
SECOND-ORDER MODELS FOR COMPUTING DISTANCE TRANSFORMS

Siddharth Manay Anthony Yezzi

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332, USA
email: smanay.ece98@gtalumni.org, anthony.yezzi@ece.gatech.edu

ABSTRACT
In this paper we present two different second-order ac-

curate numerical algorithms for computing distance func-
tions (solutions to the Eikonal Equation) around a curve.
Both methods rely upon a local approximation of the level
curves of the distance function as concentric circles (rather
than straight lines implicitly assumed by most fast marching
implementations, for example) and use the resulting geom-
etry to yield a more accurate estimate of distance values at
nearby gridpoints. The first scheme presented tries to esti-
mate this geometry from an initial first order accurate esti-
mate (yielded by previous fast marching schemes, for ex-
ample) in order to find an error correction term to improve
the initial estimate. The second scheme, on the other hand,
directly estimates this second order model from the data in
order to extend currently solved distance values to nearby
unsolved grid points. Both schemes strictly adhere to an
upwind criterion, allowing these schemes to handle shocks
in the distance function in the same way they are handled by
previous schemes. We show the improved accuracy of the
resulting distance functions compared to more standard fast
marching methods using ground truth examples.

1. INTRODUCTION

A distance function is a mapping that describes the distance
from a point to a given set, usually a surface embedded in
Rn. In many applications, the surface is known and does not
change, so the distance function can be computed a priori.
Applications that rely such mappings include registration,
as in [1].

There are many algorithms to compute discrete approx-
imations of a distance function, ranging from chamfer algo-
rithms to PDE-based frameworks (as in [6]) and fast march-
ing algorithms. These range in accuracy and differentiabil-
ity. Even for accurate algorithms, such as the fast marching
algorithm (see [5] and [3]), the accuracy of the function is
limited by the accuracy of the differencing scheme. Meth-
ods that rely on one-sided discretized derivatives will result
in distances that are locally accurate only to first order.

We present a local model of distance functions derived
by approximating the level sets of the function as concentric
circles. We are motivated to use circles as the basis because
these level sets are more circular as distance increases.

In the first algorithm presented in this paper, we esti-
mate this osculating circle model from the numerically cal-
culated curvature of an initial first order estimate of the dis-
tance function. From this, an estimate of the error in the
initial first-order approximation is calculated and then used
to correct that approximation.

In the second algorithm, we directly estimate the os-
culating circle model from the data and use this model to
extend already calculated distances to nearby grid points
where distances have not yet been calculated. In addition
to the increased accuracy of the distance calculation, this
second model-based approach gives the advantage of al-
lowing us to obtain the first and second derivatives of our
computed distance function directly from the model, rather
than through finite differencing methods. This yields im-
proved accuracy and more stable behavior in the derivatives
of the distance function, which is advantageous in appli-
cations such a registration where quasi-Newton Rhapson
schemes require calculation of both the gradient and Jaco-
bian of numerically computed distance functions. Finite dif-
ferencing schemes, particularly for second derivatives in the
vicinity of shocks, tend to yield much noisier results.

2. ERROR ANALYSIS FOR STANDARD
FIRST-ORDER FAST MARCHING SCHEMES

Most current PDE-based schemes to numerically calculate
distance functions are based upon a first order-accurate dis-
cretization of the Eikonal Equation

‖∇Φ‖ = 1 (1)

where Φ is the distance function. Since information propa-
gates away from the points of zero-distance, upwind differ-
encing schemes must be utilized in approximating the spa-
tial derivatives of Φ. Efficient fast-marching schemes are

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

(a) (b)

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

(c) (d)

Fig. 1. (a) Magnitude of error of standard fast marching
model. White pixels have maximal error (1.2 units) (b) Er-
ror on a cross-section of a 2D distance function. The loca-
tion of the zero-level set is marked with an arrow. A preview
of the curvature-corrected distance computation: (c) Mag-
nitude of error of curvature-corrected model. (d) Error on a
cross-section of the distance function.

also based upon this causality property by using heap struc-
tures to visit pixels in order of increasing distance, allowing
us to solve for values of pixels with smaller distances early
on and then use these solved values to solve for neighboring
pixels with larger distances. We will follow this same pro-
cedure in the second-order accurate algorithms presented in
this paper.

