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Abstract 
 

In this paper we propose a novel algorithm for the 
reconstruction of surfaces from sets of unorganized 
sample points, based on the temporal evolution of a 
volumetric function’s level-set. The evolving front can be 
thought of as the surface that separates two different 
fluids that obey specific laws of fluid dynamics. One 
remarkable feature of this approach is its ability to model 
complex topologies thanks to a novel strategy that allows 
us to steer the front evolution using Voronoi surfaces in 
3D space. Another remarkable feature of this algorithm is 
its computational efficiency, which proved to between one 
and two orders of magnitude better than traditional level-
set approaches [1]  
 
1. Introduction 
 

Modeling surfaces from unorganized sets of points, 
i.e., retrieving surface topology from surface geometry, is 
a long-debated problem in the computer vision 
community. When the point-based data-set is very dense 
and the surface topology is not so complex to generate 
topological ambiguities, the solution to this problem is 
provided by a simple Delaunay triangulation equipped 
with appropriate distance-based criteria. Point-connection 
ambiguities, however, are easy to arise even with dense 
data-sets, and this is confirmed by a very rich literature on 
the topic. 

In general, the solutions to the considered problem can 
be classified into two broad categories: those that directly 
construct the surface (boundary representation), and those 
that define the surface as a constraint in 3D space 
(volumetric representation). Working with boundary 
representations has the advantage of speed and allows us 
to control shape in a very straightforward fashion. 
Surface-based solutions, however, are difficult to use 
when dealing with complex topologies. Conversely, 
volumetric solutions tend to be quite insensitive to 
topological complexity (they may accommodate self-

occluding surfaces, concavities, surfaces of volumes with 
holes, or even multiple objects), but they require a more 
redundant (volumetric) data structure, and a much heavier 
computational load. 

One example of surface-based solution, proposed in 
[2,3], is based on the computation of the signed Euclidean 
distance between each sample point and a linearly 
regressed plane that approximates the local tangent plane. 
The final surface is then obtained by interpolating this 
distance function with a marching cubes algorithm. 
Curless and Levoy [4] developed an algorithm tuned for 
laser range data, which is able guarantee a good rejection 
to point misalignments using the deviation from the local 
tangent plane. Another well-known approach is that of the 
α-shape [5,6], which associates a polyhedral shape to an 
unorganized set of points through a parametrized 
construction. Bajaj, Bernardini, and Xu [7] recently used 
the α-shape approach as a first step in a complete 
reconstruction pipeline. Finally, algorithms based on 
“Delaunay sculpting” are often used (see, for example, 
Boissonnat [8] and Amenta ed al. [9]). Such solutions 
progressively eliminate tetrahedra from the Delaunay 
triangulation based on their circumspheres.  

Algorithms based on the temporal evolution of a level-
set of a 3D function belong to the volumetric category of 
surface modeling solutions [1]. Such methods require a 
volumetric function to be updated at every time step until 
the evolving front (level-set) reaches the desired 
configuration. If the volumetric function is defined on a 
voxset of N voxels per side, in principle the evolution 
requires an order of N3 voxels to be updated for a number 
of iterations that is proportional N. This number of 
updates can be reduced from an order of N4 to an order of 
N3 by restricting the volume of interest to a narrow band 
sorrounding the evolving front [1]. More recently, a multi-
resolution approach to level-set evolution was proposed in 
order to further reduce the number of updates to an order 
of N2 log N [10]. Still, all such solutions need further steps 
to sufficiently reduce the computational cost and bring 
volumetric methods to practical usability. 



In this paper we propose a novel approach to level-set 
evolution that dramatically reduces the computational cost 
of the method down to the level of surface-based 
solutions. In addition, the method that we propose further 
improves the ability of level-set methods to adapt to 
complex topological configurations using Voronoi point-
sets.  

The time-space evolution model of the level-set is 
based on the Navier-Stokes equations [11], which give the 
most general description of a fluid flow. The physical 
model of the system gives us a set of parameters that 
allow us to accurately calibrate the front evolution. 

In order to speed up the convergence of the system the 
fronts of the fluids, instead of evolving freely, are oriented 
towards the nearest sample point. In addition, in order to 
guarantee a fast evolution and a smooth convergence, 
their speed is proportional to the distance from the nearest 
point. 

