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Abstract

We propose a level set based variational approach that
incorporates shape priors into Chan-Vese’s model [3] for
the shape prior segmentation problem. In our model, be-
sides the level set function for segmentation, as in Cremers’
work [5], we introduce another labelling level set function
to indicate the regions on which the prior shape should be
compared. Our model can segment an object, whose shape
is similar to the given prior shape, from a background where
there are several objects. Moreover, we provide a proof
for a fast solution principle, which was mentioned [7] and
similar to the one proposed in [19], for minimizing Chan-
Vese’s segmentation model without length term. We extend
the principle to the minimization of our prescribed function-
als.

1. Introduction

Image segmentation is a fundamental topic in image pro-
cessing. Numerous approaches have been proposed for this
problem. A fundamental variational approach is the use of
the Mumford-Shah’s functional which was discussed com-
prehensively in [13, 12]. In this approach, the segmenta-
tion problem is to find a piecewise smooth function which
approximates the image and also prohibits the excessive
length of the boundaries between any two contiguous re-
gions. The methodology has brought forth lots of models
on segmentation. A direct one is its modified model that
approximates the Mumford-Shah’s functional via I'— con-
vergence [1] since it is difficult to handle the length of the
boundaries. Later, in [3], Chan and Vese proposed a novel
model that combines the Mumford-Shah’s functional and
level set methods [15], which can handle curves, surfaces
with topological changes easily. Besides these models, in
[8], Kass et. al. proposed the classic snake model for seg-
mentation and Malladi et al. in [11], Caselles et al. in [2]
developed their geodesic active contour models.

However, the above models are all gray intensity based.
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They fail to segment meaningful objects from images when
the objects are occluded by other objects or some parts of
them are in low gray contrasts or even missing. In fact, these
situations always happen in practical applications. There-
fore, in these cases, prior shape information is needed to
successfully segment the desirable objects. The process of
segmentation with the incorporation of shape information
can be called shape prior segmentation.

There are also many works on shape prior segmentation
in the literature [9, 10, 2, 4, 6, 20]. Almost all these works
are linear combinations of two functionals with one about
some specific segmentation functional and the other about
shape difference. For example, in [9, 10], Leventon et.
al. presented a model which incorporates statistical based
shape information into Caselles’ geometric active contours
model [2]. Later, Chen et. al. [4] combined a different
shape difference term with the same segmentation model.
Moreover, in [6], Cremers et al. proposed a shape prior seg-
mentation model which puts a statistical based shape prior
into the Mumford-Shah’s functional.

In a recent paper [5], Cremers et al. constructed a vari-
ational approach that incorporates a level set based shape
difference term into Chan-Vese’s segmentation model [3].
Besides the level set function for segmentation, the authors
also introduced a labelling function to indicate the regions
in which shape priors should be enforced.

In this paper, based on Chan-Vese’s model, we propose
a variational model for shape prior segmentation. In this
model, we borrow the idea of Cremer et al’s work in [5],
i.e., we also introduce a labelling function. However, our
model is different from Cremer’s model in several aspects.
Firstly, our approach allows translation, scaling and rotation
of prior shapes, i.e, it can deal with the general case that
the locations, sizes and poses of the desired objects are all
unknowns. Secondly, we take a different shape comparison
term which is intrinsic to the objects and the prior shapes, in
other words, it is independent of the image domain. More-
over, we introduce additional terms to control the labelling
function.

The rest of this paper is organized as follows. In sec-



tion 2, a shape representation via the related signed distance
function is discussed. In section 3, we review Cremers et
al’s prior segmentation model [5]. Then, we detail our vari-
ational model in section 4. Section 5 contains the numer-
ical algorithms, and the experimental results are presented
in Section 6, which is followed by a conclusion in section
7.

2. Shape representation via signed distance
functions

In [16, 18], Paragios et. al. represented a shape by the
related signed distance function — a special level set func-
tion [15]. Specifically, given an object 0 C R2?, which is
assumed to be closed and bounded, then there is a unique
viscosity solution to the following equation:

Vo |=1

>0 z € Q\oQ
#L =0 z €N (1)
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Hence, any object in the plane corresponds to a unique
signed distance function, and vice versa.