For an unsolved pixel p with solved neighbors px and
py that meet the upwind criteria, the normal first-order dis-
cretized version of Equation 1 is

(Φ[p] − Φ[px])2 + (Φ[p] − Φ[py])2 = 1.

(assuming the grid spacing ∆x = ∆y = 1). This yields a
quadratic equation for the distance value Φ[p], whose solu-
tion after simplification is given by

Φ[p] =
(Φ[px] + Φ[py]) ±

√

2 − (Φ[px] − Φ[py])2

2
. (2)

This equation is the basis of the fast marching algorithm.
Note that the first-order approximation of the derivatives
implies a local planar approximation of the true distance

ppx

py
R(p)

1

1
a

b

o

sq
rt(

2)

R(p) level set

R(px) level setR(py)

R(px)

θ

Fig. 2. Geometry of error analysis.

function with straight line level sets1. In regions where the
true distance function has nonzero second derivatives (re-
gions where the level sets are curved and more circular, as
is typical in distance functions to most objects other than
straight lines) the standard first-order accurate solution of
the Eikonal equation typically used in fast marching tech-
niques has a bias proportional to the curvature of the level
sets. Figure 1 shows the deviation of the first-order value
from the true value in two dimensions and on a cross-section
(taken on a diagonal line through the center of the function)
of a two-dimensional distance function around a point.

To bound the error from this first order prediction we
exploit the fact that, in the specific case above (which we’ll
soon relax), a level set through a point is a circle with radius
equal to the distance at that point. Consider a two dimen-
sional distance function around a point o, and a point p such
that the vector p makes an angle of π/4 with the x-axis. The
adjacent downwind gridpoints are px and py in the x and y
directions, respectively. A diagram of this example is shown
in Figure 2.

Because Φ[px] = Φ[py], substituting these values into
Equation 2 gives the standard fast marching approximation
Φ′[p] = Φ[px] +

√
2/2. We can interpret both terms of the

approximation geometrically as the lengths of the segments
ob and ap in Figure 2. However, the actual distance is the
sum of the lengths ob and bp, so the error in the approxi-
mation is the length ab. Calculating this length yields the
error

E = Φ′[p] − Φ[p] = |ab| = |ob| − |oa|

= Φ[px] −
√

Φ[px]2 − 1

2
.

Note that the error is a function of the radius of curvature
of the level set through the neighboring pixel and therefore
also the radius of curvature of the level set through the pixel
in question (since the radii can be expressed as functions

1Of course, one could use higher-order difference approximations of
the derivatives, but this would require looking two or more pixels away
from the point to be solved. In our second order osculating circle based
models, we will constrain ourselves to looking still only one pixel away,
but will include the diagonal neighbor as well as the adjacent x and y

neighbors

R(px)

px

py

p

R(p)

o

R(p) level set

R(px) level set
R(py) level setR(py)

α

Fig. 3. Geometry of circular approximation for an exterior
pixel and diverging characteristics.

of one another). We may now relax the assumption of a
distance function to a single point by estimating the radii of
the osculating circles to the level curves from a calculation
of curvature rather than the actual distance value itself. The
error in the standard first order fast marching approximation
varies continuously with θ from E = 0 at θ = 0 (where the
upwinding scheme requires the use of a degenerate case of
Equation 2, Φ[p] = Φ[px]+∆x) to its maximum at θ = π/4
and then back to E = 0 at θ = π/2.

3. AN ERROR CORRECTION SCHEME FOR THE
STANDARD FAST MARCHING METHOD

In this section, we augment the standard first-order fast march-
ing technique by adjusting its normally yielded solution by
a term to correct its overshoot/undershoot estimated accord-
ing to the analysis in the previous section by a computation
of curvature using adjacent grid points.

We recall the example in Section 2 of a distance func-
tion to a single point. In that example, all the level sets of
the function were concentric circles, resulting in a simple
geometry where the distance value at a point was related
to curvature via radius. We use a similar model as an ap-
proximation to distance functions in general; that is, we as-
sume that locally the level sets of a distance function may
be approximated as concentric circles with radius equal to
the reciprocal of their curvature (osculating circles)2. In this
case the distance value is still related to curvature via radius,
even though radii and distance are not equivalent. For this
reason we are first concerned with the computation of the
radius of the level set at p based on the data at the neighbor-
ing gridpoints px and py .