 
2. A two-fluid evolution paradigm 
 

Our level-set evolution corresponds to that of two 
fluids of opposite mass that evolve in the volume. A 
volumetric function F is defined in such a way to describe 
the content of the two fluids in each voxel and we define 
as ‘internal’ voxels with a negative value of F and as 
‘external’ the ones with a positive value. The resulting 
surface is then identified from the zero level surface of the 
F function that represents the interface between the two 
fluids. At the beginning of the evolution of the system all 
the space is filled with the internal fluid setting each voxel 
to a conventional value of –1. The external fluid sources 
are placed only on the boundaries of the whole space 
setting the value of these voxels to +1. 

From this initial condition the system is left free to 
evolve following an equation based on the Navier-Stokes 
model for the conservation of the mass with a redefinition 
of the speed vector v as defined below.  

The law of mass conservation is a general statement of 
kinematic nature, that is, independent of the nature of the 
fluid or of the forces acting on it. It express the empirical 
fact that, in a fluid system, mass cannot disappear from 
the system nor be created. 

The quantity F is, in our case, the specific mass. The 
general form of conservation law for a system bounded by 
a closed surface S can be expressed in terms of variations 
of F due to fluxes that express the contributions from the 
surrounding points to the local value and through sources 
Q. The flux vector G contains two components, a 
diffusive contribution GD and a convective part GC. In its 
general form, a conservation law states that the variation 
per unit time of the quantity F within the volume Ω, i.e. 
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should be equal to the net contribution from the incoming 
fluxes through the surface S, with the surface element 
vector dS pointing outward: 
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plus contributions from the sources of the quantity F. 
These sources can be divided into volume and surface 

sources, Qv and QS, and the total contribution is: 
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Hence the general form for the conservation equation for 
the quantity F is  
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or, with Gauss’s theorem, for continuous fluxes and 
surface sources: 
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This last leads to the differential form of the conservation 
law, since the last equation is written for an arbitrary 
volume Ω: 
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t
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∂

G Q  

An essential aspect of the conservation law lies in the 
fact that the internal variations of F, in the absence of 
volume sources, depend only on the flux contribution 
through the surface S and not on the flux values inside the 
volume Ω. 

Separating the flux vector into its two components GC 
and GD we obtain a more precise form of the equation. 
Indeed the convective part of the flux vector GC, attached 
to the quantity F in a flow of velocity v is the amount of F 
transported with the motion, and is given by C F=G v . 

The diffusive flow is defined as the contribution 
present in fluids at rest, due to the molecular, thermal 
agitation and is usually proportional to the gradient of F, 
i.e. D Fγ= ∇G , where γ is the diffusivity constant. 

In our algorithm we oriented the velocity v for the 
propagation of both fluxes towards the nearest sampled 
point. Each point, therefore, represents an attractor for 
both the internal and external fluids. The modulus of the 
speed vector is proportional to the distance from the 
nearest point allowing the fluids to gently converge to the 
desired surface. A further diffusive behaviour is also 
taken into account to obtain a more natural flux and a 
smooth interpolating surface. 

We joined together the two contributions of the flux 
defining the convective part as above and implementing 
the diffusive part weighting the contributions from the 
near points with a Gaussian: with this formulation the 



standard deviation σ plays a role similar to the diffusivity 
term γ accounting the contribution of the whole region. 

We found experimentally that a good choice for the 
evolution equation is (1) 
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Experimentally we found that a sharp square function 
that extends only to the nearest neighbours works as well 
as the gaussian, and this is particularly useful for 
discretizing eq. (1).  

In order to speed up computations, only the voxels 
where the derivative of the F(x) exceeds a threshold are 
recomputed at every time step, while all the others are 

kept fixed. In (1) ( )v x is defined as 
α−x p  where p is 

a vector indicating the nearest point to x while α regulates 
the speed of convergence: good values have been found in 
the range between 1.6 and 2.4. Unlike traditional level-set 
algorithms, our approach defines the distance as a positive 
number (α = 2), which results in a faster evolution (farther 
points are assigned a greater speed) and a more accurate 
convergence near the desired surface configuration. 

Another important aspect derived from the fluid 
dynamics model is the viscosity. It is an internal property 
of a fluid that describes resistance to flow. Accounting for 
it prevents interstitial flow inside the object where sparse 
samples are present. It also reduces the curvature of the 
whole surface that can be monitored through an energy 
function defined as: 

2 2 2( ) 2 ( ) ( )xx xy yyS
E f f f d= + +∫ x x x x . 

