.

Construction of ξ ∗0 and ξ
∗
1 . Wewant to realize the transfer from Lya1 to Het and we have

already computed the heteroclinic orbit. The method is the following:

1. If we denote by ξ L1

Het the first point of the “numerical” heteroclinic orbit near the Lya-
punov orbit, we find ξLya1 ∈ Lya1 by minimizing the euclidean norm :

ξLya1 = argmin
ξ ∈Lya1




ξ L1

Het − ξ



 .
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2. Then, we propagate backward in time ξLya1 following the uncontrolled dynamics dur-
ing a time tLya1 (smaller than the period of the Lyapunov orbit) to get ξ ∗0

3. We propagate forward in time ξ L1

Het during a reasonable time tL1

Het to get ξ ∗1 (small com-
pared to the travel time to reach the other extremity of Het).

We define the transfer time t0 in (3.2) as

t0 = tLya1 + t
L1

Het.

Although it seems to be more simple a problem than problem (3.1), the main difficulty
is still to initialize the shooting method. We use a continuation method on the final state,
as introduced in Section 2.7.1, page 88.

Final State Continuation. As explained in Section 2.7.1, we construct a family of prob-
lems Pλ

L1
depending continuously on one parameter λ such that P0

L1
is easy to solve and

Pλ
L1

corresponds to the targeted problem, that is to say (3.2).
First, let us define ξ natLya1

as the forward propagation of ξLya1 following the uncontrolled
dynamics during time t0. Then we define the family of problems:

Pλ
L1



min

∫ t0

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0, m(0) =m∗0,
x(t0) = (1 − λ)ξ natLya1

+ λξ ∗1 .
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Figure 3.4 – All relevant points in the construction of the problem.

Since ξ natLya1
corresponds to the uncontrolled dynamics, the corresponding initial costate

(p(0),pm(0)) is zero. Then, step by step, we initialize the shooting method of Pλi
L1

using the
solution of Pλi−1

L1
to reach problem (3.2). This is done by a PL continuation (see Section 2.5.2

page 78), i.e., the solution of the two previous iterations of the continuation are used to
initialize the resolution of the next step by a linear prediction.

Figure 3.4 shows the different points defined for some parameters described below.
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Numerical Results. We show here the numerical results for this transfer. We choose a
maximal thrust equal to 60N. We postpone to Section 3.2.4 the problem of the maximum
thrust which should be very small. In fact, a high thrust implies that the magnitude of
the costate stays very low, and it will be necessary for the multiple shooting to converge.
Indeed, for a non-saturating control, the higher the maximal magnitude of the thrust, the
lower the control u between [0, 1], and so the lower the magnitude of ψ (ζ ) and in turn of
the costate. Recall that ψ is the switching function defined in (2.16) and ζ is the extremal
state. Moreover, we choose the two times of propagation in the normalized system as

tLya1 = 1.0, and tL1

Het = 2.0.

We obtain the optimal trajectory plotted in Figure 3.4. The optimal command is shown
in Figure 3.5. One can see that we are far from the saturation of the command, indeed, the
maximumvalue is approximately 6 × 10−6, whereaswe are constrained by one. We postpone
the discussion on the real value in Newton to the final trajectory.
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Figure 3.5 – Command to realize the optimal transfer from the Lyapunov orbit to the het-
eroclinic orbit. We plot u(·) 6 1 as a function of the normalized time.

This continuation gives us an initial adjoint vector (costate) that we will denote by p∗0
and p0∗m in the remainder of this section.

Around L2

We design a very similar problem around L2.

Problem Statement. Consider two points ξ ∗2 ∈ Het and ξ ∗3 ∈ Lya2, a time t2 and an initial
massm∗2.

1 The massm∗2 is the final mass obtained after solving for the transfer around L1
(between the two problems we follow a heteroclinic orbit without any fuel consumption).
We apply the Pontryagin Maximum Principle to the following problem:

PL2



min

∫ t2

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗2, m(0) =m∗2 and x(t2) = ξ ∗3 .

(3.4)

As before, we have fixed ξ ∗2 and ξ ∗3 on the heteroclinic and Lyapunov orbits. The final
steps will allow us to release these constraints.

1. We will see later on why we use 2 as subscript.



3.2. The Lyapunov to Lyapunov Mission as an Optimal Control Problem 109

Note that the problem is very similar to the problem around L1 hence, we get the fol-
lowing shooting function

SL2
(p(0),pm(0)) =

(
ϕext
1, ...,4(ξ ∗2,m∗2,p(0),pm(0)) − ξ ∗3
ϕext
10 (ξ ∗2,m∗2,p(0),pm(0))

)
=

(
0

0

)
.

Construction of ξ ∗2 and ξ ∗3 . We construct the two points following the same method as
for the problem around L1.

1. If we denote by ξ L2

Het the last point of the heteroclinic orbit near the Lyapunov orbit,
we find ξLya2 ∈ Lya2 minimizing the euclidean norm :

ξLya2 = argmin
ξ ∈Lya2




ξ L2

Het − ξ





2. Then, we propagate forward ξLya2 following the uncontrolled dynamics during a time
tLya2 (smaller than the period of the Lyapunov orbit) to get ξ ∗3 .

3. We propagate backward ξ L2

Het during a reasonable time tL2

Het (small compared to the
traveling time to reach the other extremity) to get ξ ∗2 .

We define the transfer time t2 in (3.4) as

t2 = tLya2 + t
L2

Het.

Final State Continuation. As before, we construct a family of problems Pλ
L2

depending
continuously on a parameter λ such that P0

L2
is easy to solve and P1

L2
corresponds to the

targeted problem, that is to say (3.2).
First, let us define ξ natHet as the forward propagation of ξHet following the uncontrolled

dynamics during the time t2. Then we define the family of problems

Pλ
L2



min

∫ t2

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗2, m(0) =m∗2,
x(t2) = (1 − λ)ξ natHet + λξ

∗
3 .

Numerical Results. As before, we setTmax = 60N, and we compute the continuation for
the two times chosen as

tL2

Het = 2.0, and tLya2 = 1.0.

Figure 3.6 shows the optimal control to realize the final transfer from the heteroclinic
orbit to the Lyapunov one around L2. We see that, once again, we are far from the saturation
of u.

This continuation gives us an initial costate that we will denote by p∗2 and p2∗m in the
remainder of this section.

Table 3.1 summarizes all the parameters for the continuation computation. We observe
that, because we are using indirect shooting methods, the computation is very fast even



110 CHAPTER 3. Low-Thrust Missions between Libration Points with L2-Minimization

0 1 2 3

−1

0

1

·10−5

t

u
1
(t
)

0 1 2 3

0

2

·10−5

t

u
2
(t
)

0 1 2 3

1

2

3
·10−5

t

‖
u
(t
) ‖

Figure 3.6 – Command to realize the optimal transfer from the Lyapunov orbit to the het-
eroclinic orbit. We plot u(·) 6 1 as a function of the normalized time.

though it is performed on a simple desktop computer or on a single-board computer (the
Raspberry Pi).

Isp д0 Earth Mass Moon Mass Distance Period

2000 s 9.8m3 kg−1 s−2 5.972 × 1024 kg 7.349 × 1022 kg 384 402 × 103 m 2.361 × 106 s

Transfer Iterations Cost Tmax

L1 21 6.309 67 × 10−11 60N
L2 19 9.061 24 × 10−10 60N

System Transfer Execution time

Core i7 L1 98% cpu 2,821s total

L2 96% cpu 1,439s total

Raspberry Pi A L1 38% cpu 8,009s total

L2 22% cpu 7,879s total

Table 3.1 – Numerical results for the two transfers around L1 and L2. Computations are
performed on a simple laptop Core i7, and on a Raspberry Pi A, a credit card-sized single-
board computer.

Remark 3.2:

The computational time with the Raspberry Pi A shows that this kind of methods are
very fast and do not require big units of computation. Hence, we can imagine to embed
this software on a spacecraft to compute optimal trajectories on the fly.

3.2.4 Multiple Shooting

Thanks to the results from previous sections, we have designed an admissible control to per-
form the transfer from a Lyapunov orbit around L1 to a Lyapunov orbit around L2. We first
reach a point on a heteroclinic orbit, then we follow the natural dynamics (null control),
and finally reach a point on the final Lyapunov orbit from a certain point on the hetero-
clinic orbit. This admissible trajectory is however not energy optimal, since the stay on the
heteroclinic orbit is forced.
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The two points on the heteroclinic orbit were arbitrarily chosen. There is no guarantee
that they provide a good choice in terms of optimality. Hence, we want to release the con-
straints on the position of these two points. We use a multiple shooting method on top of
the first two local transfers to get a better optimum.

This is a key point of our method. In different contributions such as [31, 23, 91],
the authors use the resolution of a time minimum problem to initialize the L2-

minimization (and then a L1-minimization). Here, we use the dynamical information
given a priori to initialize the L2-minimization.
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Figure 3.7 – Admissible trajectory in three parts.

Let us describe howwe state the multiple shooting problem. As we can see in Figure 3.7,
there are two points ξ ∗1 and ξ ∗2 belonging to the heteroclinic orbit that we want to free.
Moreover, we consider three times:

• t0 which is the time defined for the transfer around L1;

• t2 which is the time defined for the transfer around L2;

• t1 which is the total time of the computed heteroclinic orbit minus the two times tL1

Het
and tL2

Het used in the two previous transfers.

We define ttot = t0 + t1 + t2 and we write a new optimal control problem with the same
structure as the previous one around L1 and L2.

Ptot



Ctot = min

∫ ttot

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0 ∈ Lya1, m(0) =m∗0,
x(ttot) = ξ ∗3 ∈ Lya2.

(3.5)

As before, we apply the Pontryagin Maximum Principle to get a necessary condition
for the optimal control. We are able to write the control u with respect to the state (x ,m)
and the costate (p,pm), we can write a shooting function, with the same results as the ones
obtained in Section 3.2.3.
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Thanks to the following method, we get an admissible trajectory in three parts, and it is
quite natural to use it to construct a multiple shooting function. This is where we use the
dynamical information. We define

Z = (p0,p0m︸︷︷︸
P0

, ξ1,m1︸︷︷︸
X1

,p1,p
1
m︸︷︷︸

P1

, ξ2,m2︸︷︷︸
X2

,p2,p
2
m︸︷︷︸

P2

) ∈ R25,

then we write the multiple shooting function with two matching conditions on the state
and the costate, the final state condition, and the free final mass:

Smulti(Z ) =

©­­­­­­­«

ϕext
1, ...,5(ξ ∗0,m∗0, P0) − X1

ϕext
6, ...,10(ξ ∗0,m∗0, P0) − P1
ϕext
1, ...,5(X1, P1) − X2

ϕext
6, ...,10(X1, P1) − P2
ϕext
1, ...,4(X2, P2) − ξ ∗3
ϕext
10 (X2, P2)

ª®®®®®®®¬
. (3.6)

We want to find the vector Z such that Smulti(Z ) = 0 and, as in previous sections, we
use a Newton-like algorithm. The main difficulty is as usual to initialize the algorithm. This
time, it is done by the previous local transfers, since we choose 2{

p0 = p
∗
0, ξ1 = ξ

∗
1, p1 = 0, ξ2 = ξ

∗
2, p2 = p

∗
2,

p0m = p
0∗
m , m1 =m

∗
2, p1m = 0, m2 =m

∗
2, p2m = p

2∗
m .

The choicesm1 =m
∗
2, p1 = 0 and p1m = 0 are made because we initialize the trajectory with

the heteroclinic part that we have computed, that is to say with a null control and without
consumption of mass.

The Newton-like algorithm gives us a complete trajectory which is not constrained to
follow the heteroclinic orbit. In Figure 3.9 and Figure 3.8, we can see the trajectory and the
associated control.

We keep the maximum thrust equal to 60N to allow the Newton-like algorithm to con-
verge. But, we want to be able to give the right specification for the engine of the spacecraft.
Let us see how we make this possible.

3.2.5 Thrust Continuation

Using, the continuation method that we introduced in Section 2.7.2, we want to constrain
the thrust to a real value for a low-thrust engine, let us say 0.3 N. To do that, we construct
a family of problems as before. Let us denote by ϵ0 the initial maximal thrust in normalized
units corresponding to Tmax = 60N. Similarly, let us denote by ϵ1 the maximal thrust that
we want to get corresponding toTmax = 0.3N. Finally, we define the maximal continuation
thrust:

ϵλ = (1 − λ)ϵ0 + λϵ1.

2. Note that the notation p1 and p2 is not for the first and second components of the costate but for two
different costate belonging to R4.
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We can now define the family of problems:

Pλ
thrust



min

∫ ttot

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵλ
m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵλ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0 ∈ Lya1, m(0) =m∗0,
x(ttot) = ξ ∗3 ∈ Lya2.

