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Abstract

We present an interactive approach for segmenting thin
volumetric structures. The proposed segmentation model
is based on an anisotropic weighted Total Variation energy
with a global volumetric constraint and is minimized us-
ing an efficient numerical approach and a convex relax-
ation. The algorithm is globally optimal w.r.t. the relaxed
problem for any volumetric constraint. The binary solu-
tion of the relaxed problem equals the globally optimal so-
lution of the original problem. Implemented on today’s
user-programmable graphics cards, it allows real-time user
interaction. The method is applied to and evaluated on
the task of articular cartilage segmentation of human knee
Jjoints and segmentation of tubular structures like liver ves-
sels and airway trees.

1. Introduction

Medical volumetric images are three-dimensional im-
ages which contain several anatomical structures. Depend-
ing on the imaging method, different structures can be visu-
alized. These images are usually inspected by radiologists.
For diagnosis and therapeutic interventional planning, the
first step usually is an accurate segmentation of one ob-
ject. In many applications (e.g. cartilage) the segmenta-
tion of very thin and elongated objects is necessary which
poses additional difficulties. Current research is focusing on
speeding up this lengthy process by providing either fully-
automatic or semi-automatic segmentation methods. Auto-
matic methods like [12, 13, 14, 15] have proven very useful
for medical studies where a large amount of data has to be
processed. However, in some cases the ability to control and
correct segmentation results is necessary in order to gain the
required accuracy [19]. In this case the goal is to minimize
the required interaction time.
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(a) Geodesic Active Con- (b) Proposed segmenta-
tour model tion model

Figure 1: Segmentation results for articular cartilage of a human
knee joint. (a) is obtained using a standard GAC segmentation
model, (b) is obtained by incorporating edge direction information
into the segmentation model.

Modern imaging technologies such as Magnetic Reso-
nance Tomography (MRT) or Computer Tomography (CT)
provide a basis for in vivo investigations. They deliver a
full 3D dataset of a joint or organ, visualizing the main
anatomical structures. MRT images however suffer from
intensity inhomogeneities caused by inhomogeneities in the
static magnetic field and different thickness of tissue. The
impact of these inhomogeneities can be reduced by using
segmentation methods based on image gradients.

The main contribution of this paper is the use of an
anisotropic weighted Total Variation energy with an addi-
tional global volume constraint to segment thin and elon-
gated structures like articular cartilage directly in 3D. The
volume constraint allows us to define a minimum size of the
resulting segmentation. The segmentation model works in-
teractively, allowing the user to incorporate prior knowledge
into the segmentation process and correct the segmentation
results. The model is solved in a globally optimal manner.
The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work to variational image segmen-
tation. In Section 3 we introduce our segmentation frame-
work and a minimization technique to solve the proposed
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segmentation functional. In Section 4 experimental results
are given. Finally, we draw conclusions in Section 5.

2. Related Work

In the following, we present some of the methods which
are closely related to our proposed variational segmentation
framework. One of the most influential works in image seg-
mentation was the introduction of the Snake model by Kass
et al. [16]. A contour is deformed by internal and exter-
nal forces. A major drawback of this approach is the local
nature of the evolution process which is liable to get stuck
in local minima. Also the topology of the contour can not
be changed easily. To overcome these limitations Caselles
et al. [6] proposed the so called Geodesic Active Contour
(GAC) model which aims to minimize the following energy

|C]
igf{EGAc<c> - / g<|w<c<s>>|>ds}, 1)

where |C| is the Euclidean length of the curve C' and g(z)
an edge detection function which is close to O at a strong
edge in the image I. A frequent choice isg(|VI|) =
e BIVII" " for some reasonable values of o and 3. In a
discrete setting, the energy in (1) is similar to the energy
proposed by Boykov and Kolmogorov [3], which they min-
imized using Graph Cuts. The GAC model integrates the
Euclidean length of a curve with an energy term derived
from image boundaries. In contrast to the Snakes model
this contour is allowed to change its topology during evo-
lution. Nevertheless the minimization based on Level-Sets
is prone to stuck in local minima. In a continuous formu-
lation, the GAC energy can be realized with the weighted
Total Variation (TV) as shown by Bresson [4]. He proposed
to minimize the following energy

uei?of,l} {/Qg(x) |Vul dx} ) (2)

with the image domain €2, and v : Q@ — {0, 1} the segmen-
tation. Bresson showed that by letting w vary continuously
in the interval [0, 1] (2) becomes a convex functional which
can be solved globally optimal. This makes the result-
ing segmentation independent from the initialization. The
TVSeg approach of Unger et al. [22] adds the possibility to
incorporate user information into the segmentation process
by minimizing

inf {/ g(x) |Vu\dx+/ Ax) Ju— f|dx}, 3)
uE[O,l] Q Q

where f : £ — R is a user provided potential function
and A(z) a spatially varying parameter which determines
the balance of the length term and the data term.