The geometry of the model is shown in Figure 3. Here
we assume that the desired point is outside the level set
(and therefore positive) and the that characteristics of the
distance function are diverging. The behavior of the charac-
teristics, whether they are converging or diverging, is deter-
mined by the sign of the curvature; positive curvature indi-

2Note that the osculating circle approximation of the level sets of the
distance function contains as a special case the straight line level curves
implicit in the standard first-order fast marching technique. In this case,
the osculating circles have infinite radii.

px

py

p

R(p) level set

R(px) level set
R(py) level set

o

R(py)

R(px)

R(p)

α

Fig. 4. Geometry of circular approximation for an exterior
pixel and converging characteristics.

cates diverging characteristics in the outward-marching case
and converging characteristics in the inward-marching case.
The known quantities are the radii of the level sets through
px and py (R[px] and R[px] respectively, calculated from
the curvature of the level sets) and the dimensions of the
line segments connecting the three given points (again, we
assume that the distance between adjacent gridpoints is 1).
We note that the point o is unknown, and in general does
not correspond to any significant point on the underlying
distance function.

From the figure, we derive the unknown radius R[p] us-
ing the Law of Cosines.

α = cos−1

(

−R2[px] − R2[py] − 2

2R[py]
√

2

)

R[p] =

√

R2[py] + 1 − 2R[py] cos(α +
π

4
). (3)

We note that this computation is valid only if |R[px] −
R[py]| <

√
2.

The configuration in Figure 4 reflects the case that the
calculation is propagating outwards but the characteristics
are converging. In this situation, the computation of α is the
same, but the computation of R[p] is

R[p] =

√

R2[py] + 1 − 2R[py] cos(α − π

4
). (4)

Two additional cases occur when the computation is prop-
agating inwards. While the distance is increasing, the signed
value of the distance is decreasing. The geometry in the
cases with converging and diverging characteristics corre-
spond to the outward-propagating cases with diverging and
converging characteristics, respectively. That is, if the char-
acteristics are converging, Equation 3 applies, and if the
characteristics are diverging, we use Equation 4.

Lastly, we relate the radius of the level set to the dis-
tance. As in the case of the distance function around a cir-
cle, when the curvature of the level sets is positive, Φ[p] =
sgn(κ)(R − Rl), where κ is the curvature. In two dimen-
sions, to compute the curvature of the level sets embedded

in a function we use the expression

κ =
Φ2

xΦyy − 2ΦxΦyΦxy + Φ2

yΦxx

(Φ2
x + Φ2

y)
3

2

,

where Φx and Φxx are first and second derivatives in the x
direction, etc. However, due to the marching nature of the
algorithm, only points downwind of the current point will
be available. This means that the first and cross derivatives
must be approximated by one-sided differences, where the
appropriate side is chosen based on which neighbors have
been computed and whether they are downwind. We avoid
the necessity of using two downwind points to calculate the
second derivatives and instead compute these quantities an-
alytically from the Eikonal equation. Taking ∇ of both sides
of this expression yields ∇2Φ∇Φ = 0, where ∇2Φ denotes
the Hessian of Φ. Re-arranging gives expressions for the
second derivatives

Φxx = −ΦxyΦy

Φx

, Φyy = −ΦxyΦx

Φy

. (5)

Radius is calculated by R = | 1
κ
|. Given the distance

and curvature values at the p’s neighbors px and py , we can
compute

Rl =
R[px] − sgn(κ[px])Φ[px] + R[py] − sgn(κ[py])Φ[py]

2
.

These are all the quantities needed for the curvature-corrected
distance calculation.

The curvature-corrected marching algorithm is very sim-
ilar in structure to the standard fast marching algorithm. In
summary, the algorithm for the computation of the values
outside the curve proceeds as follows:

1. Initialize the distance values around the curve and
place these solved pixels in a minimum heap.

2. Pop the pixel with the smallest value off the heap.
Mark this pixel, called pixel q, as “done”.

3. For each of q’s neighbors, called pixel p:

(a) Determine whether p has two downwind neigh-
bors with distance values, px and py; these must
have nonzero, finite curvature and satisfy the
condition |R[px] − R[py]| <

√
2.