As a shape is invariant to translation, rotation and scal-
ing, we may define an equivalent relation in the collection
of objects in the plane. Any two objects are said to be
equivalent if they have the same shape. Their signed dis-
tance functions are related. For example, let {2, and (),
be two objects with the same shape, and ¢; and ¢, be the
signed distance functions respectively, then there exists a
four-tuple (a, b, 7, §) such that:

$2(2,y) = r¢1[($_“)0059:(y—b)sin9’
—(z —a)sinf + (y — b) cos§
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where (a, b) represents the center, 7 the scaling factor and 6
the angle of rotation. In this way, given any object, conse-
quently a signed distance function, we may get the represen-
tation of other objects in the equivalence class by choosing
the four-tuple (a, b, 7, §).

3. Cremers et al’s segmentation model using
shape priors and dynamic labelling

In this section, we review Cremers et al’s segmentation
model by using prior shapes and dynamic labelling.

In [3], Chan and Vese proposed a variational model
based on a level set function, say ¢, whose zero level set

segments the image domain into several intensity homoge-
nous regions. The functional reads:

B(er,end) = / ((u— ) H (@) + (u— ) (1 — H($))

+ulVH ()| }dz, A3)

where u : 0 — R is an image defined on 2, ¢; and ¢» are
two scalar variables, H () is the Heaviside function:

o - {12 e

and o > 0 is a parameter that describes how large the length
of the boundaries is permitted, since the term [, |[VH (¢)]
just represents the length of zero level set of ¢ ( see [14] ).

In [5], Cremers et al. adopted Paragios et al.’s method
[16] to represent a shape. Let ¢ be the level set function for
segmentation, and ¢y be the one embedding a given shape.
Both are signed distance functions. Then their shape differ-
ence reads:

Eshape(¢) = /Q(¢ - ¢0)2d$- (5)

Clearly, this integral means that the shape prior is en-
forced on the whole domain in €2, which will allow the pres-
ence of objects in the background to affect the segmentation
of the desired objects. Consequently, Cremers et al. intro-
duced another function L, called labelling function, into
the integral. The new shape term takes the form as follows:

Eshape (¢;L) = /Q(¢ - ¢0)2(L + 1)2d$a (6)

where L defines the parts of the image domain 2 where the
shape prior should be active. For example, the region where
L = —1 will be excluded from the integral.

As for controlling the area of the region on which the
shape prior is enforced and the regularity of the boundary
separating the regions, an integral shape prior was devel-
oped by Cremers et al. as:

Euope (6.1) = / (06— 602 (L + 1) + N2(L - 1)?
+v|VH(L)|}dx. @)

In summary, Cremers et al.’s model is:

E(U+, u—_, ¢; L) = ECV (UJr; u—, ¢) + aEshape (¢7 L); (8)

where a > 0 is a parameter.

Besides segmenting multiple independent objects in im-
ages, Cremers et al.’s model can also discriminate certain
objects, e.g., whose shapes are similar to the prior shapes,
from others by means of the labelling function. However,



this model does not allow for the translation, rotation and
scaling of the prior shapes, i.e, the prior shapes have to be
placed exactly at the locations of the desired objects, and
also have the same poses and scales as these objects. These
requirements are often not met in real applications.

4. Our Model

In this section, we detail our model. In section 4.1, our
model on shape prior segmentation for an image with only
one object is explained. Then in section 4.2, by introducing
a labelling function, we extend the model to general cases
where there are probably many objects in the image.

4.1. Shape prior segmentation for a simple case

Here, we consider a simple case where there is only one
object inside the given image. Let u : 2 — R be the given
image defined on the domain {2, ¢ a level set function for
segmentation, and v a signed distance function for a given
shape. As discussed in section 2, let ¢y be a fixed signed
distance function for the shape, then v and g are related
by a four-tuple (a, b, 7, ) via the formula (2).

Instead of taking the shape comparison term as in [5], we
define it as follows:

Baure0:0) = [ (H6) = A@)Fds. ©)
where H (z) is the Heaviside function. This term is sym-
metric to ¢ and ¢, and independent of the size of the do-
main 2. Moreover, it is unnecessary for ¢ to be a signed
distance function.

Therefore, our model for shape prior segmentation can
be written as:

E(clch: gb:,(/)) = ECV(017027 ¢) + )‘Eshape(()b:’ll)): (10)

where A > 0 is a parameter.

Due to the relation (2) between 1 and vy, we may also
write the functional in terms of g by replacing ¢ with
(a,b,r,0).

4.2. Shape prior segmentation for general cases

As stated in section 4.1, the shape comparison term (9) is
defined on all the domain. Hence, it is inapplicable to gen-
eral cases where there are multiple objects inside the given
image, since other objects will contribute to the shape com-
parison. In this section, our model for the general cases is
stated.