(3.7)

We solve each step of the continuation with the previously defined multiple shooting
method (3.6). Indeed, the multiple shooting method is totally compatible with the contin-
uation method. This way, we manage to constrain the thrust to the given engine value.
Since the control is smaller than 0.3 N, this continuation is easy, and the command does not
change during it. In Section 3.2.7 we summarize the numerical results. Let us remark that
in our numerical experiment, the continuation takes 22 iterations.

3.2.6 Optimization of the Terminal Points

The last remaining step is to free the initial and final points on the two Lyapunov orbits.
The only constraints are that x(0) has to belong to Lya1 and x(ttot) to Lya2. To simplify the
problem, we have fixed by construction two points ξ ∗0 on Lya1 and ξ ∗3 on Lya2. Nowwewant
to find the optimal points where to start and end the mission on these two periodic orbits.
So we want to solve the more general problem (3.1). The Pontryagin Maximum Principle
gives us two transversality conditions that we have to satisfy:

p1, ...,4(0) ⊥ Tx (0)Lya1 and p1, ...,4(ttot) ⊥ Tx (ttot)Lya2, (3.8)

where the notationTxM stands for the usual tangent space toM at point x (these conditions
can be written as soon as the tangent space is well defined).

To perform this optimization we consider the two previously chosen points ξ ∗0 ∈ Lya1
and ξ ∗3 ∈ Lya2. First we perturb the point around Lya2 following the decrease of the
transversality condition until it changes sign so as to find a good zero for the transver-
sality condition. Since we checked that the evolution of this transversality condition along
the periodic orbit is not monotone, we are just able to reach a local minimum. By doing
this we manage to reach a transversality condition at ttot around 1 × 10−8. Secondly, we
realize the same perturbation along Lya1 and we manage to reach a value around 1 × 10−8.
We have checked that the inverse process beginning with the point on Lya1 gives the same
result.

Although this seems to cause very little change on the transfer (see numerical results in
the next section), the structure of the control is completely changed. We will describe this
result in depth in the next section.

Remark 3.3:

To perform this optimization, we could use a gradient method on the one-dimensional
periodic orbits initializing it with the solution of problem (3.7). Although, because the
method we used is sufficiently efficient, this does not seem to be necessary.
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3.2.7 Numerical Results

Recall that we use the CRTBP parameters given in table 1.1.

We observe in Figure 3.8 that the last optimization step changes the shape of the
control. Indeed, by construction, we make the spacecraft go onto the heteroclinic

orbit before we free that constraint. Hence, it can be expected that the mission has turn-
pike properties (see [86]). That is to say that the optimal solution settled in large time con-
sists approximately of three pieces, the first and the last of which are transient short-time
arcs, and the middle piece is a long-time arc staying exponentially close to the optimal
steady-state solution.

In Figure 3.8, we see that before the transversality conditions are satisfied following
the last optimization step, the command structure does not have the shape of a turnpike
command: the control is spread along the trajectory. After the last optimization step, the
control is clearly a turnpike control and the trajectory consists approximately in three pieces
as expected.
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Figure 3.8 – Command to realize the optimal transfer from the Lyapunov orbit around L1
to the Lyapunov orbit around L2. We plot u(·) 6 1 before the last optimization step on
the first row (we chose two points on Lya1 and Lya2) and after the last optimization step
consisting in getting the general transversality conditions (second row). We can observe the
good turnpike property of the second control.

We show in Figure 3.9 the two corresponding trajectories. We observe that, to satisfy
to transversality conditions corresponding to x(0) ∈ Lya1 and x(ttot) ∈ Lya2, the two fixed
points were not moved very much.

Cost. In this problem we are minimizing the cost
∫ ttot
0
‖u‖2 dt . We consider a mass evolv-

ing dynamical system, and a maximum thrust so to try to compare fairly the cost with other



3.3. Variant of the mission 115

0.8 1 1.2

−0.1

0

0.1

ξ ∗0 ξ ∗3

MoonL1 L2

x

y

0.8 0.9 1 1.1 1.2

−0.1

0

0.1

ξ ∗0 ξ ∗3

MoonL1 L2

x

y

Figure 3.9 – Optimal trajectory. Left: the optimal trajectory with ξ ∗0 and ξ ∗3 fixed on Lya1
and Lya2. Right: the optimal trajectory with ξ ∗0 and ξ ∗3 free on Lya1 and Lya2. The control
is represented by arrows.

results, we define three different costs:

C1
tot =

∫ ttot

0

‖u(t)‖2 dt , C2
tot =

∫ ttot

0

ϵ2

m2(t) ‖u(t)‖
2 dt , and C3

tot =

∫ ttot

0

T 2
max

m2(t) ‖u(t)‖
2 dt .

(3.9)
Results are summarized in table 3.2. We observe that, although the two points ξ ∗0 and ξ ∗3

are not perturbed very much to satisfy the general transversality conditions, for the costs
and the mass consumption, it causes real improvement.

Initial Mass Transfer time Tmax

1500 kg 10.961 39 or 47.67 days 0.3 N

C1tot C2tot C3tot Mass of fuel

Problem (3.7) 1.065 018 × 10−6 5.747 987 × 10−9 1.852 784 × 10−13 0.018 687 kg

Problem (3.1) 2.230 596 × 10−9 1.203 855 × 10−11 3.880 463 × 10−16 3.670 958 × 10−4 kg

System Execution time

Problem (3.7) Core i7 99% cpu 26,912s total

Problem (3.1) Core i7 99% cpu 1min18,64s total

Problem (3.7) Raspberry Pi A 20% cpu 15min3,545s total

Problem (3.1) Raspberry Pi A 23% cpu 56min45,921s total

Table 3.2 – Numerical results for the final trajectory of the first mission obtained after the
multiple shooting with fixed departure and final points (problem (3.7)) and for the optimized
departure and final points on Lya1 and Lya2 (problem (3.1)).

3.3 Variant of the mission

In this section, we show two other applications of our method to design two different mis-
sions. The first one is the Lyapunov to Lyapunov mission but with an energy E = −1.5890
that allows for the existence of a heteroclinic orbit with two revolutions around the moon.
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The second mission is a Halo to Halo mission with two different energies and with no
heteroclinic orbit. In this case, we use two trajectories belonging to two invariant manifolds.

3.3.1 With a Heteroclinic Orbit with Two Revolutions

In this section we present another mission going from a Lyapunov orbit around L1 to a Lya-
punov orbit around L2. We follow exactly the same method than the one we presented ex-
cept that we compute the second crossing of both invariant manifolds through the Poincaré
cut U2. Our final trajectory will perform two revolutions around the Moon. Because the
Lya2 target is invariant with respect to the zero control, the larger the duration of the het-
eroclinic orbit, the smaller (and better) the fuel consumption. Having considered that, we
expect a better cost for the transfer. Indeed, the heteroclinic orbit is longer (in time and
distance) than the previous one.

Because we follow exactly the same steps as for the mission with only one revolution
around the Moon, we do not explain in details each of the steps.

The Heteroclinic orbit

To compute the heteroclinic orbit with two revolutions around theMoon, we have to choose
a certain energy allowing for the second intersection to exist. We have chosen the energy
(we follow a mission in [32, 33] to motivate this choice) ELya1,2 = −1.5890, and computed
the heteroclinic orbit plotted in Figure 3.10. There are indeed two revolutions around the
Moon.
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Figure 3.10 – Heteroclinic orbit between two Lyapunov orbits in the {Earth-Moon} system.
We get a travel time of 11.699681461946 (normalized time) or 50.883 days.

Once we have computed this trajectory, we have the a priori information of the natural
dynamics, and so, we can use it to initialize the resolution of the complete mission.

Two Local Transfers

As before, we compute two local transfers: one from the periodic orbit around L1 to the
heteroclinic orbit, and another from the end of the heteroclinic orbit to the periodic orbit
around L2. We choose the maximal thrust equal to 60N as before to help the success of the
shooting. We do not report the partial results here as they are comparable to the ones of the
previous mission. Thanks to this step, we obtain an admissible trajectory in three parts. The
first one is controlled to reach the heteroclinic orbit (the turnpike), the second part is the
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uncontrolled heteroclinic orbit, and the last part is a controlled one from the heteroclinic to
the Lyapunov orbit around L2.

Multiple Shooting Method

As before, to free the twomatching connections on the heteroclinic orbit and to decrease the
maximum thrust we use a multiple shootingmethod associated with a continuationmethod.
Since the transfer time is larger than for the previous mission, we have to add some grid
points along the heteroclinic orbit (which are initialized with a zero adjoint vector). This is
due to the very unstable nature of the Hamiltonian system. Here we chose 5 grid points.
Thanks to the multiple shooting method and a thrust continuation, we manage to reach the
required maximal thrust: Tmax = 0.3N and we get an admissible trajectory with two fixed
points on Lya1 and Lya2. The last step consists in finding the optimal departure and arrival
points on the two periodic orbits.

Remark 3.4:

Note that the addition of grid nodes along the “invariant manifold part” is due to the
sensibility of these invariant tubes (and of the Hamiltonian system). And for that very
reason, other invariant manifolds could be a better choice. For example, the ones with
an “eight-shape” studied in [6] are more stable and so, less sensitive.
Because we want to compare our method with some academic ones, we consider here
the invariant manifolds from Lyapunov orbits.

Optimization of the Terminal Points

Once again, because we have simplified the problem by fixing the departure and arrival
points on Lya1 and Lya2, we want to free these points on the periodic orbits to satisfy the
general transversality conditions (3.8). As before, we perturb first ξ ∗3 ∈ Lya2 following the
decrease of the transversality condition and we do the same with ξ ∗0 . We manage to satisfy
the transversality conditions up to 1 × 10−9.

Results

We plot in Figure 3.11 the command before and after the last optimization step. We observe
the same phenomenon as for the previous mission. Indeed, before we satisfy the transver-
sality conditions, the command does not have the turnpike structure, that is to say, the three
parts, first a short thrust to reach the highway (or turnpike), then a null controlled part, and
finally a controlled part to reach the periodic orbit.

Whereas the perturbations of the two points ξ ∗0 and ξ ∗3 to satisfy the transversality con-
ditions are very small (see Figure 3.12), the structure of the control is very different and
the costs are much smaller after getting the transversality conditions. We summarize the
numerical results in Table 3.3.

3.3.2 Halo to Halo Mission
In this section, we will adapt the previous method to another mission: a Halo to Halo mis-
sion. Recall that Halo orbits are periodic orbits around equilibrium points like Lyapunov
orbits but in the 3D dynamics.

For the Halo to Halo mission, because we are in the 3D case, for the energies of the
periodic orbits that we have chosen, the intersection between unstable and stable manifolds
does not exist. However, our method is still valid and can be applied.
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Figure 3.11 – Command to realize the optimal transfer from the Lyapunov orbit to the
heteroclinic orbit. We plot u(·) 6 1 before the last optimization step on the first row (we
chose two points on Lya1 and Lya2) and after the last optimization step consisting in get-
ting the general transversality conditions. We can observe the good turnpike property of
the second control.

Whereas previously we used a natural trajectory that asymptotically perform the
mission (in infinite time), here, the natural dynamics is not as helpful as an hete-

roclinic orbit.
However, the general approach is clearer in this example. Indeed, we do not require the
intersection between manifolds to exist, and we only use part of them to help to initialize
the resolution of the complete mission. This is a first step toward the general approach
with ITN (see Remark 2.1 page 63) and patching together several invariant manifolds
parts.

We will first design an admissible trajectory with 5 parts:

1. first, we propagate the unstable and stable manifolds from L1 and L2 as described in
Section 3.2.2. We compute, in the plane U2, the two points (one on each manifolds)
that minimize the distance in position and velocity. This gives us two trajectories.

2. Then, we compute the optimal transfer from a fixed point on the Halo orbit around
L1 to a fixed point on the trajectory on the associated unstable manifold.

3. We compute a transfer from a fixed point on the trajectory of the unstable manifold
from the Halo orbit around L1 to a fixed point on the trajectory on the stable manifold
of the Halo orbit around L2.

4. We then compute the optimal control to reach a fixed point on the Halo orbit around
L2 from a fixed point on the trajectory of the associated stable manifold.

With this admissible trajectory in 5 parts (with two uncontrolled parts in each of the two
invariant manifolds), we initialize a multiple shooting method to get an optimal trajectory
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Figure 3.12 – Optimal trajectory. Left: the optimal trajectory with ξ ∗0 and ξ ∗3 fixed on Lya1
and Lya2. Right: the optimal trajectory with ξ ∗0 and ξ ∗3 free on Lya1 and Lya2. The control
is represented by arrows.