(b) If the neighbors meet these conditions, compute
κ and R for p’s neighbors, and use these val-
ues to compute Rl, R[p], and Φ[p] as discussed
above and in Section 3.

(c) If not, compute Φ[p] via the standard fast march-
ing model.

(d) Place p in the minimum heap.

Fig. 5. Error due to standard fast marching [LEFT] and
curvature-corrected [RIGHT] marching algorithms.

4. Repeat steps 2 and 3 until the heap is empty.

The algorithm for the interior is similar, but because the
distance values are negative the marching order now begins
with pixels with the largest distance (smallest magnitude)
and proceeds in order of decreasing distance. This requires
the use of a maximum heap, rather than a minimum heap.

The curvature-corrected algorithm requires good esti-
mates of curvature. However, the distance (and therefore
curvature) values at the points adjacent to the zero level set
are very coarsely estimated. More accurate values may be
found by first using the standard fast marching algorithm to
solve for a narrow band around the zero level set, and then
correcting these values with a first order partial differential
equation proposed in [6],

∂Φ

∂t
= sgn(Φ)(1 − ‖∇Φ‖). (6)

This first-order estimate of the distance function around the
zero level set can be used to initialize the curvature-corrected
algorithm.

4. RESULTS FOR THE
CURVATURE-CORRECTION METHOD

In this section we present some preliminary results demon-
strating the benefits of using the curvature-corrected march-
ing technique.

In the first example we wish to compute the distance
function around a circle. (We choose this simple function
because we can easily derive an analytic solution, giving us
a ground truth for comparison). For the reasons discussed
above, for these preliminary tests we initialize the pixels ad-
jacent to the curve with the analytical values. We then run
the curvature-corrected marching algorithm. For compari-
son, we also generate a distance function using the standard
fast marching algorithm initialized the same way.

In Figure 5 we show a comparison of the absolute er-
ror of the standard fast marching and curvature-corrected

0 20 40 60 80 100 120 140

0

0.5

Fastmarching
Curvature−based

Fig. 6. Error on a cross-section of the distance function.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 7. Initial contour for distance function.

models; in Figure 6 we include a one-dimensional cross-
section (taken on a diagonal line through the center of the
function) of the error for both methods. The cascading er-
ror is clearly visible in the standard fast marching results,
increasing further away from the zero level set (where the
values were initialized correctly, marked by arrows on the
figure). The curvature-corrected algorithm does not display
this behavior. The overall squared error for the standard fast
marching algorithm is 488, while the squared error for the
curvature-corrected algorithm is 2.16, a two order of magni-
tude decrease. The curvature-corrected algorithm is a more
expensive algorithm, though, requiring 0.0648 seconds for
the above example on a Pentium IV 900 Mhz, compared to
0.0408 seconds for the standard fast marching algorithm.

In Figures 8 and 9 we test the algorithms on a distance
function generated around the curve in Figure 7. Again
we note that the squared error of the curvature-corrected

Fig. 8. Error due to standard fast marching [LEFT] and
curvature-corrected [RIGHT] algorithms.

20 40 60 80 100 120
0

5

10

15

20

25

30 Fastmarching
Curvature−based

Fig. 9. Error on a cross-section of the distance function.

method is 1.24× 105, compared to 3.41× 105 for the stan-
dard fast marching method.

In Section 3 we noted that the curvature-corrected dis-
tance computation was only valid when |R[px] − R[py]| <√

2. This condition is violated when the curvature to the
level sets of the distance function is ill-defined, i.e. near a
shock in the distance function. The other conditions under
which the curvature-corrected computation is ill-posed are
zero or infinite curvature (although infinite curvature means
straight line level sets and therefore implies that the un-
adjusted first-order accurate estimate needs no correction).
The authors are exploring several options based on the oscu-
lating circle approximation so that this curvature-corrected
method will handle these cases robustly.

5. A DIRECT SECOND-ORDER MODEL

We now put forth another more direct approach utilizing
the same osculating circle approximation of the underlying
level curves to the distance function. In this case, how-
ever, we avoid a numerical curvature computation and di-
rectly fit the values of three neighboring grid points (one
diagonal, one horizontal, and one vertical) to our osculat-
ing circle model. Then, using this model, we can directly
calculate the values for neighboring unsolved pixels. Fur-
thermore, one may analytically compute the gradient and
Hessian of the distance function constructed in this way us-
ing the model parameters, thereby avoiding completely any
discrete derivative approximations. This property is par-
ticularly attractive for variational applications which utilize
derivatives of distance functions.