Besides the segmentation function ¢ and shape function
1), we also introduce one more level set function L, called
the labelling function in Cremers et al’s work [5]. Then,

the prior shape will be compared with the region where both
the level set function ¢ for segmentation and the labelling
function L are positive. Consequently, instead of (9), the
shape comparison term is defined as:

Buone(6.L0) = [ (H@H(D) ~ H@) do. (1)
Here, H(¢)H (L) characterizes the intersection of {¢ > 0}
and {L > 0}. Ideally, the function L will segment from 2
aregion inside which there is only the goal object.

Some restrictions are needed to control the labelling
function L. First, if {(z,y) € Q : L(z,y) > 0} is empty,
the shape comparison term (11) will exert no effect on the
segmentation process. Therefore, the region in which L
takes positive value should be as large as possible. Sec-
ond, some regularity should be added to the boundary, i.e.,
the zero level set of L, by which L separates the domain 2.

Thus, we revise (11) as follow:

Eunape(d, L, ) = /Q (H()H(L) — H(p))*de

i /Q (1 - H(L))dz + pa /Q VH(L)dz, (12)

where p1 > 0 and po > O are two parameters. In this ex-
pression, the second term encourages the area of the region
{(z,y) € Q: L(z,y) > 0}, and the last one smoothes the
boundary by which L separates the domain 2.

However, it is elusive to choose an appropriate u;. Too
large p; will weaken the action of the labelling function be-
cause the region {L > 0} will contain other objects besides
the desirable object. On the other hand, if it is so small, L
could be trapped at a state where the region {L > 0} could
be smaller than what it should be. Therefore, it is unlikely
for the labelling function to control itself independently.

To overcome this difficulty, and noticing that when the
ideal segmentation for the goal object is obtained, the refer-
ence shape function ¢ should be also close to segment the
object, we introduce an additional term as:

) = / (= e 2H(®)
(- (1~ H))}dz, (13)

where ¢; and cy are the same variables in Chan-Vese’s
model (3). Generally, this term will be small when the re-
gion {¢» > 0} contains large regions occupied by objects
and small regions of background. Therefore, the term pre-
vents the reference shape from stopping at a smaller scale
than the desirable object. Then, with the interaction be-
tween ¢ and L in the shape comparison term (12), the la-
belling function L can be controlled less difficultly.

By combining all the above terms (3, 12, 13), our model
can be written as:

E(¢a '(/)a La C) = Ecv+ Eshape + E‘l,[la (14)
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or explicitly,

B o= [l @)+ el - HE)
Q

A / (H(@)H(L) — H($))?
ta [ (= HE)+ g [ VD)

v / (e H@) + (u— e2)’(1 — H@)),
Q
(15)

where ¢ = (¢1,¢2), and A, p1, pe and v are nonnegative
parameters.

Remark 1: In this functional, we omit the length term in
Ecv. Itis partially because that the prior shape may control
the smoothness of the zero level set of ¢ to some extend,
and on the other hand, without the length term, a fast way
for minimizing the functional can be developed, which will
be discussed in the following section. However, even with
length term, one can use the ideas in [19].

Remark 2: With the term E, (13), the parameters j; and
L2 become easy to choose. In fact, we fix them for all the
experiments listed in this paper.

Remark 3: Our model can also be easily extended to
more general cases that permit affine transformations be-
tween the prior shapes and the desirable segmented ob-
jects instead of only orthogonal transformations discussed
in this paper. These affine transformations will allow inex-
act matching of shapes, and make the model more robust.

5. Numerical algorithms

In this section, we discuss the numerical algorithms for
minimizing the functionals presented in the last section. We
first provide a proof of a fast solution principle, which was
mentioned in [7] and is similar to Song and Chan’s method
[19], for minimizing Chan-Vese’s segmentation model [3]
without length term. We thus extend the principle to the
minimization of our proposed functionals.

5.1. Numerical algorithms for the simple case
Recall the functional (10):

Bed.w) = [ (=) H@)+ (=) - ()

o [ () - H)®

Here, we omit the length term in the Chan-Vese’s model.

Then, similarly as Chan-Vese’s method in [3], the mini-
mization of functional (10) is performed by solving the fol-
lowing equations (16) ~(21):

fQ uH (¢)dzdy

“ I H(¢)dzdy ’

_ Jyu(i— H$)dsdy
© = a-Awd

and for the shape function 1), the gradient descents with re-
spect to the four-tuple (a, b, r, ) are given as follows:

5 = [ - HE@) oy cost
(et )0 W) dedy,  (17)
o = ()~ HO) (e ) sind
(@ ) cos Ol dady,  (18)
or * ok
5 = L) =A@ )
oz (2", y" )2 + thoy (2, y™)y" }6 () dzdy,
(19)
5 = |~ HO rin @ )y

+rihoy (27, y7)" Y0 (¢ )dxdy, (20)

where g is a fixed signed distance function representing
the given shape, and ¥ is related to ¢y via (2), and

*
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€T =
r
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and for the segmentation function ¢,

99

5 —~{(u—c1)? = (u—cp)?