Initial Mass Transfer time Tmax

1500 kg 13.699 681 461 or 59.582 days 0.3 N

C1tot C2tot C3tot Mass of fuel

Problem (3.7) 2.463 890 × 10−8 1.329 766 × 10−10 4.286 320 × 10−15 0.003 013 kg

Problem (3.1) 1.969 593 × 10−9 1.062 991 × 10−11 3.426 407 × 10−16 3.359 975 × 10−4 kg

System Execution time

Problem (3.7) Core i7 99% cpu 44,949s total

Problem (3.1) Core i7 99% cpu 2min54,79s total

Problem (3.7) Raspberry Pi A 33% cpu 22min52,8s total

Problem (3.1) Raspberry Pi A 29% cpu 1h32min46s total

Table 3.3 – Numerical results for the final trajectory of the second mission obtained af-
ter the multiple shooting with fixed departure and final points (problem (3.7)) and for the
optimized departure and final points on Lya1 and Lya2 (problem (3.1)).

reaching a fixed point on the Halo orbit around L2 from a fixed point on the Halo orbit
around L1. Finally, following the method described for the Lyapunov to Lyapunov mission,
we optimize the position of the end points.

Free Parts on Manifolds

As described in the introduction, we compute two trajectories on unstable and stable man-
ifolds respectively from the Halo orbit around L1 and from the Halo orbit around L2.

Halo Orbits

For the sake of generality, we compute two Halo orbits with different energies. For the Halo
orbit around L1 denoted by Halo1, we have chosen E(Halo1) = −1.5939. For the Halo orbit
around L2 denoted byHalo2, we have chosen E(Halo2) = −1.5805. These two energy values
correspond to a unique z-excursion of 16 000 km. The numerical computation of such orbits
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Figure 3.13 – Halo orbits around L1 and L2 for energies −1.5939 and −1.5805 respectively.
This corresponds to a unique excursion of 16 000 km.

is done using the method described in Section 1.4.3 page 1.4.3. See Figure 3.13 for a plot of
these two periodic orbits.

Propagation of Manifolds and Choice of Trajectories

Using the same parameter α as defined in (1.21) for the Lyapunov to Lyapunov mission, i.e.
1

384402 , we compute the intersection with the planeU2 (see sec 3.2.2). One can see the result
in Figure 3.14. We denote byM1 andM2 these two manifolds.

We compute the intersection of each manifold withU2 and find the closest pair of points
(one from the manifold of Halo1 and one from the manifold of Halo2). This is done with a
fine discretization of 1000 points per Halo orbits. That way, we get two points for x = 1− µ,
denoted respectively by ξU2

M1
and ξU2

M2
. The distance in R6 is


ξU2

M1
− ξU2

M2




2 = 0.098 644 604 436.

The two corresponding trajectories are plotted in Figure 3.14. Let tM1
and tM2

denote
the two times of propagation for the two free trajectories, themselves denoted by A1 and
A2 (see Figure 3.14).
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Figure 3.14 – Left: the propagation of manifolds from Halo around L1 and Halo around L2.
Right: the two trajectories of these manifold minimizing the distance on the plane U2.
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Three Short Transfers

Following our method, we compute three short transfers in order to initialize a multiple
indirect shooting method and get the optimal trajectory.

From Halo1 to A1. Once again, we follow the method described in Section 3.2.3, we
construct two fixed points, one on Halo1, the other on A1. To do that, we consider the
two closest points on Halo1 and A1. We choose two time parameters: tHalo1 to propagate
backward the point on Halo1 and tL1

A1
to propagate forward on A1. Here, we pick:

tHalo1 = tL1

A1
= 1.0.

We are now ready to build the first optimal control problem as defined in (3.2). Using
continuation on the final state solves this problem in an easy and fast (4.1 s) manner. The
norm of the control is plotted in Figure 3.15. Let us denote by

t0 = tHalo1 + t
L1

A1
,

the transfer time and byX ∗0 = (ξ ∗0,m∗0) andX1 = (ξ1,m1) the terminal points of this transfer.
The resulting final mass ism1 = 1499.996 743 927 8 kg.

From A1 to A2. In this part, we apply our method to compute the transfer from tra-
jectory A1 to trajectory A2. There is a rather large gap to resorb. We already have the
two points that we will perturb backward and forward: ξU2

M1
and ξU2

M2
. We choose the two

corresponding times
tU2

A1
= tU2

A2
= 0.5,

and define the transfer time as 3

t2 = tU2

A1
+ tU2

A2
.

After the first transfer from Halo1 toA1, we follow a free trajectory on the manifold, so we
choose the initial mass of the transfer fromA1 toA2 as the final mass of the previous part,
that is to saym2 =m1 = 1499.996 743 927 8 kg.

Once again, the continuation on the final state allows for a fast convergence to obtain
the solution of this problem. Indeed we obtained the solution in 4.4 s. In this problem, we
denote by X2 = (ξ2,m2) the initial point onA1 and by X3 = (ξ3,m3) the final point onA2.
The final mass we get ism3 = 1493.318 462 201 5 kg and the norm of the control is plotted
in Figure 3.15.

FromA2 to Halo2. We consider here the last short transfer fromA2 to Halo2. As for the
transfer from Halo1 toA1, we pick the two closest points onA2 and Halo2 and we perturb
them with two time parameters denoted by tL2

A2
and tHalo2 .We then

define the transfer 4 time

t4 = tL2

A2
+ tHalo2 = (1.0 + 1.0)

to go fromX4 = (ξ4,m4) to the final points ξ ∗5 . As before,m4 =m3 = 1493.318 462 201 5 kg
because after the transfer aroundU2, we follow a free trajectory on the stable manifold.

3. We keep the index 1 for the remaining time on the free part, i.e., the remaining part of the unstable manifold
trajectory.

4. Once again we keep the index 3 for the free part between transfer between manifolds and transfer to Halo2.
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Once again, the resolution is easy and fast (4.14 s) thanks to the continuation method.
The final mass we obtain ism5 = 1493.315 673 696 6 kg. The norm of the control is plotted
in Figure 3.15.
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Figure 3.15 –Norm of the control for the three controlled parts of the admissible trajectory.

Admissible Trajectory in Five Parts. To summarize, we have constructed an admissible
trajectory going from Halo1 to Halo2 with three controlled parts and two free parts. This
trajectory is plotted in the Figure 3.16 and the control for the three controlled parts is in
Figure 3.15. The local transfers are computed with a maximal thrust equal to 180N, indeed
this helps the convergence of local transfers (but we do not reach the targeted maximal
thrust of 0.3 N), and the multiple shooting for the reason described in Section 3.2.3.
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Figure 3.16 – Admissible trajectory in five parts. Dashed part are manifold trajectories, i.e.
free parts.

Multiple Shooting for the Total Transfer

We consider here the following problem

PHalo
tot



Ctot = min

∫ ttot

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

3∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0 ∈ Halo1, m(0) =m∗0,
x(ttot) = ξ ∗5 ∈ Halo2.
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The transfer time ttot is defined as

ttot = t0 + t1 + t2 + t3 + t4,

where t0, t2 and t4 are the times previously introduced for the three short transfers. Time
t1 is the duration of trajectory AM1

in the unstable manifold from Halo1 from which we
subtract the two times we used to perturb points for the local transfers around L1 and U2.
This gives us

t1 = tM1
− tL1

A1
− tU2

A1
.

And we defined t3 in a similar way as

t3 = tM2
− tL2

A2
− tU2

A2
.

As in Section 3.2.4, we introduced the shooting function with four nodes (for the Lyapunov
to Lyapunov mission, we had two nodes). Because we are considering a spatial mission, we
get the following shooting function

SHalo
multi(Z ) =

©­­­­­­­­­­­­­­­­«

ϕext
1, ...,7(t0, ξ ∗0,m∗0, P0) − X1

ϕext
8, ...,14(t0, ξ ∗0,m∗0, P0) − P1
ϕext
1, ...,7(t1,X1, P1) − X2

ϕext
8, ...,14(t1,X1, P1) − P2
ϕext
1, ...,7(t2,X2, P2) − X3

ϕext
8, ...,14(t2,X2, P2) − P3
ϕext
1, ...,7(t3,X3, P3) − X4

ϕext
8, ...,14(t3,X3, P3) − P4
ϕext
1, ...,6(t4,X4, P4) − ξ ∗5
ϕext
14 (t4,X4, P4)

ª®®®®®®®®®®®®®®®®¬

∈ R4×14+7,

where the vector Z is defined as

Z = (p0,p0m︸︷︷︸
P0

, ξ1,m1︸︷︷︸
X1

,p1,p
1
m︸︷︷︸

P1

, ξ2,m2︸︷︷︸
X2

,p2,p
2
m︸︷︷︸

P2

, ξ3,m3︸︷︷︸
X3

,p3,p
3
m︸︷︷︸

P3

, ξ4,m4︸︷︷︸
X4

,p4,p
4
m︸︷︷︸

P4

) ∈ R63.

We initialize the shooting method with the values that we get from the local transfers and
with a zero adjoint vector for the free parts. The shooting method converges easily.

As for the two previous missions, we decrease the maximal authorized thrust by contin-
uation. We then optimize the terminal points ξ ∗0 and ξ ∗5 to satisfy the transversality condi-
tions. We manage to get the result in 4.16min. The final trajectory is plotted in Figure 3.17
and the corresponding control in Figure 3.18. The resulting cost is summarized in table 3.4
as well as the numerical values of the parameters. Because we are not comparing this mis-
sion with other published results, we just write the physical cost C3

tot in the international
system of units (see (3.9)).

Remark 3.5:

Note that we do not get the turnpike properties, indeed, in this case, there is no “steady-
state” natural trajectory asymptotically connecting the two periodic orbits.
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Initial Mass Transfer time Tmax

1500 kg 9.543 645 446 282 8 or 41.50 days 0.3 N

C3tot Mass of fuel

Halo to Halo Problem 0.004 619 126 477 355 13 7.415 872 590 999 92 kg

Table 3.4 – Numerical results for the final trajectory of the Halo to Halo Mission.
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Figure 3.17 – Optimal trajectory for the Halo to Halo transfer. Left: a 3 dimensional view.
Right: a view in the (x ,y)-plane. The control is represented by arrows.
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Figure 3.18 – Optimal control for the Halo to Halo Mission T (·) ∈ R3 in Newton.
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In this chapter, we design admissible trajectories departing from the geostationary Earth
orbit (GEO). We consider different target orbits such as Lyapunov and Halo orbits around
L1 and a Lunar orbit (LO). The principle is to reach a free trajectory of an invariant manifold
with a final state continuation, and near the targeted orbit, to perform a final transfer. The
obtained trajectory is designedwith three parts, including an uncontrolled one that follows a
gravitational current. This trajectory is computed in a fewminutes, and yields a satisfactory
value of the cost.

Of course because we impose an uncontrolled part, these trajectories are sub-optimal
(but optimal in each part). Because we are considering a long part along invariant manifolds,
the multiple shooting method is not sufficiently robust (recall that invariant manifolds can
be sensitive). We introduce in Section 4.4, a hybrid optimization method where we optimize
the state variables (in position and velocity) of the matching points with a gradient descent
(direct method) coupled with initial and final state continuation (indirect method) on each
of the three parts. Using the PMP principle, one can show that the gradient of the global cost
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function at the matching points is given by the gap between the costates (see Section 4.4),
so it is available as a by-product of the indirect methods on each part.

The hybrid optimization procedure allows to decrease the cost function but does not
nullify the gradient. The first matching point, initialized on the free trajectory, is moved to-
wards the GEO during the iterations of the gradient descent. Indeed, the closer the targeted
point is to the GEO, the cheaper the transfer to reach it is. We add a “box constraint” (see
Section 4.4.2) around each matching point (initialized with the two end-points of the free
trajectory) to stop the gradient descent which does not manage to nullify the gradient in
reasonable time. As could be expected, the gradient descent saturates this constraint with
the closest point to the GEO. Although the L2-norm of the control decreases during the op-
timization, the solution is in practice made less interesting by the fact that the final mass
also decreases. We still present the method because of the interesting mathematical aspects:
the costate gives us the gradient of the value function. For all these reasons and because the
hybrid optimization does not improve sufficiently the cost in reasonable time, we conclude
that the main advantage of the method is to get an admissible trajectory with a free middle
part following the invariant manifold.

We have deduced from our experiments that, a meaningful factor is the energy of the
invariant manifolds. Indeed, the energy of the GEO embedded in the CRTBP 1 is

EGEO ' −4.864 220 3,

and we have seen in Section 1.3 page 37 that to allow the spacecraft to go to the realm of
the Moon, we have to reach the energy of the point L1 which is

EL1
' −1.600 200 4.

Thegap to fill is significantly larger than for themissions in chapter 3 inwhichwe connected
two Halo orbits of respective energies −1.5939 and −1.5805.

We start with a GEO to LO mission, we explain in detail the method that we apply for
this particular example. We finally give other examples of missions that we can design with
invariant manifolds such as GEO to a Lyapunov orbit or a Halo orbit.

4.1 Definition of the Mission

We consider the geostationary Earth orbit embedded in the circular restricted three body
problem.