Given a set of adjacent points on a grid, p0, p1, p2 ⊂ <2

and already computed distance values Φ(p0) = Φ0,Φ(p2) =
Φ2,Φ(p2) = Φ2, at these points, we wish to construct a lo-
cal model of the distance function Φ. The model is based on
the approximation of Φ as a distance function around a cir-
cle with radius R centered at c ⊂ <2 (which is the distance
function consistent with the local approximation of the level
curves by concentric osculating circles). This model will
then be used to calculate the unknown distance at another
nearby gridpoint point p.

5.1. The Case of Diverging Characteristics

Given the radius and center of a circle in the plane, the
signed distance from the circle to any point pi is

‖c − pi‖ − R = Φ(pi) = Φi. (7)

based on the convention that the points inside the circle have
negative distance. This model has diverging characteristics;
a model for regions of Φ with converging characteristics
will be discussed later.

To solve for R and c, we construct the system of three
equations based on the known gridpoints and their values.

‖c − p0‖ − R = Φ(p0) = Φ0

‖c − p1‖ − R = Φ(p1) = Φ1

‖c − p2‖ − R = Φ(p2) = Φ2

To solve this system, first square both sides,

cT c − 2cT p0 + pT
0
p0 = R2 + 2RΦ0 + Φ2

0
(8)

cT c − 2cT p1 + pT
1
p1 = R2 + 2RΦ1 + Φ2

1
(9)

cT c − 2cT p2 + pT
2
p2 = R2 + 2RΦ2 + Φ2

2
(10)

and then subtract Equation 9 from Equation 8 and Equa-
tion 10 from Equation 9 to form the linear set of two equa-
tions

−2cT (p0 − p1) + pT
0
p0 − pT

1
p1 = 2R(Φ0 − Φ1) + Φ2

0
− Φ2

1

−2cT (p2 − p1) + pT
1
p1 − pT

2
p2 = 2R(Φ1 − Φ2) + Φ2

1
− Φ2

2

Rewriting,

Ac = Rb0 +
1

2
b1 (11)

where

A =

[

(p0 − p1)
T

(p1 − p2)
T

]

a 2x2 array

b0 =

[

Φ1 − Φ0

Φ2 − Φ1

]

a vector, and

b1 =
1

2

[

pT
0
p0 − pT

1
p1 − Φ2

0
+ Φ2

1

pT
1
p1 − pT

2
p2 − Φ2

1
+ Φ2

2

]

a vector.

Note that the columns of A are the vectors from p0 to p1

and from p1 to p2. If these points are colinear, A is singular.
However, if these vectors are orthogonal and the grid spac-
ing is ∆x = ∆y = 1, A is orthogonal (so that A−1 = AT).
The rest of this derivation relies on this assumption, but can
be generalized.

By solving Equation 11, c can be written in terms of R

c = RAT b0 +
1

2
AT b1 (12)

This expression can be used to simplify the quadratic ex-
pression in Equation 9. Rewriting the some of the terms
that appear in that equation

cT c = R2bT
0
b0 + RbT

1
b0 +

1

4
bT
1
b1

cT p1 = RbT
0
Ap1 +

1

2
bT
1
Ap1

After some simplification, the quadratic can now be written
as

a2R
2 + a1R + a0 = 0 (13)

where

a2 = bT
0
b0 − 1

a1 = bT
1
b0 − 2bT

0
Ap2 − 2Φ1

a0 =
1

4
bT
1
b1 − bT

1
Ap1 + pT

2
p1 − Φ2

1
,

which further simplify to

a2 = (Φ1 − Φ0)
2(Φ1 − Φ2)

2 − 1

a1 = (Φ1 − Φ0)
2(Φ1 + Φ0) + (Φ1 − Φ2)

2(Φ1 + Φ2)

− (Φ0 + Φ2);

a0 =
2(1 − Φ2

0
− Φ2

2
) + (Φ2

1
− Φ2

0
)2 + (Φ2

1
− Φ2

2
)2

4

The solution to this equation is simply

R =
−a1 ±

√

a2

1
− 4a2a0

2a2

(14)

This gives two solutions for R and c (via Equation 12). We
call the solutions (R1, c1) and (R2, c2). However, the so-
lution is meaningful only if R > 0. Now, the unknown
distance is

Φ(p) = ‖c − p‖ − R.