The lower the value of E the smoother the surface will 
be even in poor sample density conditions[12]. In figure 
10 is represented a good reconstruction of a sharp blade 
of an airscrew that testify the effectiveness of our 
algorithm. 

 
3. Medial axis steering 
 

Conventional level-set methods have a hard time 
producing a correct front evolution when dealing with thin 
blades, sharp spikes or deep and narrow holes, as they 
tend to round off sharp details, and level out holes. In our 
two-fluid model we can decide to look at the system from 
the inside or from the outside. From the inside, spikes and 
thin blades appear as narrow holes and grooves, 
respectively. Smoothing corners and spikes can thus be 
interpreted as a failure of the internal fluid to flow through 
such features. In order to get the fluids to penetrate into 
this type of features, a medial axis analysis, derived from 

the Voronoi diagram, is performed. The medial 
axis/surface is defined in [13]. In volume space it’s the 
locus of centers of all maximally sized spheres contained 
within the object. As such it is the ‘center of support’ for 
the object and provides a means to compute local object 
thickness. The medial axis provides, therefore, a valuable 
skeleton for the retention of local thickness [14]. As a 
consequence, if any medial axis meets the level-set zero 
surface, then it means that we are in the presence of one of 
the features described above and that the internal fluid 
failed to flow inside it and stopped too early. This 
stagnation of the wrong fluid inside the feature can be 
solved by selecting the voxels that lie on the medial axis 
and setting them as sources of correct fluid. This allows 
us to locally restart the evolution of the system. 

In order to choose the correct type of source for each 
voxel on the medial axis we have to consider that each 
Voronoi surface outside the object reaches the volume 
boundary so the external fluid sources belong to this type 
of medial axis. 

 
Figure 1. Discrimination of internal and external 
points using Medial Surface, circles represent a 
non-convex discrete curve and crosses are the 
Voronoi vertices that seep into hulls. 

A 2D example of this situation is show in figure 1. The 
extension to the 3D case is quite easy and guarantees a 
correct identification of the points inside convex hulls. 

The determination of the internal medial surface for a 
3D object is shown in figure 2. In this figure we analyse 
two intersecting toroidal surfaces with an elliptic section 
obtained from a mathematical model. The medial axes are 
shown as bright ribbons. Our algorithm can efficiently 
separate the rings avoiding fusion between them. 

An example of the usage of the Voronoi surfaces 
outside a 3D object is shown in Fig. 3; here the image on 



the left-hand side is correctly reconstructed after having 
inserted “external” sources inside the dragon’s mouth 
along the Voronoi vertices. The image on the right-hand 
side, on the other hand, is based on a simple fluid 
dynamic model therefore the mouth ends up not being 
correctly modeled. 

 
4. Improving the accuracy 
 

As already explained above, in order to avoid the 
definition of internal sources the whole volume is 
initialized with internal fluid with the exclusion of the 
boundary of the defined space. In this area we place the 
sources of the external fluid. This approach gives a good 
approximation of the desired surface as the fluids move 
towards it but the initial excess of the internal fluid may 
give rise to a lumpy surface. 

 
Figure 2. Two intersecting rings with their 
internal medial surface. 

In order to overcome this problem, after the 
convergence and the Voronoi surface determination, a 
narrow band is defined around the surface and each voxel 
inside this band is set to zero defining an equilibrated 
presence of both fluids. At the same time all the other 
voxels outside this band are saturated to +1 or -1 
accordingly to their sign. After this step the evolution is 
restarted but now with a substantial equilibrium for the 
two fluids which converge from the same distance 
towards the surface. Now, however, both fluids come 
from opposite sides, giving a better and balanced 
reconstruction for the interface. 

 
5. Near-source local relaxation 

 
Sources that are placed too close to sample points can 

prevent a correct reconstruction of the surface. In fact, an 
excessive flow of fluid could result in an overflow 
through the desired surface. In order to overcome this  

 
Figure 3. Impact of Voronoi-set steering on front 
evolution. Carving voxels out of the mouth of the 
dragon (left) is enabled by Voronoi diagrams. 
Without this mechanism the results would be as 
in the right image. 

 
problem, we monitor the gradient of the interface 

between the two fluids: if it exceeds an assigned 
threshold, then the intensity of the source is reduced in 
such a way to improve the match with the sample points 
location. This problem occurs, in particular, when 
modelling thin blades whose medial axis runs very close 
to the surface and to the volume boundary. One way to 
avoid this problem is to use a larger voxset at the cost of a 
heavier resource usage. Another possible solution is 
obtained calibrating the intensity of each source in the 
medial axis following the local point density and the 
proximity to the surface. 