Definition 17: The geostationary orbit, geostationary Earth orbit or geosynchronous equato-
rial orbit (GEO) is a circular orbit 35 786 kilometers above Earth’s equator (radius of 42 164 km)
and following the direction of Earth’s rotation. ♦

In Table 4.1, we summarize some values of this orbit in the normalized system of units of
the CRTBP. Recall that the different CRTBP parameters are the ones given in Table 1.1.

Radius of orbit Velocity Period

IS units 42 164 km 3.0746 km s−1 23.934 461 2 days
CRTBP units 0.109 687 254 48 2.891 357 831 71 0.036 494 731 216 772 6

Table 4.1 – Numerical values for the geostationary Earth orbit embedded in the CRTBP.

1. We see in this chapter that the GEO is only slightly modified by the Moon.
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This periodic two-body orbit is stable even though it is not periodic when embedded
in the CRTBP. In Figure 4.1, we plot it for an integration time of 3.0 which corresponds to
nearly 100 rotations.
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Figure 4.1 – Plot of the propagation in the CRTBP of the initial conditions of the GEO in
the 2 body problem. The duration of the propagation is 3.0 and corresponds to nearly 100
revolutions. We see that the embedded trajectory is stable with respect to the perturbation
of the Moon.

We then consider a periodic orbit around the Moon as defined in the SMART1 mission
[72], and presented in [31]. The Lunar Orbit (LO) is described in the phase space by a radius

around the Moon rLO = 13.084 × 103 m and a velocity v =
√

µE
r =

√
1−µ
r . We summarize

these values in Table 4.2 and plot the trajectory in Figure 4.1.

Radius of orbit Velocity Period

IS units 13 084 km 0.612 890 340 94 km s−1 9.246 086 041 days
CRTBP units 0.034 0.597 941 796 04 0.357 272 734 329 6

Table 4.2 – Numerical values for the LO embedded in the CRTBP.

As we can see in Figure 4.2, this periodic orbit in the 2 body problem centered on the
Moon, is not very stable when it is embedded in the CRTBP, but it stays nearly periodic.

The Mission. The mission is to start on the GEO and to end on the LO minimizing the
L2-norm of the cost. We first design an admissible trajectory in three part as we have done
for the Lyapunov to Lyapunov mission (or Halo to Halo) in chapter 3.

4.2 An Invariant Manifold as a Gravitational Current

We start by computing a Lyapunov orbit at a given energy around the Lagrange point L1.
We propagate the stable manifold in the Earth’s realm and the unstable manifold in the
Moon’s realm. Then, using the method described in Section 2.1.1, we are able to choose a
free trajectory performing the connection between the Earth’s realm and the Moon’s realm.
Indeed, because the invariant manifolds are separatrices of the dynamics, a trajectory inside
of the tube stays in it. Such a trajectory is called a transit orbit.

We then compute the section with the Poincaré cut U2 in the Moon’s realm and we
choose, in this (y, Ûy)-plane, a point inside the set delimited by the invariant manifold. Then,
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Figure 4.2 – Plot of the propagation in the CRTBP of an initial condition of a LO in the
2 body problem. The duration of the propagation is 3.0 and corresponds to nearly 10 rev-
olutions. We see that the embedded trajectory is not periodic anymore but stays nearly
periodic. The rotation of the Moon is taken into account.

we compute as usual the value of Ûx using the energy, and finally, we get a point of a trajectory
that goes from one realm to the other (see Figure 4.3).
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(a) Section of the unstable manifold in the
Moon’s realm with the Poincaré cut U2. We
choose a state inside the manifold ξM1−µ .
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(b) Stable and unstable manifolds respectively
in the Earth’s realm and the Moon’s realm. In
black, the chosen trajectory corresponding to
the state ξM1−µ .

Figure 4.3 – Choice of a condition in the sectionU2, and the trajectory inside the invariant
manifolds.

Thanks to the computation, we get a free trajectory going from the realm around the
Earth to the realm around the Moon. This trajectory has the energy of the periodic orbit we
have chosen. Here, we picked

ELya1 = −1.6001.

We have propagated backward the initial condition in the U2-section until the trajectory
reaches the plane defined by x = −µ. We denote byAM this trajectory, and respectively by
ξM−µ and ξM1−µ its first and last points.

We now want to use this trajectory to design a complete mission from the GEO to the
LO.
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4.3 Three-Part Trajectory

In this section, we design an admissible trajectory with three parts: a transfer from a point
on the GEO to the first point ξM−µ on the free trajectory that we have computed, a free part
following AM , and the final transfer from the last point ξM1−µ to a point on the LO orbit.

Recall that we use the parameters of the CRTBP given in Table 1.1, and for the modeling
of the engine, as before, we chose Isp = 2000 s and д0 = 9.81m/s2.

4.3.1 From GEO to the free trajectory
To perform the transfer from a fixed point on the GEO to the point ξM−µ , we use the final
state continuation. To do that, we have to choose a transfer time t0. There is no general
method to do that, so we consider the period of the GEO orbit and we compute a transfer
time with a given number of revolution and a factor greater than one. For instance for this
transfer, we picked

t0 = 4.0,

in the normalized system of units. Note that a resolution for the minimization of the mini-
mum time transfer should tell us which to pick.

Remark 4.1:

For all our numerical tests, the problem is not very sensitive to variation in time, and
it is easy to find a suitable transfer time.
Moreover, once we have a transfer time, with a continuation on the time parameter,
one can choose another time, especially to allow for a lower thrust.
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(a) Optimal trajectory to reach the free trajectory
from a point on the GEO.
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(b) The control of the optimal trajectory to reach
the free trajectory from a point on the GEO.

Figure 4.4 – Transfer from a fixed point on the GEO to a fixed point on the free trajectory
inside the tube connecting the Earth’s realm to theMoon’s realm. Left: the trajectory. Right:
the norm of the control.

We plot the obtained trajectory (see Figure 4.4a) associated to an optimal control with a
maximal thrust of 10N (see Figure 4.4b).

We summarize the different parameters for the transfer in Table 4.3: we remark in par-
ticular that the computation time on a standard desktop computer is small.
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Transfer time Computation time

4.0 or 17.397 days cpu 173.86s

x y z Ûx Ûy Ûz m

Initial 9.736331E-002 0.0 0.0 0.0 2.891357 0.0 1500

Final -1.215616E-02 -3.285562E-01 0.0 1.702750 -2.384994E-01 0.0

Table 4.3 – Parameters for the transfer between the GEO and the free trajectory.

4.3.2 From the free trajectory to the LO

Now, we consider the transfer from the free trajectory and more precisely from its end point
ξM1−µ to a point on the LO. As in the previous section, we choose a transfer time to perform
the transfer to the LO. It is easier here because the invariant manifold in the Moon’s realm
is close to the LO orbit. Hence, the transfer is fast to compute. We have chosen a transfer
time of

t2 = 2.3.

Weplot the obtained trajectory and the associated optimal control in, figures 4.5a and 4.5b.
Moreover, we summarize the different parameters for the transfer in Table 4.4.
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(a)Optimal trajectory to reach the LO from a point
on the free trajectory.
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(b) The control of the optimal trajectory to reach
the LO orbit from a point on the free trajectory.

Figure 4.5 – Transfer between a fixed point on the free trajectory to a fixed point on LO.
Left: the trajectory. Right: the norm of the control.

We summarize the different parameters for the transfer in Table 4.4, in particular the
computation time on a standard desktop computer.

4.3.3 The Admissible Trajectory

Recall that we have defined three time parameters: t0, the transfer time from the GEO to the
free trajectory, t1, the transfer time following the free trajectory and t2, the transfer time
from the free trajectory to the LO. Then, we define the total transfer time as

tf = t0 + t1 + t2.



4.3. Three-Part Trajectory 131

Transfer time Computation time

2.3 or 10.003 days cpu 15.27s

x y z Ûx Ûy Ûz m

Initial 0.987847 -0.023997 0.0 0.763387 0.440095 0.0 1313.274585

Final 1.021843 0.0 0.0 0.0 0.597941 0.0

Table 4.4 – Parameters for the transfer between the free trajectory and the LO.

We finally obtain a three-part admissible trajectory with, as the middle part, a free trajectory
inside the invariant manifold that connects both realms. In terms of fuel consumption, we
obtain a good result, the final mass is indeedm(tf ) = 1301.228 912 kg. Of course, the first
part is the most costly part. Indeed, recalling thatm(0) = 1500 kg,

m(t0) = 1313.274 585 kg,

andm(t0 + t1) =m(t0) because we follow a free transit trajectory.
In Figure 4.6a, we plot the admissible trajectory as well as the corresponding control in

Figure 4.6b. The admissible control is discontinuous, and of larger magnitude on the first
part of the trajectory. Indeed, we start on the GEO trajectory of energy nearly −4.864 220 3,
and we reach the energy of −1.6001 of the manifold.

We first tried to use the multiple shooting method following the method that we have
previously introduced for the Lyapunov to Lyapunov mission (Section 3.2.4 page 110). Un-
fortunately, this multiple shooting method does not converge. Indeed, the discontinuity in
the costate at the matching points ξM−µ and ξM1−µ is too large to be resorbed.

To overcome this difficulty, we tried to develop a hybrid method.
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(a)Optimal trajectory to reach the LO from a point
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(b) The control in three parts. The first part is the
main controlled part.

Figure 4.6 – Admissible trajectory in three parts from the GEO to the LO.
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4.4 Hybrid Optimization Method

Thanks to the construction of the admissible trajectory, we develop an alternative to the
multiple shooting method. Indeed, we denote as previously, the state including the mass by
X = (ξ ,m). Then, we denote by

X1 = (ξ1,m1) and X2 = (ξ2,m2),

thematching points inR7 of an admissible trajectory in three parts, initializedwith ξ1 = ξM−µ
and ξ2 = ξM1−µ . These two matching points can be viewed as parameters of an optimization
problem with the three fixed transfer time t0, t1 and t2

min
X1∈R7,X2∈R7

Vtot(X1,X2), (4.1)

where
Vtot(X1,X2) = V0(t0,X ∗0,X1) +V1(t1,X1,X2) +V2(t2,X2, ξ

∗
f ). (4.2)

Recall that X ∗0 = (ξ ∗0,m∗0) is the fixed initial condition, and ξ ∗f is the fixed final condition
with a free final mass. The functionsVi , i ∈ ~0, 2�, are value functions respectively for the
three following control problems

P0



C0 = min

∫ t0

0

‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(0) = ξ ∗0, m(0) =m∗0
x(t0) = ξ1, m(t0) =m1.

P1



C1 = min

∫ t1

t0
‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(t0) = ξ1, m(0) =m1

x(t1) = ξ2, m(t1) =m2.

P2



C2 = min

∫ t2

t1
‖u‖2 dt ,

Ûx = F0(x) +
ϵ

m

2∑
i=1

uiFi (x),

Ûm = −β∗ϵ ‖u‖ ,
‖u‖ 6 1,
x(t1) = ξ2, m(t1) =m2

x(t2) = ξ ∗f .

The value function is the cost obtained for an optimal solution (which corresponds to an op-
timal control). It is also a solution of theHamilton-Jacobi-Bellman equations (HJB) for which
there exist concepts such as viscosity solutions. We refer to [7] (and references therein) for
a textbook on optimal control and viscosity solutions of the HJB equations.

We solve problem (4.2) with a gradient descent, and so, we want to compute the gradient
of the cost functionVtot, i.e.:

∇X1,X2
Vtot. (4.3)

It holds that
∂Vtot

∂ξ1
=
∂V0

∂ξ1
+
∂V1

∂ξ1
,

∂Vtot

∂ξ2
=
∂V1

∂ξ2
+
∂V2

∂ξ2
,

∂Vtot

∂m1
=
∂V0

∂m1
+
∂V1

∂m1
,

and
∂Vtot

∂m2
=
∂V1

∂m2
+
∂V2

∂m2
.

It is well known (see [7, chap. 1, sec. 6]) that, when the value function is smooth, its
sensitivity with respect to the state perturbation is given by the costate. This relation gives
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us the following equations

∂Vtot

∂ξ1
=
∂V0

∂ξ1
+
∂V1

∂ξ1
= p0ξ (t0) − p

1
ξ (t0),

∂Vtot

∂ξ2
=
∂V1

∂ξ2
+
∂V2

∂ξ2
= p1ξ (t1) − p

2
ξ (t1),

∂Vtot

∂m1
=
∂V0

∂m1
+
∂V1

∂m1
= p0m(t0) − p1m(t0),

∂Vtot

∂m2
=
∂V1

∂m2
+
∂V2

∂m2
= p1m(t1) − p2m(t1),

(4.4)

where we denote by piξ (·) the costate part of the extremal solution of problem Pi relative
to the variable 2 ξ , and by pim(·) the costate part of the extremal solution of the problem Pi
relative to variablem.