Further, expressions for the first- and second-order deriva-
tives of the distance function at this point can be derived
analytically from the model, as follows.

∇Φ =
p − c

√

(c − p)T (c − p)

∇2Φ = − (p − c)(p − c)T

√

(c − p)T (c − p)
3

+ I
1

√

(c − p)T (c − p)
,

where I is the identity matrix.

5.2. The Case of Converging Characteristics

Now we slightly alter the previous derivation to model re-
gions of Φ with converging characteristics. We reverse the
convention of the signed distance function around the cir-
cle; that is, points inside the circle have positive distance

and points outside have negative distance. For this model,
the signed distance to any point pi is

R − ‖c − pi‖ = Φ(pi) = Φi. (15)

This model is a similar to the diverging model (Equation 7)
with the exception of a sign change. Because of this, the
derivation of the solution is very similar, resulting in

R =
a1 ±

√

a2

1
− 4a2a0

2a2

(16)

c = −RAT b0 +
1

2
AT b1 (17)

Again, the quadratic results in two solutions that we call
(R3, c3) and (R4, c4) (via Equation 17).

However, comparing Equation 16 to Equation 14, we
see that R4 = −R1 and R3 = −R2. Substituting these
relations into Equation 17, c4 = c1 and c3 = c2. Since
we discard solutions with negative R, the two “viable” so-
lutions are

(|R1|, c1)

(|R2|, c2) .

This results in a simpler calculation; instead of calculating
four solutions from two models, we calculate two solutions
using one model and take the absolute value of R. The two
solutions for Φ(p) are then computed

Φj(p) = sgn(Rj)‖cj − p‖ − Rj ,

where Φj(p) is the jth solution for the unknown value Φ(p),
j = 1, 2.

5.3. Choosing from the Two Solutions

What remains is to choose the correct solution from the two
available solutions. We choose the solution that satisfies
the upwind criteria. If an additional criterion is needed, we
choose the solution that best satisfies the Eikonal condition
‖∇Φ‖ = 1.

6. IMPLEMENTATION

In this section we discuss some implementation details be-
fore outlining an algorithm that embeds the computation in
Section 5 in a heap-based algorithm to compute a distance
function.

In the previous section, the method for constructing the
distance function model proceeded on the assumption that
the given grid points p0, p1, p2 are not colinear. For ease
and speed of computation, we desire p0 − p1 orthogonal to
p1 − p2 so that A will be orthogonal and easy to invert. To
satisfy this condition, we assign the x- and y-neighbors of

p1

p

p0

p2

p

p1p0

p2

p1p0

p2

p

(a) (b) (c)
Fig. 10. Geometries of neighboring pixels. (a) x- and y-
neighbors are available. (b) Only y-neighbor is available.
(c) Only x-neighbor is available.

the current pixel p as p0 and p2, and the “diagonal” neigh-
bor adjacent to all these points as p1. This scenario is shown
in Figure 10 (a). However, in a heap-based marching algo-
rithm, it is not always possible to access both the x- and
y-neighbors of a given gridpoint. When one of these neigh-
bors is not available, we choose the pi’s as shown in Fig-
ure 10 (b) and (c).

The calculation of the discriminant criteria in Section
5.3 is also dependent on the availability of neighboring pix-
els. For the jth solution, we calculate the deviation from the
Eikonal condition as

ej = |1 −
√

(Φ0 − Φj(p))2 + (Φ2 − Φj(p))2|

when both neighbors are available, as in Figure 10 (a). For
pixels that only have one computed neighbor, we calculate

ej = |1 −
√

(Φ1 − Φ0)2 + (Φ1 − Φj(p))2|

for the scenario in Figure 10 (b) and

ej = |1 −
√

(Φ1 − Φ2)2 + (Φ1 − Φj(p))2|

for the scenario in Figure 10 (c).
The direct second-order model-based marching algorithm

is very similar in structure to the standard fast marching al-
gorithm. In summary, the algorithm for the computation of
the values outside the curve proceeds as follows:

1. Initialize the distance values around the curve and
place these solved pixels in a minimum heap.

2. Pop the pixel with the smallest value off the heap.
Mark this pixel, called pixel q, as “done”.

3. For each of q’s neighbors, called pixel p:

(a) Determine whether p has two downwind neigh-
bors with distance values, p0 and p2. If so, as-
sign the pi’s as shown in Figure 10 (a); if not,
assign the pi’s as shown in Figure 10 (b) or (c).