+2X(H(¢) — H())}6(0), @n

where §(x) is the derivative of the Heaviside function H (z)
in the distribution sense.



In summary, for each iteration in the experiment, as in
[3], we can update c1, c2, 1 and ¢ one by one according to
formulas (16) ~(21).

However, due to the fact that we only need the sign of the
segmentation function ¢, we will update it instead of using
formula (21) but the following principle:

6 = {1_,1 A(¢,,¢) > 0; 22)

A(d,1h,c) <0
where A(¢,1h,¢) = —{(u—e1)? — (u—e2)? + 2A(H(¢) -
H(w))}.

This principle will accelerate the minimization process
remarkably. This is because this principle only cares about
the sign of ¢ (through H (¢)), and it thus saves lots of com-
putational time which is wastefully spent in updating the
value of ¢ instead of its sign by using (21). This idea can be
found in [7, 19].

In the following theorem, we prove that the above prin-
ciple is equivalent to the conventional gradient descent
method on the Euler-Lagrange equation if we minimize
Chan-Vese’s functional without length term [3]. We thus
provide another proof for Song-Chan’s one step conver-
gence theorem [19].

Without length term, Chan-Vese’s functional reads:

E(ci,c¢2,9) /{u—c1 (4)
+(u = e2)*(1 = H(¢))}dw, (23)
and the Euler-Lagrange equation for updating ¢ is:
0 .
X = -’ - @@, 09

and ¢y, ¢y are given by (16), (16).
In this case, the fast solution principle becomes:

B 1, —[(u—e1)? — (u —¢2)?] > 0;
0 = {—1, “lu—e)? = (u—c)?] <0. P
Then, we have the following theorem.

Theorem 1. Let u : Q — R be a binary image defined
on the domain ), for simplicity, denoted as u = x a(z,y),
where X 4 is the characteristic function of A C €, and
¢: Q x {t > 0} = R be the segmentation function. Then
the minimization of the Chan-Vese’s functional by perform-
ing (16), (16) and (24) will be equivalent to the procedure
by performing (16), (16) and the principle (25).

Proof. For convenience, let us replace c¢1, ¢2 by ¢1(t), ca(t)
in expressions (16), (16) and (24). And without loss of gen-
erality, suppose ¢; (0) > ¢3(0), which are derived from (16)
and (16) with the initial segmentation function ¢(z, y, 0).

We claim that: by performing (16), (16) and (24), the
term (u — ¢1(t))? — (u — c2(t))? will keep the sign.

In fact, the amount (c1(t) — c2(t))? will be non-
decreasing as t —ox. This is because:

dditl = [/U5 Yo —ca(t /5 )¢t

- m/g(u_01(t))6(¢) t
1

i (o KL CIRUREL)

+(u = e2(t))*10(9), (26)
then, if c2(t) < ¢1(t), thus, 0 < c2(t) < e1(t) < 1, it s
easy to check that:

(u—c1()[—(u—c1(t)* + (u—c2(t))?] >0, (27

whenever u takes value 1 or 0. Therefore, dey/dt > 0.
On the other hand, if c2(t) > ¢ (t), we have de; /dt < 0.
Consequently,

dCl

(ex(t) = e2(t) 5 > 0, (28)

similarly,
t e 29
(ex(t) - ex() T2 <0 29)

Combining (28) and (29), we have:

d(ci (1) = e (t))?
TZO,

that is, the amount (¢ () — c2(t))? is non-decreasing.
By the assumption, ¢; (0) > ¢(0), we may arrive that:
¢1(t) > eo(t) for any ¢ > 0. Consequently, the term (u —

c1(t))? — (u — c2(t))? will keep the sign as t —x.
Recall (24):
0
2 = lw-a) - - e)1)

Since the right side will never change sign, i.e., the sign is
the same as the sign of —[(u — ¢1(0))? — (u — c2(0))?].
Therefore, if —[(u — ¢1(0))? — (u — ¢2(0))?] > 0 at point
(z,y) € Q, ¢(z,y,t) will be positive as ¢ —x, otherwise
¢(z,y,t) will be negative as t —»ox. This is just the princi-
ple (25). O

Remark 4: The theorem shows that it is reasonable to use
(22) to minimize the functional (10) to some extend. On the
other hand, it will be unavoidable to see some fuzzy bound-
aries during the evolution if we apply the principle to very
noise images. In this case, we prefer to use the conventional
way with the length term.