Thanks to this result, we establish a two level optimization method: the first indirect
step, solves the three optimal control problems connecting the two matching points X1 and
X2, and the second step consists in moving these two parameters (inR7×R7) following the
gradient descent for the sum of the three value functions (4.2) we want to minimize.

If the necessary optimality condition for problem (4.1) is satisfied, i.e., a zero of the
gradient (4.3) has been found, then the gap between the costates at the matching

points has also been resorbed.
Hence, the necessary conditions correspond to an extremal solution of the global problem,
and we obtain the necessary conditions given by the PMP.

This method is initialized with the three-part admissible trajectory obtained in the pre-
vious section (Section 4.3.3), a first transfer to reach the free trajectory, the free part inside
the invariant manifold, and the final transfer to reach the LO.

Indirect Methods as a Black Box

As previously explained, we use indirect method to solve each of the “local” optimal control
problems on each of the three parts. Recall that the three transfer times are fixed. Hence,
when the gradient descent “moves” the parameters X1 and X2, the indirect methods are
called to “adjust” the initial costate on each part. Once again, this is done with a final state
continuation. Each continuation can itself be performed with a single or multiple shooting
method.

In the remainder of this chapter, we denote this black box by IndirectSolve. As in
the previous chapter, we label P = (pξ ,pm), and the black box IndirectSolve updates the
previous costates P0 = (p0ξ (0),p

0
m(0)), P1 = (p1ξ (0),p

1
m(0)) and P2 = (p2ξ (0),p

2
m(0)) to reach

respectively X1, X2 and ξ ∗f .

4.4.1 The Algorithm
We have implemented a simple gradient method to solve this problem. We describe it in
detail in Algorithm 4.1. For the sake of completeness and because of the difficulties we
encountered, we also implemented the resolution of the minimization problem with the
C++ IpOpt library (see [88] for the documentation of IpOpt).

2. We added the subscript ξ , because of the superscript and the possible confusion with the usual notation p0
for the PMP.
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We denote by ∇Vtot the gradient of the functionVtot we want to minimize. Recall that
this is given by the gap between the costates at the matching points (equation (4.4)).

Algorithm 4.1: Gradient Bi-Level Optimization

Require: Initial X 0
1 and X 0

2 associated with P0
0 , P

0
1 and P0

2 .
1: Initialization of the gradient step: α (e.g. 1 × 10−2)
2: Initialization of the precision: ϵ (e.g. 1 × 10−8)
3: while



∇X1,X2
VT



 > ϵ do
4: (X i+1

1 ,X
i+1
2 ) ← (X i

1,X
i
2) − α∇X1,X2

Vtot(X i
1,X

i
2)

5: (P i+10 , P
i+1
1 , P

i+1
2 )←IndirectSolve (Adjust the corresponding costates)

6: end while

4.4.2 Numerical results

The algorithm works and allows to decrease the sum of the three value functions (all terms
in the sum are positive here). But, we observe that some problems appear. First, we do not
reach the necessary optimal condition in reasonable time. Second, we observe that, because
we initialize the second part with an invariant manifold trajectory which is a slow trajectory
(it passes close to the equilibrium point L1), the perturbation of the matching points requires
to pass further away from L1 as can be observed in Figure 4.7. Indeed, the time is fixed on
each of the three parts. A patch could be applied to allow the time to decrease for the middle
part.
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Figure 4.7 – Evolution of the three-part trajectory during the gradient descent. Note that
near the equilibrium point L1, the spacecraft makes a detour before coming back to the
matching point.

During the steps of the gradient method, we observe that the value we want to minimize
decreases (equation (4.1)). Unfortunately, the corresponding final mass increases during the
iterations. This evolution is plotted in Figure 4.8. Of course, it is possible to increase the
final mass during the minimization of the L2-norm of the control, but, in practice, this is not
interesting. Note that IpOpt does not give a better result and takes more time to decrease
the objective function.
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Figure 4.8 – Evolution of the two costs during the optimization. The L2-norm of the control
decreases as expected, but unfortunately the L1-norm of the control increases, so the fuel
consumption increases during the optimization.

Constraint box

We note in Figure 4.7 that during the gradient descent, ξ1, the matching point in R6, goes
closer to the starting orbit around the Earth (GEO). It seems intuitive that the closer the
targeted point is to the GEO, the cheaper the transfer is, and in turn the smaller the norm of
the final costate is. Recall that we initialize the transfer with a zero costate for the second
part of the admissible trajectory, so it is not surprising to observe this behavior.

Hence, to stop the gradient method (and the IpOpt algorithm), we have introduced a
“constraint box” around the initial states ξ1 and ξ2. We add the following constraint

ξ l1 6 ξ1 6 ξ
u
1 and ξ l2 6 ξ2 6 ξ

u
2 ,

where the inequalities are component per component. The larger the box is, the longer the
optimization takes because both algorithms saturate the constraint. We observe that even
though the gradient descent allows to get better sub-optimal trajectories, we do not manage
to get an optimal trajectory. Moreover, the gain on the cost (L2-norm) is not sufficient to
justify this quite long optimization. Finally, as we have already mentioned, the L1-norm
increases during this hybrid optimization, and so, there is no physical improvement.

4.5 Other Missions

We apply the method to other missions to check whether the numerical investigation gives
us the same kind of result. Energy is not the only meaningful parameter: we observe that
the insertion point onto the free trajectory is also a crucial parameter. Indeed, on a particular
example we show that waiting for the second intersection with the Poincaré cut U1 could
save more than 30 kg of propellant.

As expected, the method works in the 3D case without any problem for a GEO to Halo
mission. Finally, we discuss the maximal thrust problem, considering that a continuation
on the transfer time would allow to decrease the maximal thrust.
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4.5.1 GEO to Lyapunov Missions: Two Cases

We design admissible trajectories for missions of the type GEO to Halo orbit. We define
two missions, both with an energy of EL1

= −1.60. For the first one, we reach the invariant
manifold at the first intersection with the plane U1, and for the second mission we reach
the invariant manifold at the second intersection. Note that this is possible when invariant
manifolds are stable and keep their structure over a long propagation time. This property
depends mostly on the energy for each type of periodic orbit, and some periodic orbits gen-
erate more stable invariant manifolds than others, for instance, the “eight-shaped” periodic
orbit (see [6]).

We note first that the two first admissible trajectories with an uncontrolled part are
computed in less than 2min, this is the main advantage of our method. Moreover, the fi-
nal masses, summarized in Table 4.5, are m1(tf ) = 1291.882 048 768 7 kg and m2(tf ) =
1326.062 368 222 8 kg, and the costs

∫ tf
0
‖u‖2 dt follow the same relation of order (see Ta-

ble 4.5).

1st cut withU1 2nd cut withU1

final massm(tf ) 1291.882 048 kg 1326.062 368 2 kg
final cost 0.003 891 10+1.804 152 5 × 10−11 0.0026117+1.712 344 26 × 10−11

Table 4.5 – Numerical results for the two GEO to Lyapunov missions using the first and
second intersections with the Poincaré cutU1.

The times of the two controlled parts are

t0 = 3.0, and t2 = 1.0

The time of the uncontrolled part depends on the insertion point. In the case of the first
intersection

t11 = 4.462 618 863 7,

whereas for the second intersection it is

t21 = 8.807 734 161 9.

We plot both trajectories in Figures 4.9a and 4.9b.

Once again, we tried to optimize the matching points with the bi-level optimization
method that we have developed. Unfortunately, we obtain the same results, the L2-norm
decreases, whereas the L1-norm increases during the optimization. Because we have im-
plemented a simple gradient descent with constant step, the method is quite slow and we
lose the main advantage of our method: the short computational time. We do not report the
results of our numerical tests here because of the similarities with the previous set of tests.

We plot the norm of the control in Figure 4.10 for the part onwhich it is most active (GEO
to the free trajectory). Note that the structure of the control is very similar in both cases,
we observe oscillations corresponding to the revolutions the spacecraft performs around the
Earth.
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(a) The insertion point is the first point belonging
to the Poincaré mapU1.
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(b)The insertion point is the second point belong-
ing to the Poincaré mapU1.

Figure 4.9 – Two trajectories connecting the GEO to a Lyapunov orbit with different in-
serting points on the manifold. The energy is E = −1.60.

0 1 2 3
0

5

10

t (normalized)

T
m
ax
‖
u
(t
) ‖

(N
)

(a) Control to reach the first point belonging to
the Poincaré mapU1.
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(b) Control to reach the second point belonging to
the Poincaré mapU1.

Figure 4.10 – Norm of the control for both trajectories connecting the GEO to the free
trajectory of the stable manifold of the Lyapunov orbit. The energy is E = −1.60.

With these two examples, we note that the insertion point onto the invariant man-
ifold is crucial. Indeed, waiting for the second intersection with the Poincaré cut

U1, we manage to save around 30 kg of propellant.
In fact, we should optimize the insertion point using the transversality condition of the
PMP as for the Lyapunov to Lyapunov mission (see Section 3.2.6). Indeed, we want the
optimal insertion point onto a natural trajectory, and the transversality condition is

pξ (tf ) ⊥ Tx (ttot)A,

where A is the free trajectory belonging to the stable manifold of the Lyapunov orbit.
A different point of view would be to introduce a discrete parameter (number of revolu-
tions around the primary) and use hybrid optimization. This is more coherent with the
concept of Interplanetary Transport Network (see remark 2.1) and it is, in a certain sense,
more general if we see this method as an initialization with patched three body problems.
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4.5.2 3D case, from the GEO to a Halo orbit
We now apply the method to build an admissible trajectory to perform a transfer in the 3D
case from the GEO to a Halo orbit. This illustrates the efficiency of the method. Although
we are not able to get a trajectory which satisfies the necessary condition of optimality, we
manage to get an admissible trajectory (satisfying the necessary conditions on each part).
Once again the computational time is low, less than 4min, including the computation of
the invariant manifold and the longer computation of the transfer from the GEO to the free
trajectory of the stable manifold.

We consider a Halo orbit of energy EHalo = −1.59. The final and initial points on the
GEO are defined in Table 4.6.

Transfer time Computation time

17.508 920 222 or 76.149 days cpu 233.52s

x y z m

Initial 9.73633112e-02 0.0 0.0 1500

Final 8.5376544e-01 -5.0569202e-02 -1.2077010e-02

Ûx Ûy Ûz
Initial 0.0 2.8913578317 0.0

Final -2.5488886e-02 -8.2648076e-02 5.0635069e-02

Table 4.6 – Parameters for the transfer between the GEO and the Halo orbit.

The admissible trajectory is plotted in Figure 4.11 with the three parts. We observe that
the end of the controlled trajectory looks like a manifold trajectory. As usual, we have to
pick the transfer time for each part. For the middle part, it is given by the duration of the
free trajectory, whereas for the two others it must be chosen carefully. Once again, the study
of the minimum time problem could give us a hint as to what time to choose. The problem
is however not very sensitive with respect to this parameter, and it is in fact easy to find
suitable times. The first transfer is performed with a transfer time

t0 = 12.0.

The time of propagation of the uncontrolled part is

t1 = 4.508520222.

And finally, the last controlled transfer time is

t2 = 1.0.

The total transfer time is then

tf = 17.508920222 = 76.149 days.

The obtained controls for the two controlled parts are plotted in Figure 4.12. As can be
expected from the plot of the first part trajectory which looks like a manifold, the norm of
the control decreases during the transfer. Finally, starting with an initial mass of 1500 kg,
we obtain a final mass of

m(tf ) = 1366.969 975 7 kg,
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which is an efficient transfer that uses a small amount of propellant. Note that this efficient
trajectory was obtained in only a few minutes.
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Figure 4.11 – Admissible trajectory for the transfer from the GEO to the Halo orbit.
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(a) Control of the first controlled part to reach the
point belonging to the invariant manifold in the
Poincaré mapU1.
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(b) Control of the last controlled part to reach the
point belonging to the Halo orbit.

Figure 4.12 – Norm of the control for the two controlled parts of the admissible trajectory
connecting the GEO to the Halo orbit. The energy is E = −1.59.

4.5.3 About the Maximal Thrust
We do not investigate the maximal thrust constraint here for several reasons. The first
reason is that the main purpose of this method is to provide us with admissible trajectories
which are an initial guess for another level of optimization. Hence, the maximal thrust is
chosen in such a way that the control does not saturate the constraint. Of course we can
decrease the maximal thrust by a continuation, and this works as long as the final point is
in the admissible set. If not, one can perform a continuation on the final time.

The second reason is that the way to allow a fast decrease of the control is to perform
a continuation on time without waiting for the control to saturate the constraint. Indeed,
for the GEO to Halo mission, we plot in Figure 4.13 two different norms of the control
for a transfer from the GEO to the stable manifold orbit, one with a transfer time of 3.0
(normalized time) and the other with a transfer time of 12.0. In Figure 4.14, we plot the
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corresponding admissible trajectories. We observe that the maximal, not saturating, control
is approximately 11N for the short transfer whereas the maximal thrust is approximately
1.6 N for the longer one. The main advantage is that we perform this continuation in less
than two minutes on a standard desktop computer.