Fig. 11. Error due to two distance transform algorithms.
[LEFT] Fastmarching algorithm: total squared error is
488.2. [RIGHT] Second-Order Model-based algorithm: to-
tal squared error is 0.098.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 12. Initial contour for distance function in.

(b) Compute R, c, and two solutions for Φ[p] as dis-
cussed above and in Section 5. Choose the best
solution from the criteria given in that section.
Compute ∇Φ and ∇2Φ from the same model.

(c) Place p in the minimum heap.

4. Repeat steps 2 and 3 until the heap is empty.

The algorithm for the interior is similar, but because the
distance values are negative the marching order now begins
with pixels with the largest distance (smallest magnitude)
and proceeds in order of decreasing distance. This requires
the use of a maximum heap, rather than a minimum heap.

7. RESULTS FOR THE DIRECT SECOND-ORDER
MODEL-BASED METHOD

In Figure 11 we demonstrate the distance transform based
on the second-order model on a circle. We note that the

Fig. 13. Error due to two distance transform algorithms.
[LEFT] Fastmarching algorithm: total squared error is
2.076 × 103. [RIGHT] Second-Order Model-based algo-
rithm: total squared error is 229.0.

model does not make use of any a priori information about
the circularity of the contour. The left image shows the error
of the standard fast-marching algorithm compared to the ac-
tual ground-truth distance value. For comparison, the right
image shows the error for a distance function calculated us-
ing our direct second-order model-based marching method.
Both methods were initiallized as in Section 4. Again, the
higher-order model yields a much better approximation of
the distance values.

A more complex contour is shown in Figure 12; this
contour’s parametric representation allows us to compute a
ground truth via brute-force for the resulting distance func-
tion. We compare the squared error of the fast-marching al-
gorithm and the second-order model-based method in Fig-
ure 13. The higher-order method reduces the error by an
order of magnitude, at the expense of an increased execu-
tion time of 0.27 seconds verses 0.05 seconds for the fast-
marching algorithm. We note that the current implemen-
tation of this model is not numerically stable everywhere.
Currently, we handle these instabilities by using the fast-
marching algorithm in these regions; however, a stable im-
plementation of the model-based method is the subject of
continuing investigation.

8. CONCLUSION

In this paper we have presented two second-order accurate
numerical algorithms for computing distance functions. These
methods rely on a local approximation of the level sets of
the distance function as concentric circles. The first method
estimates this geometry from discrete curvature calculations
on an initial distance function to find an error correction
term. The second scheme directly estimates this second-
order model from the data to extend solved distance values
to nearby unsolved grid points. Both schemes are imple-
mented in a heap-based algorithm to demonstrate the im-
proved accuracy of the resulting distance functions.

9. REFERENCES
[1] O. Cuisenaire, “Distance Transformations: Fast Algorithms and Ap-

plications to Medical Image Processing”, Ph.D. Dissertation, Labo-
ratoire de Telecommunications et Teledetection, 1999.

[2] C. Y. Kao, S. Osher, and Y. Tsai, “Fast Sweeping Methods for
Hamilton-Jacobi Equations”, UCLA CAM Report, December 2002.

[3] J. Sethian, “A Fast Marching Level Set Method for Monotonically
Advancing Fronts,” Proc. Natl. Acad. Sci. USA, Vol. 93, pp. 1591-
1595, Feb. 1996.

[4] J. Sethian, Level Set Methods and Fast Marching Methods, Cam-
bridge University Press, Cambridge, UK, 1999.

[5] J. Tsitsiklis, “Efficient Algorithm for Globally Optimal Trajecto-
ries”, IEEE Transactions on Automatic Control, vol. 40, no. 9,
pp. 1528-1538, 1995.

[6] M. Sussman, P. Smereka, and S.J. Osher, “A Level Set Method
for Computing Solutions to Incompressible Two-Phase Flow”, it J.
Comp. Phys., vol. 114, pp. 146-159, 1994.