In Fig. 4 we show the evolution of the system in a 1D 
environment, we placed two points, at x=16.3 and x=86.4, 
placed in a space of 100 points. Their position is correctly 
honoured from the level-set evolution as long as they are 
far from the boundary. In Fig. 5 on the left we can see the 
evolution of a level-set when the point is very close to the 
volume boundary and the external fluid overflows pushing 
the level-set zero inside (the point is placed at x =4.2).  

 
6. Implementational issues 

 
The new fluid dynamic model for the level set 

evolution has been implemented in 2D and in 3D. One 
remarkable feature of the algorithm is its speed. This is 
proved by the rendering times for some well-known data 
sets, which are reported in Table 1 for several resolution 
levels. Various implementational solutions have been 
adopted in order to boost the performance of the proposed 
algorithm. For example, we perform a pre-computation of 
the speed vector field for each voxel and we update the 
volume following a spiral path. This way the updating 
process is oriented from the outside towards the inside 
following the evolution of the front. 

As far as the 3D algorithm is concerned the updating is 
obtained moving from the most external box towards the 
central point of the space; the update is then performed in 
concentric boxes each side of which is updated with a 
spiral path. 
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Figure 4. Temporal evolution of a 1D level-set. 
In figure 6 there is the representation of the level set 

for a circle made of 50 point with a radius of 30 points, 
The time required for the convergence is 3 s. 
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Figure 5. Undesired overflow of the external 
source (left) and its correction reducing the 
source strenght (right). 

The level set evolution in 3D is reported for the 
different sets of points. In Table 1 we list the 
computational time required for rendering the sets of 
points represented in Figs. 7, 8, 9, 10 and 11. The 
rendering was performed on a AMD Athlon™ XP at 2.1 
GHz with 512 MB RAM under Windows™ 2000. In 
figures 9,10,11 we tested the non optimized algorithm on 
datasets acquired with different methods from real 
objects. The resulting mesh is obtained by the marching 
cube algorithm. 

 
Figure 6. 2D rendering of a circle (initial pixel-set 
of 50 pixels per side, radius of 30 pixels). 
Synthetic point data-set. 

These data-sets are interesting because they allows us 
to test our method on slightly noisy data with different 
resolution. 

 
7. Conclusion. 

 
In this paper we proposed a novel volumetric approach 

to surface modeling from unorganized sets of points, 
which is able to overcome the typical problem of 
computational efficiency that is typical of level-set 
methods. In addition, we gave the algorithm the ability to 
model complex topologies by steering the front evolution 
using the medial axes of the data-set. 

 
Set Resolution Points Time (s) 

Bunny 180 35780 40 
Bunny 100 35780 4 

Happy buddha 350 3836 105 
Teapot 256 33061 110 

Airscrew 300 1550316 120 
The Wolf 300 20860 230 

Table 1. Computational time of the 3D algorithm, 
the resolution in the maximum number of points 
along the larger dimension of the object. 

 The results in terms of both computational efficiency 
and topological flexibility are very encouraging, and make 
the approach extremely usable. 
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Figure 7: “Bunny” model (initial voxset of 180 
voxels per side), obtained by wrapping a cloud 
of points. 

 
Figure 9: Teapot model (initial voxset of 110 
voxels per side) obtained by wrapping a cloud of 
points. The data-set was acquired with an image-
based method applied to a real object. 

                                                                               

 
Figure 8: “Happy Buddha” model (initial voxset 
of 350 voxels per side) obtained by wrapping a 
cloud of points. 

 
Figure 10 and 11. On the left a sharp blade of an 
airscrew, model (initial voxset of 180 voxels per 
side), obtained by wrapping a cloud of points. 
The Data-set was acquired with an image based 
system using a structured light. On the right 
"The wolf " model (initial voxset of 300 voxels 
per side), obtained by wrapping a cloud of 
points. The data-set was acquired with a low 
cost image-based 3D model scan system from a 
clay sculpture. 