Relaxing the constraint that the second part must be uncontrolled allows to further re-
duce the cost of the control for the first transfer, and consequently, to save energy (or pro-
pellant consumption) for the first part. This can be viewed as a diffusion of the control from
the first to the second part of the trajectory.
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(a) Control of the first controlled part to reach the
point belonging to the invariant manifold in the
Poincaré mapU1. The transfer time is fixed to 3.0
in the normalized unit system.
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(b) Control of the first controlled part to reach the
point belonging to the invariant manifold in the
PoincarémapU1. The transfer time is fixed to 12.0
in the normalized unit system.

Figure 4.13 – Norm of the control for the two controlled times to reach the invariant man-
ifold trajectory. The energy is E = −1.59.
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(a) Transfer time t0 = 12.0.
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(b) Transfer time t0 = 3.0.

Figure 4.14 – The two admissible trajectories for different times of transfer for the first
controlled part of the admissible trajectory. The energy is E = −1.59.



Conclusion

Contribution

The first objective of this work was to understand the dynamical properties of the circular
restricted three body problem in order to use them to design low consumption missions
for spacecrafts with a low thrust engine. This work can be viewed as a continuation of
the work in [6]. Our work was originally driven by Philippe Augros from Airbus Defence
and Space (DS) and was funded by Airbus DS. A code in FORTRAN90 was developed for
Airbus DS to compute efficiently the different properties of the CRTBP such as periodic
orbits around equilibrium points (Halo, Lyapunov and “Eight-Shaped” orbits), as well as
associated invariant manifolds. We introduced a new continuation method to compute the
family of periodic orbits using energy as the continuation parameter.

Following the Interplanetary Transport Network (ITN) concept, invariant manifolds are
very useful to design spacecraft missions because they are gravitational currents in the
CRTBP. For this purpose, a large part of this work was devoted to designing a numeri-
cal method that performs an optimal transfer between invariant manifolds. The method is
to use the impulsive transfer method in order to build an Optimal Control Problem. After
having obtained the optimal control problem formulation, we developed a robust method
based on various continuations: final state continuation, thrust continuation and cost con-
tinuation. This last continuation performs an homotopy between the minimization of the
L2-norm of the control and the minimization of the L1-norm of the control. This is a well
knownmethod which works quite well and it is used because the L2-minimization is numer-
ically easier to perform than the L1-minimization. For the different numerical experiments
of transfers between invariant manifolds, the developed method shows good results, man-
aging to compute the L1-minimization and shows robustness with respect to the different
parameters. A study of the crucial transfer time parameter was also conducted and we con-
cluded that the method is robust with respect to transfer time. Moreover, at the limit where
the transfer time goes to 0, the control appears to converge to the corresponding impulse
∆V .

The most important achievement of this work is Chapter 3. With the algorithm devel-
oped to achieve transfers between invariantmanifolds, we designmissions between periodic
orbits around the Lagrange points L1 and L2. The basic idea is to initialize a multiple shoot-
ing method with an admissible trajectory that contains an uncontrolled part following the
natural dynamics. To illustrate the method, we perform different missions. First, three-part
admissible trajectories that contain a heteroclinic trajectory are built (the two periodic or-
bits share the same energy). For different values of the energy, the considered heteroclinic
orbits perform either one or two revolutions around the primary. In each case the method
succeeded. A last example consists of a 3D mission, where no heteroclinic orbit exists. In
that case, the admissible trajectory is built with 5 parts including two free parts that follow
the two invariant manifolds. In all these examples, the method is both robust and efficient.
The results in terms of cost and consumption are very good, and the computation time is
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very small. Themost time consuming step in our method is the end-point position optimiza-
tion but, this optimization, although improving just a little the cost of the transfer, allows
to obtain the intuitive turnpike property when heteroclinic orbit exists. Because of the too
small effective maximal thrust, the continuation on the cost to obtain the maximization of
the final mass fails, hence, only the L2-minimization is solved in this chapter.

The last contribution of this thesis is to apply the methods we developed to missions
starting from the geostationary Earth orbit (GEO). We reach a lunar orbit, as well as Lya-
punov and Halo orbits. We are able to compute admissible trajectories composed of three
parts: one to reach a transit free trajectory, then one following the natural dynamics (invari-
ant manifolds), and the last one to reach the targeted orbit from the free trajectory. These
admissible trajectories are computed within a very short time (a few minutes). Unfortu-
nately, because of the energy gap between the GEO and invariant manifolds (greater than
the energy of L1), the multiple shooting fails in this particular case. We developed a hybrid
optimization method consisting of both direct and indirect methods. The efficiency of this
method is based on the fact that solving the three transfers with indirect methods enables to
perform a gradient descent method. Indeed, at each matching point, the (required) gradient
of the global value function (the sum of the three local ones) is given by the difference be-
tween the final and initial costate at these points. We show that if we obtain the necessary
condition for the gradient method, then we have a one-part trajectory performing the trans-
fer and satisfying the PMP necessary condition. This hybrid method does not converge in
reasonable computation time, and hence, we restrict the optimization of the two matching
points position with a “constraint box”. We observe that the constraint is saturated in the
direction of the GEO. Moreover, although the L2-cost decreases during this optimization,
the physically interesting L1-cost increases. Hence, the main advantage of the method is
to obtain an admissible trajectory with low consumption in a very short computation time.
We present different examples of transfers departing from the GEO, and we observe that the
choice of the insertion point onto the transit trajectory is crucial. The duration of the more
expensive part (the first one) is also an important parameter, and allows to significantly
decrease the maximum thrust.

Perspectives

In each of our transfers, the first order necessary conditions for optimality of the PMP give
us the optimal control, but we do not check that the sufficient second order conditions
are satisfied (nor the necessary seconder order conditions). This could be done using the
conjugate locus theorywhich is well developed for applications inmission design. However,
the good results in terms of cost do point toward the optimality of our trajectories.

Design of spacecraft missions is a very rich and vast subject of research. Understanding
the numerical problems is a big issue. The study of the instability of the Hamiltonian sys-
tem could explain the difficulties we encountered for the convergence of the multiple shoot-
ing method, especially along the natural trajectory part following the invariant manifolds.
Moreover, studying the instability of invariant manifolds in depth, following the Lyapunov
exponent approach, and linking that with the success of the multiple shooting method could
provide us with important information. Also, the more systematic numerical study of the
turnpike property, proved for static equilibrium points, could help the theoretical study of
the turnpike property with natural drift.

Our methods and algorithm could be further improved in many ways. First, to help the
L2 to L1-minimization continuation, one could add tools to determine the structure of the
bang-bang targeted control. For instance, when oscillations are detected, we could consider
a corresponding bang-bang structure and add switching times as parameters. The hybrid
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method developed for the missions departing from the GEO should be improved, in particu-
lar by allowing the time adaptation in the middle part initialized with a natural uncontrolled
trajectory. Indeed, we observe that the fixed time on this part implies that, during the gra-
dient descent, the trajectories make a detour around the equilibrium point L1. An adaptive
duration of the middle part should improve the method.

Finally, the most important perspective is to couple CRTBP to design interplanetary
spacecraft missions. The complete study of the patched three body approximation with a
low thrust engine should be done. In this subject, many unexplored subjects pop up: one
can introduce a discrete parameter counting the revolutions of invariant manifolds around
primaries (we saw that the insertion point on invariant manifolds is crucial). Moreover,
the stability of the embedding of the three body problem trajectories into the four body
problem, and the embedded control may be an issue depending on the considered three-
body problems.
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APPENDIX
A

Richardson’s Constants

Here, we recall Richardson’s constants obtained in his work [74]. See section 1.4.3 for ex-
planations of what are all these constants and parameters.

a21 =
3c3(κ2 − 2)
4(1 + 2c2)

,

a22 =
3c3

4(1 + 2c2)
,

a23 = −
3c3λ

4κd1
[3κ3λ − 6κ(κ − λ) + 4],

a24 = −
3c3λ

4κd1
(2 + 3κλ)

a31 = −
9λ

4d2
(4c3(κa23 − b21) + κc4(4 + κ2)) +

(
9λ2 + 1 − c2

2d2

) (
3c3(2a23 − κb21) + c4(2 + 3κ2)

)
,

a32 = −
1

d2

( 9λ
4
(4c3(κa24 − b22) + κc4) +

3

2
(9λ2 + 1 − c2) (c3(κb22 + d21 − 2a24) − c4)

)
,

b21 = −
3c3λ

2d1
(3κλ − 4),

b22 =
3c3λ

d1
,

b31 =
3

8d2

(
8λ

(
3c3(κb21 − 2a23) − c4(2 + 3κ2)

)
+ (9λ2 + 1 + 2c2)

(
4c3(κa23 − b21) + κc4(4 + κ2)

) )
,

b32 =
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(
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8
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d21 = −

c3
2λ2
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d31 =
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where
d1 =

3λ2

κ

(
κ(6λ2 − 1) − 2λ

)
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and
d2 =

8λ2

κ

(
κ(11λ2 − 1) − 2λ

)
s1 and s2 are defined by

s1 =
3
2c3(2a21(κ2 − 2) − a23(κ2 + 2) − 2κb21) −

3
8 (3κ4 − 8κ2 + 8)

2λ(λ(1 + κ2) − 2κ) ,

s2 =
3
2c3(2a22(κ2 − 2) − a24(κ2 + 2) + 2κb22 + 5d21) +

3
8c4(12 − κ2)

2λ(λ(1 + κ2) − 2κ) ,

where κ = 1
2λ (λ2 + 1 + 2c2), and λ is solution of

λ4 + (c2 − 2)λ2 − (c2 − 1)(1 + 2c2) = 0.

Constants l1 and l2 are defined by

l1 = a1 + 2l
2s1 et l2 = a2 + 2l

2s2,

where a1 = − 3
2c3(2a21 + a23 + 5d21) −

3
8c4(12 − k2) and a2 =

3
2 (a24 − 2a22) +

9
8c4.



APPENDIX
B

User guide for the Uacamol
program – v1.4

This document is a documentation of a code developed for Airbus Defence of Space, at les
Mureaux.

B.1 Introduction

This document is a user documentation for the programUacamol. The code is not described
here, and we invite the reader to see the doxygen documentation for a description of the
source code of the program and its structure.

B.2 A Short Review of the Three Body Problem

We consider the motion of the spacecraft P of negligible mass moving under the gravita-
tional influence of the two massesM1 andM2, referred to as the primary masses, or simply
the primaries (here Earth and Moon). We denote these primaries by P1 and P2. Moreover,
we assume that the primaries have circular orbits around their common center of mass. The
particle P is free to move all around the primaries but cannot affect their motion.

The system is made nondimensional by the following choice of units: the unit of mass is
taken to be M1 +M2; the unit of length is chosen to be the constant separation between P1
and P2; the unit of time is chosen such that the orbital period of P1 and P2 arount their center
of mass is 2π . The universal constant of gravitation then becomes G = 1. The conversion
from units of distance, velocity and time in the unprimed, normalized system to the primed,
dimensionalized system is

distance d ′ = l∗d,
velocity s ′ = v∗s,
time t ′ = t∗

2π t ,
(B.1)

where we call l∗ the distance between P1 and P2, v∗ the orbital velocity of P1 and t∗ the
orbital period of P1 and P2.
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We define the only parameter of this system as

µ =
M2

M1 +M2
, (B.2)

and call it the mass parameter, assuming that M1 > M2.

x

y

L2L3 L1

L4
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P2P1

B.2.1 Equations of Motion

We in fact consider two coordinate systems, the first described in the previous section called
the Cross coordinate system (centered on the center of mass of the two primaries and with
the distance between the two primaries normalized to one), and a second, the Richardson
system centered on the considered Lagrange Li point and with the distance between Li and
P2 normalized to one.

Almost all computations and results are given in Richardson coordinates.
We give here the equations of motion in Cross coordinates (see the thesis of Gregory

Archambeau for the details on how to change coordinates).

Ûx1 = x4

Ûx2 = x5

Ûx3 = x6

Ûx4 = x1 + 2x5 − (1 − µ)
x1 − x0

1

r31
− µ

x1 − x0
2

r32

Ûx5 = x2 − 2x4 − (1 − µ)
x2

r31
− µ x2

r32

Ûx6 = −(1 − µ)
x3

r31
− µ x3

r32

B.2.2 The Poincaré Cuts

We plot here in the Earth-Moon example the four cuts U1, U2, U3 and U4 used to compute
sections of invariant manifolds.
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B.3 Compile Uacamol

We give a Makefile to create the executable program Uacamol with the binary uacamolF.
In the Exec directory, you just have to make:

user@machine:Exec/ > make

The Makefile file must be adjusted to chose the compiler (gfortran or ifort). The blas

and lapack file in the Sources/lib/lapack-3.5.0/ directory must be compiled. Once again,
there are two possible compilers, gfortran or ifort and two files are provided: make.inc.gfortran
and make.inc.ifort,the file make.inc must be replaced by the right file. See the Makefile

file.