5.2. Numerical algorithms for the general case

We now return to discuss the numerical algorithms for
the functional (15). Similarly as discussed in the previous
section, we update c1, ¢, L, 1) and ¢ for each iteration in
the experiments as follows:

__ JyulH©) + vHE)dsdy
v S W) o)y O
) Jou((1— H(¢)) +v(1 H(¢)))dwdy 31)
2 [o(1—H(¢)) +v(1 — H®)))dzdy ’
and
% = —MH(¢)(1—2H(®))|VL| + 1 |VL]
VL
+ 12| VL|V - (IVL|) (32)

As for the shape function i, we replace the term
(H () — H(¢)) in (17)~(20) by the following one:

2MH () = H($)H (L)) + vl(u — e1)* = (u — ¢2)*], (33)

and

d¢ 2 >
a —0(){[(u = e1)” = (u = ¢2)7]

+2NH(L)(H(6)H () — H(L)}. (34)

To speed up the minimization process, instead of (34),
we update ¢ with the principle similar to (22), which reads:

_ 1, A(p, ¢, L, c) > 0;
= {—1, A(¢,9, L,c) < 0. (35)

where A(¢,¢,L,c) = —{[(u — c1)? — (u — 2)?] +
2NH (L)(H(9)H () — H(L))}.

Moreover, we use local level set method, which was pro-
posed by Peng et al. in [17], to update the labelling function
L, e.g., we only calculate L in a tube around its zero level
set instead of the whole domain 2. All these techniques
make the minimization process much more faster than the
conventional gradient descent method.

6. Experiment results

In this section, we only present experimental results for
the general cases (section 4.2) since the simple case (section
4.1) can be included in the general ones. Here, we show the
results for two real images. One is a hand occluded by other
objects (Figure 1) and the other is the same hand with some
missing parts (Figure 2). The prior shape is a similar hand.

To view the segmentation process clearly, we list three
states (initial, middle and final) for each function: segmen-
tation function ¢, labelling function L, shape function ) and
the goal segmentation which is represented by the boundary
of the region {¢ > 0} (N{L > 0}. Specifically, for each re-
sult, the first row lists the original image and the prior shape;
from the second row to the fourth row, each column respec-
tively represents the initial, middle and final states of the
segmentation function ¢, labelling function L, shape func-
tion 1, and the goal segmentation which is represented by
the boundary of the region {¢ > 0} ({L > 0}.

) =T
{;'[ B

Figure 1. The first row lists the original image and the
prior shape. From the second row to the fourth row, each
column respectively represents the initial, middle and final
step of the segmentation function ¢, labelling function L,
shape function 1), and the goal segmentation which is repre-
sented by the boundary of the region {¢ > 0} N{L > 0}.
In this experiment, the parameters chosen are: A = 3.0,
p1 = 0.2, u2 = 0.2, v = 2.0. This example verifies that
our model can capture an object occluded by other ones via
the supervision of the prior shape from a real image.

From these two examples (Figure 1 and Figure 2), be-
sides the segmentation of the desirable object, we also find
that the labelling function successfully separates the de-
sirable region from the other region in the image domain.
These results demonstrate that our model can segment an
object whose shape is similar to the prior shape from an im-
age even though the object is occluded by other ones (Figure
1) or has some missing parts (Figure 2).



Figure 2. The first row lists the original image and the
prior shape. From the second row to the fourth row, each
column respectively represents the initial, middle and final
step of the segmentation function ¢, labelling function L,
shape function 1, and the goal segmentation which is repre-
sented by the boundary of the region {¢p > 0} {L > 0}.
In this experiment, the parameters chosen are: A = 2.0,
p1 = 0.2, po = 0.2, v = 2.0. This example shows that
our model can also be applied to segment an object similar
to the prior shape by filling in the missing parts from a real
image.

7. Conclusion

In this paper, we propose a level set based variational
model for segmentation using prior shapes. Inspired by
Cremers’ work [5], we also introduce a labelling function
which, together with the level set function for segmentation,
dynamically indicates the region with which the prior shape
should be compared. Our model is capable of segmenting
an object from an image based on the image intensity as
well as the prior shape. The proposed model permits trans-
lation, scaling and rotation of the prior shape. In addition,
a fast way is established for the minimization of our func-
tionals.
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