B.4 Files to Feed Uacamol

B.4.1 Addresses File
Uacamol has a necessary argument when we execute it. It is the file of the different ad-
dresses given to the main program.

user@machine:Input/ > uacamolF inputFile.txt

This file must have the exact following structure:

1 ====================== INPUT FILES ======================

2 # Parameter File

3 './inL1.dat'

4 # Initialisation Guess File ('' if not)

5 ''

6

7 ====================== OUTPUT FILES ======================

8 # Output dir

9 '../Output'

10 # Generic name for manifolds trajectories : NAME_S/I_R/L_i etc.

11 'Traj'

• In line 3, the address and name of the parameter input file are given. They will be
described in the section B.4.2.
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• In line 5, we give, if the user chooses this option, the address of a file containing an
initial guess point for a periodic orbit is given (to replace the analytical approxima-
tions given by the program). If not, an empty string '' should be given. If an input is
given, this file must have the following structure (dummy example):

1 # period x(1) x(2) x(3) x(4) x(5) x(6)

2 2.34d0 1.d0 2.d0 3.d0 4.d0 5.d0 6.d0

• In line 9, the directory of all different outputs is given.

• In line 11, the directory and the generic name of all the trajectories produced when the
program computes the fourmanifolds is given. There are four types (for this particular
example):

1. ../Output/Traj_S_R_i.dat for the stable right manifold, i is a formatted integer,
e.g. 0001.

2. ../Output/Traj_S_L_i.dat for the stable left manifold.
3. ../Output/Traj_I_R_i.dat for the unstable right manifold.
4. ../Output/Traj_I_R_i.dat for the unstable left manifold.

Indeed, for each periodic orbit around a Lagrange point there are four associatedman-
ifolds: two stable, and two unstable. Spatially, there is one stable manifold to the left
of the periodic orbit and one to the right. It is the same for the unstable manifolds.
The counter i is formatted with four numbers, starting at 1 (e.g. 0001).

Remark B.1:

Note that for the stable manifolds, trajectories are integrated and printed back-
ward.

B.4.2 Parameters Input File
We give all parameters in one file that we describe in this section. First, we give an example
of such a file.

1 # M1 M2 Distance Periode Li

2 5.972d24 7.349d22 384402d3 2.361d6 1

3 # intOrbite

4 100

5 # boolprop Tprop dtMani epsMani

6 1 6.d0 1d-02 1d-04

7 # readInit

8 0

9 # boolOrbType Az boolEnergy energy stepCont familyPrint

10 1 630d5 1 -1.56 0.001d0

11 # relerr abserr epstol factor

12 1d-14 1d-14 1d-12 1d02

13 # sectionU2 sectionU3 sectionU14 tourNbr printTraj

14 0 1 0 0 1

15 # verbose RichCross

16 1 0
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The structure of this the file must be respected. Odd numbered lines are for comments,
and even numbered lines are used to provide the values of the parameters separated by
spaces.

Next, we describe all the parameters line by line.

Masses, distance, period and Lagrange point

In line 2, we give:

M1: Mass of the first primary (real (kg)).

M2: Mass of the second primary (real (kg)).

Distance: Distance between primaries (real (km)).

Period: Period of revolution of the two primaries around their center of mass (real (s)).

Li: The considered Lagrange point, here L1 or L2 (integer =1 or 2).

Discretization of periodic orbit

In line 4, we give:

intOrbit: Number of points for the discretization of the periodic orbit. This also defines
how many trajectories will be used to approximate an invariant manifold (which is
an infinite set of orbits) (integer >1).

Propagation of invariant manifolds

In line 6, we give:

boolprop: To choose if we want to propagate and save the trajectories of the invariant
manifolds using the generic prefix given in the addresses file (0 (no) or 1 (yes)).

Tprop: Time of propagation in normalized system (real).

dtMani: Time interval between two consecutive points on the trajectory of the invariant
manifold that are saved to the file (real).

epsMani: Small parameter, perturbation of periodic orbit along eigenvectors of the mon-
odromy matrix to get manifolds (real (small)).

Periodic orbit

In line 8, we give:

readInit: To choose if we want to initialize the first shooting method by a given point and
a period in an input file (see previous section), or if we use the analytical approxi-
mation given by the program explained in the next description. If readInit==1, then
the 2 parameters boolOrbType and Az are useless and their values will be ignored 1

(=1 if we give a file, else =0).

In line 10, we give:

1. We will not provide an example with this parameter active because it is not really relevant but a file to test
it is given in the snapshot of the program (Input directory).
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boolOrbType: To choose the type of periodic orbit wewant to compute. We chose between
Halo/Lissajous (diffeomorphic to a circle) or Eight-shaped orbit (we call it Archam-
beau orbit) (=0 (Halo) or 1 (Eight)). If Az==0.d0, only Halo choice is possible and
we get a Lissajous orbit.

Az: Initial excursion along the z-axis for the analytical approximation that serves as an
initial guess in the shooting method to get a periodic orbit (real (km)).

boolEnergy: To choose if we want to compute by a continuation an orbit of a given en-
ergy greater than the energy of the Lagrange point. A test is done to verify this last
properties. (=0 (no) or 1 (yes)).

energy: Theenergy to reach if the previous parameter is set to one (real (in Cross coordinates)).

stepCont: Initial step for the continuation predictor-corrector (real (small)).

familyPrint: To choose if we want to print all the intermediate periodic orbits computed
during the continuation on energy. The output files are named FOutput/FamPeri
where i is a formatted counter. (=0 (no) or 1 (yes)).

Parameters for HYBDR and DOP853

In line 12, we give:

relerr: Relative error for dop853 (real (~1d-12)).

abserr: Absolute error for dop853 (real (~1d-12)).

epstol: Tolerance for HYBRD (real (~1d-14)).

factor: Factor for HYBRD (real).

Section of manifolds

In line 14, we give:

sectionU2: To choose if we want to compute the intersection of the correct manifolds (de-
pending on the considered Lagrange point) with the plane (defined in Cross coordi-
nates)

U2 = {(x ,y), x = 1 − µ, y < 0}.

The manifold is the right unstable (resp. left stable) manifold if Li==1 (resp. Li==2)
(=0 (no) or 1 (yes)).

sectionU3: To choose if we want to compute the intersection of the correct manifolds (de-
pending on the considered Lagrange point) with the plane (defined in Cross coordi-
nates)

U3 = {(x ,y), x = 1 − µ, y > 0}.

The manifold is the right stable (resp. left unstable) manifold if Li==1 (resp. Li==2)
(=0 (no) or 1 (yes)).

sectionU14: To choose if we want to compute the intersection of the correct manifolds
(depending on the considered Lagrange point) with the plane (defined in Cross coor-
dinates)

U1 = {(x ,y), x > −µ, y = 0},
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or
U4 = {(x ,y), x < −µ, y = 0}.

If Li==1, thenwe compute the intersectionwith the “left” invariant manifolds, one for-
ward (unstable) the other backward (stable). If Li==2, then we compute the intersec-
tion with the “right” invariant manifolds, one forward (instable) the other backward
(stable). (=0 (no) or 1 (yes)).

tourNbr: Number of rotations around the second primary before we compute the sec-
tion. If we want the first intersection, we give 0 rotation, the second, 1 rotation,
etc. (integer).

printTraj: Integer that allow to save trajectories of themanifolds that intersect theU2 orU3

cuts depending on the previous options. The files of trajectories respects the dtMani

parameter previously described (=1 if save traj. else 0).

Verbose and Coordinate Output

In the last line, we give:

verbose: If we want the program to tell us what it is doing and get the information in the
standard output, i.e. the terminal (=0 (no messages) or 1 (messages)).

RichCross: We choose here the coordinate system of the output trajectories. All computa-
tions are done in Richardson coordinates in the program, but we can choose to get the
output trajectory files in Richardson or Cross coordinates (=0 for Richardson, 1 for Cross).

B.5 Outputs

Depending on what options the user chose we get the following files in the user defined
directory. We denote by FOutput, the directory of outputs. All trajectories saved in files
have the following structure:

1 time y(1) y(2) y(3) y(4) y(5) y(6)

2 . . . . . . .

3 . . . . . . .

4 . . . . . . .

FOutput/Parameters.txt: All the input parameters plus the computed ones in a summary
file.

FOutput/RichardsonConst.txt: Constants computed and used to obtain either the Richard-
son analytical approximation or the Archambeau analytical approximation.

FOutput/Richardson.txt: The initial guess obtained by the Richardson analytical approx-
imation (Halo/Lissajous) propagated during the approximate period (does not look
like a periodic orbit).

FOutput/Archambeau.txt: The initial guess obtained by the Archambeau analytical approx-
imation (eight-shaped) propagated during the approximate period (does not look like
a periodic orbit).

FOutput/PeriodicExc.txt: The periodic orbit obtained after the shoot with fixed excursion
using the analytical approximation as an initial guess.
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FOutput/PeriodicEn.txt: The periodic orbit obtained after the continuation to reach the
given energy.

Family of periodic orbits: Already described.

Trajectories of the four manifolds: Already described.

Trajectories stopping at the Poincaré cuts: Files are named using the prefix given in
the address file (see section B.4) with the suffixes _U2_sec_i , _U3_sec_i , _U14back_sec_i
or _U14_sec_i where i ∈ {1, . . . , intOrbite}.

B.6 Examples of Application

The four examples presented in this section are available in the sources of the code in the
directory Input.

We note that a complete computation of one of these examples does not take more than
a few seconds on a standard desktop computer.

B.6.1 Halo Orbit around L1 – System Earth-Moon

1 # M1 M2 Distance Periode Li

2 5.972d24 7.349d22 384402d3 2.361d6 1

3 # intOrbite

4 100

5 # boolprop Tprop dtMani epsMani

6 1 6.d0 1d-02 1d-04

7 # readInit

8 0

9 # boolOrbType Az boolEnergy energy stepCont printFamily

10 0 300.d3 1 -1.58 0.001d0 0

11 # relerr abserr epstol factor

12 1d-14 1d-14 1d-12 1d02

13 # sectionU2 sectionU3 sectionU14 tourNbr printTraj

14 0 0 0 0 0

15 # verbose RichCross

16 1 0

Periodic Orbits.
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B.6.2 Lissajous Orbit around L2 – System Earth-Moon

1 # M1 M2 Distance Periode Li

2 5.972d24 7.349d22 384402d3 2.361d6 2

3 # intOrbite

4 100

5 # boolprop Tprop dtMani epsMani

6 1 5.d0 1d-02 1d-04

7 # readInit

8 0

9 # boolOrbType Az boolEnergy energy stepCont printFamily

10 0 0.d0 1 -1.5900004d0 0.01d0

11 # relerr abserr epstol factor

12 1d-14 1d-14 1d-12 1d02
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13 # sectionU2 sectionU3 sectionU14 tourNbr printTraj

14 1 1 0 2 0

15 # verbose RichCross

16 1 0

Periodic Orbits.
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Section withU2 andU3 after one rotation. Here we plot the section in the plane ((y, Ûy))
with the cutsU2 andU3. Because we have a fixed energy (Hamiltonian system), the Ûx value
is deduced.
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B.6.3 Eight-shaped Orbit around L1 – System Earth-Moon

1 # M1 M2 Distance Periode Li

2 5.972d24 7.349d22 384402d3 2.361d6 1

3 # intOrbite

4 100

5 # boolprop Tprop dtMani epsMani

6 1 6.d0 1d-02 1d-04

7 # readInit

8 0

9 # boolOrbType Az boolEnergy energy stepCont printFamily

10 1 630d5 1 -1.58 0.001d0

11 # relerr abserr epstol factor

12 1d-14 1d-14 1d-12 1d02

13 # sectionU2 sectionU3 sectionU14 tourNbr printTraj

14 1 1 0 2 1

15 # verbose RichCross

16 1 0

Periodic Orbits.
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Four Manifolds.
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SectionwithU2 andU3 after two rotations. Herewe plot the section in the plane ((y, Ûy))
with the cutsU2 andU3. Because we have a fixed energy (Hamiltonian system), the Ûx value
is deduced.
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Plot of the two manifolds stopping at theU2 andU3 cuts.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Manifold stopping at the second
intersection withU2.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Manifold stopping at the second intersection
withU3.

B.6.4 Halo Orbit around L1 – System Sun-Earth
Parameter Input File. We note that we use the Cross coordinates.
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1 # M1 M2 Distance Periode Li

2 1.989E6 5.972 149597870E3 2.361d6 1

3 # intOrbite

4 100

5 # boolprop Tprop dtMani epsMani

6 1 5.d0 1d-02 1d-04

7 # readInit

8 0

9 # boolOrbType Az boolEnergy energy stepCont printFamily

10 0 240.d6 1 -1.50041 0.001d0

11 # relerr abserr epstol factor

12 1d-14 1d-14 1d-12 1d02

13 # sectionU2 sectionU3 sectionU14 tourNbr printTraj

14 0 1 0 0 1

15 # verbose RichCross

16 1 1

Periodic Orbits.
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Section withU3 after zero rotations. Here we plot the section in the plane ((y, Ûy)) with
the cutU3. Because we have a fixed energy (Hamiltonian system), the Ûx value is deduced.
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APPENDIX
C

Input File for the Code
Performing Transfers between

Invariant Manifolds

We describe here the input file of the program performing the transfer between two invariant
manifolds.

C.1 Principle

Themain idea is to give two states inR6 denoted by ξU0 and ξU1 (as in Section 2.6) belonging
to two different invariant manifolds. Then we follow the method explained in section 2.6.
See figure 2.10 for the description of how the program works.

Here, we restrict ourselves to describing the input file of the program that we have de-
veloped. The program ismore general and can be used for other purposes such as computing
a transfer between natural trajectories in the CRTBP.

C.2 Input File

The input file is of the form

1 # M1 M2 Distance(m) period

2 5.972E24 ; 7.349E22 ; 384402e3 ; 2.361e6

3 # TMAXinit(N) TMAXobj(N)

4 30. ; 30.

5 # ContinuationStep (initial)

6 0.01

7 # deltaT1 deltaT2 TransferTime ObjTransferTime

8 1.0 ; 2.0 ; 0.0 ; 0.0

9 # L2minToL1min printHom initCostate 2Bto3B HomTemps

10 0 ; 1 ; 0 ; 0 ; 1.0

11 # ConditionsFile

161
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12 conditions.txt

13 # ISP(s) g0(m.s^2)

14 2000 ; 9.81

15 # IncreaseTTir placeofL2toL1(1,2,3)

16 0 ; 3

17 # HybrdEps HybrdFact

18 1E-12 ; 1E-03

19 # integrator pertubCostate

20 1 ; 0

21 # optEndpoints ADJOINT0

22 0 ; 1E00

The structure of this the file must be respected. Odd numbered lines are for comments,
and even numbered lines are used to provide the values of the parameters separated by
semicolons.

Next, we describe all the parameters line by line.

Masses, distance, period

M1: Mass of the first primary (real (kg)).

M2: Mass of the second primary (real (kg)).

Distance: Distance between primaries (real (km)).

Period: Period of revolution of the two primaries around their center of mass (real (s)).

Maximal Thrust

TMAXinit: Initial value of the allowed maximal thrust (real (Newton)).

TMAXObj: Objective maximal thrust. If it is different from TMAXinit, then a continua-
tion on the maximal thrust is performed. (real (Newton)).

Initial Continuation Step

ContinuationStep: Initial continuation step for all the different continuations. (real between 1e09 and 0.1).

Transfer Times

deltaT1: Backward propagation time of the first initial condition, see below (real (normalized time)).

deltaT2: Forward propagation time of the second initial condition, see below (real (normalized time)).

TransferTime: If deltaT1 or deltaT2 are zero, then, TransferTime determines the trans-
fer time to perform the transfer between initial conditions (real (normalized time)).

ObjTransferTime: If deltaT1 or deltaT2 are different from TransferTime, then a con-
tinuation on the transfer time is performed (real (normalized time)).
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Several Parameters

L2minToL1min: Integer parameter that enables the continuation on the cost, from the
default L2-minimization (0) to the L1-minimization (1) (integer: 0 or 1)

printHom: Integer parameter to enable the creation of directories for the different con-
tinuations. In each directory, some files are created such as a file param and each
successful trajectory TrajX.dat (where X is a number) .

initCostate: Integer to enable reading an initialization for the initial costate (the default
initialization choice is zero) (integer 0 for no, 1 for yes).

2Bto3B: Integer to enable a continuation from the two body problem to the CRTBP

(integer 0 for no, 1 for yes).

HomTemps: Parameter αT defined in Section 2.6 to start the transfer with the closer states.
This parameter allows to start the resolution with two points denoted by ξ αT0 and ξ αT1
and defined as

ξ αT0 = ϕ(−αT tA0
, ξU0 ), and ξ αT1 = ϕ(αT tA1

, ξU1 ).

These two points are closer than the two end-points defined as

ξ ∗0 = ϕ(−tA0
, ξU0 ), and ξ ∗1 = ϕ(tA1

, ξU1 )

We then reach the two objective states ξ ∗0 and ξ ∗1 by continuation on the initial and
final states as described in section 2.7.1. When HomTemps= 1.0 no continuation is
performed. (real >0 and <=1.0).

Initial and Final condition

ConditionFile: Name of the file containing the initial (in R7) and final states (in R6), The
file must contain two lines with on each the two states where the components are
separated by semicolons (string).

Engine Specifications

ISP: Specific Impulse of the engine. (real (s)).

g0: Acceleration at Earth’s surface (real (m/s2)).

Time Increasing and Place of the Cost Continuation

IncreaseTTir: Integer parameter that enables the increase of the transfer time if we reach
a saturation ration of 0.85. (integer 0 for no, 1 for yes).

placeofL2toL1: Integer parameter to choose the place of the continuation on the cost if
L2minToL1min is set to 1. See figure 2.10 for the different places (integer 1,2 or 3).

HYBRD Parameters

Two parameters of the HYBRD Fortran subroutine are available with our interface. The first
one is also used for the integrator precision.
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HybrdEps: Input variable used to determine a suitable step length for the forward-difference
approximation. this approximation assumes that the relative errors in the functions
are of the order of HybrdEps. If HybrdEps is less than machine precision, it is as-
sumed that the relative errors in the functions are of the order of machine precision.
(real). (string).

HybdrFact: Positive input variable used to determine the initial step bound. In most cases
HybrdFact should lie in the interval (.1,100.). 100. is a generally recommended value.
For more detal see the HBRD documentation (real).

Integrator and Costate Perturbation

integrator: Choice between two integrators: DOP853.f if 0 or ode.f if 1 (integer 0 or 1).

pertubCostate: Integer parameter that allows to randomly perturb the initial zero costate.
(integer 0 for no, 1 for yes).

Last parameters

optEndpoints: Integer parameter that allows the optimization of the end-point positions
on the natural dynamics (to obtain the transversality conditions of PMP)
(integer 0 for no, 1 for yes).

ADJOINT0: Choice of the value of p0 in the PMP for the normalization of the costate
(real >0).
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drift vector field, 69
Duffing equation, 42
dynamics, 31

eight-shape periodic orbit, 45
energy surface, 37
equilibrium points, 32
excursion, 42, 44
extremal, 73

abnormal, 73
normal, 73

family of orbits, 48
final state continuation, 88
Floquet multiplier, 52
fly-by, 16
forbidden realm, 37

Galileo, 16

geostationary Earth orbit, 15, 125
gravitational assist, 63
gravitational current, 49, 59, 62
gravity assist maneuver, 16
Greek asteroid, 36

Halo orbit, 41
Hamiltonian, 36
heteroclinic orbit, 65
Hill’s region, 37
HJB, 132
homoclinic orbit, 65
homotopy, 76
homotopy method, 47

indirect method, 73, 74
integral of motion, 36
invariant manifold, 49
ion thruster, 17

Jacobi integral, 37

Lagrange points, 32
Legendre polynomials, 40
libration points, 32
Lindstedt-Poincaré Method, 42
linearization, 35
linearized Hamiltonian, 56
Lissajous orbit, 41
LO, 127
low Earth Orbit, 82
low Earth orbit, 15
lunar orbit, 125, 127
Lyapunov orbit, 41
Lyapunov-Poincaré, 40
Lyapunov-Poincaré center theorem, 40

minimization:L2-norm control, 86
monodromy matrix, 51
Moser theorem, 44
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multiple shooting function, 75
multiple shooting method, 75
multiplier, 41

neck, 38
nontrivial multiplier, 41

parking orbit, 82
patched conic approximation, 16
PCRTBP, 65
periodic orbits, 39
piecewise linear continuation, 78
planar circular restricted three body

problem, 63
planar restricted circular three body

problem, 65
Poincaré map, 53
Poincaré cut, 65
Poincaré surfaces, 63
potential, 31
primaries, 27
primary, 28

Richardson coordinates, 34

Rosetta, 16, 17

secondary, 28
secular term, 45
separatrix, 57
shooting function, 42
shooting method, 73
single shooting method, 74
stability, 35
swing-by, 16

thrust continuation, 89
transition map, 31
Trojan asteroid, 36
tube, 54
turnpike property, 113
turnpike structure, 117

value function, 132
Voyager, 16

zero path, 76
zero velocity curve, 37
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Interplanetary transfers with low consumption using the properties of the re-
stricted three body problem

Abstract

The first objective of this work is to understand the dynamical properties of the circular restricted
three body problem in order to use them to design low consumptionmissions for spacecraftswith a low
thrust engine. A fundamental property is the existence of invariant manifolds associated with periodic
orbits around Lagrange points. Following the Interplanetary Transport Network concept, invariant
manifolds are very useful to design spacecraft missions because they are gravitational currents. A
large part of this work is devoted to designing a numerical method that performs an optimal transfer
between invariant manifolds. The cost we want to minimize is the L1-norm of the control which
is equivalent to minimizing the consumption of the engines. We also consider the L2-norm of the
control which is easier to minimize numerically. The numerical methods are indirect ones coupled
with different continuations on the thrust, on the cost, and on the final state, to provide robustness.
These methods are based on the application of the Pontryagin Maximum Principal. The algorithms
developed in this work allow for the design of real life missions such as missions between the realms of
libration points. The basic idea is to initialize a multiple shootingmethodwith an admissible trajectory
that contains controlled parts (local transfers) and uncontrolled parts following the natural dynamics
(invariant manifolds). The methods developed here are efficient and fast (less than a few minutes
to obtain the whole optimal trajectory). Finally, we develop a hybrid method, with both direct and
indirect methods, to adjust the position of the matching points on the invariant manifolds for missions
with large energy gaps. The gradient of the value function is given by the values of the costates at the
matching points and does not require any additional computation. Hence, the implementation of the
gradient descent is easy.

Keywords: optimal control, circular restricted three body problem, continuation method, shooting
method, indirect methods, spacecraft mission, invariant manifolds

Transferts interplanétaires à faible consommation utilisant les propriétés du
problème restreint des trois corps

Résumé

Le premier objectif de cette thèse est de bien comprendre les propriétés de la dynamique du problème
circulaire restreint des trois corps et de les utiliser pour calculer des missions pour satellites pourvus de
moteurs à faible poussée. Une propriété fondamentale est l’existence de variétés invariantes associées à
des orbites périodiques autour des points de Lagrange. En suivant l’idée de l’Interplanetary Transport
Network, la connaissance et le calcul des variétés invariantes, comme courants gravitationnels, sont
cruciaux pour le design de missions spatiales. Une grande partie de ce travail de thèse est consacrée
au développement de méthodes numériques pour calculer le transfert entre variétés invariantes de
façon optimale. Le coût que l’on cherche alors à minimiser est la norme L1 du contrôle car elle est
équivalente à minimiser la consommation des moteurs. On considère aussi la norme L2 du contrôle
car elle est, numériquement, plus facile à minimiser. Les méthodes numériques que nous utilisons sont
des méthodes indirectes rendues plus robustes par des méthodes de continuation sur le coût, sur la
poussée, et sur l’état final. La mise en œuvre de ces méthodes repose sur l’application du Principe
du Maximum de Pontryagin. Les algorithmes développés dans ce travail permettent de calculer des
missions réelles telles que des missions entre des voisinages des points de Lagrange. L’idée principale
est d’initialiser un tir multiple avec une trajectoire admissible composée de parties contrôlées (des
transferts locaux) et de parties non-contrôlées suivant la dynamique libre (les variétés invariantes).
Les méthodes mises au point ici, sont efficaces et rapides puisqu’il suffit de quelques minutes pour
obtenir la trajectoire optimale complète. Enfin, on développe une méthode hybride, avec à la fois des
méthodes directes et indirectes, qui permettent d’ajuster la positions des points de raccord sur les
variétés invariantes pour les missions à grandes variations d’énergie. Le gradient de la fonction valeur
est donné par les valeurs des états adjoints aux points de raccord et donc ne nécessite pas de calculs
supplémentaire. Ainsi, l’implémentation de algorithme du gradient est aisée.

Mots clés : contrôle optimal, problème circulaire restreint des trois corps, méthode de continua-
tion, méthode de tir, mission spatiale, méthodes indirectes, variétés invariantes

Laboratoire Jacques-Louis Lions
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