(a) (b)

Figure 2: Incorporating edge direction into the weighted Total
Variation term. The relation between primal and dual variable
are depicted for the isotropic segmentation in (a), and for the
anisotropic segmentation model in (b)

3. The Segmentation Framework

Although the segmentation methods described in Sec-
tion 2 are very powerful and applicable to a variety of tasks,
they are not well suited for the task of segmenting elon-
gated objects. The weighted regularization term minimizes
the surface of the resulting segmentation while neglecting
edge direction information and thus prefers objects with a
low surface to volume ratio. Furthermore, in many segmen-
tation tasks, the size of the objects of interest is known. This
information could be used as additional information in the
segmentation process. In order to circumvent these prob-
lems we propose to solve the following minimization prob-

lem:
uienigo {/Q \/VUTD(Z)Vuder)\/Q ufdm}, 4)

where
Koz{u:QH{O,l}:/udxzc}, Q)
Q

andc: 0 < ¢ < fQ dx is a volumetric constraint which
defines a minimum size of the segmentation.

3.1. Length Term

The length term is an anisotropic Total Variation term
which was also used recently by Olsson et al. [20]. D(x) is
a symmetric non-singular square matrix which specifies the
local metric at a given point z. Setting D(x) to the identity
matrix results in the regularization being the Total Variation
of w and results in minimizing the surface area. By setting

D(z) = diag (9(z)?) , (6)

(4) becomes a weighted Total Variation. I : 2 — R is the
image we want to segment. The edge map also contains in-
formation about the direction of the edges, which we com-
pletely neglected so far. To add this information, we define
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D(x) for our segmentation framework as
D(z) = g(z)nn® + nond +nint | (7

where n = % ,no is the tangent of 7 and 71 = n X ng.

The difference between D(z) defined in (6) and (7) is
depicted in Fig. 2. The red line represents an edge. D(x) as
defined in (6) describes a circle which is scaled with g(x).
We refer to this segmentation model as Isotropic Model in
the following. D(z) as defined in (7) describes an ellipse
with its major axis oriented in the direction of the local
edge. The minor axis is scaled with g(x). We refer to this
segmentation model as Anisotropic Model throughout the
paper. The effect of this modification is that Vu is more
likely to be oriented in the edge direction during the mini-
mization process.

3.2. Data Term

The potential function f can be used to define an affin-
ity of the image belonging to the foreground (v — 1) or to
the background (v — 0) region. Setting f < 0 results in
u tending towards positive values during the minimization
process. f > 0 results in u tending towards negative values.
f = 0 means that no information about fore- or background
is given in this area and the pure geodesic energy is mini-
mized.

As seen in the review about level-set methods for image
segmentation by Cremers [I1] the potential function f is
usually given in a form of

f:_logigf‘;v (8)

where P(F') denotes the probability for a region to belong
to the foreground and P(B) the probability for a region
to belong to background. For example, setting P(F) =

Uzpp) _U-pp)? .
e” 22 and P(B) = 202 with up and up being
the mean gray values of foreground and background regions

one arrives at
f = =log P(F)+logP(B) 9)

= U -us?),  (0)

202
which equals the data-driven term used by Chan and Vese
[10] for their Mumford-Shah like segmentation functional,
when neglecting the constant factor 5. In our segmenta-
tion framework we define P(F') and P (B) by Parzen win-
dowing gray value histograms of user-defined foreground
and background regions.

3.3. Solving the Segmentation Model

In this section we present numerical algorithms to solve
the minimization problem (4).

Discrete Setting

For the implementation in a computer, functions and oper-
ators have to be discretized. The image domain €2 can be
discretized by a regular pixel grid of size (X x Y x Z)

" = {(ihy, jhy, kh,) :

11
0<i<X,0<j<Y,0<k<Z}, 1D

where h, hy, h. denote the discretization widths. The posi-
tions in the grid are defined as (3, j, k). The discrete version
of the three-dimensional gradient operator is approximated
using simple forward difference with Neumann boundary
conditions. From now on we will restrict our attention to
the discrete setting.

Minimization

It is well known that functionals like (4) are hard to mini-
mize due to the L' norm |Vu|. Carter [5], Chan et al. [9],
Chambolle [7] propose a dual formulation of the Total Vari-

ation. First, we can rewrite the weighted Total Variation
term as

YV i DDA RV =
DG k) V(i g k)

Then, by applying the Legendre-Fenchel transformation,
(12) can be written as

‘Dz],k:) 12V u(i, j, k) ‘

max @'7 '7]9 ,Di, , 1/2Vuz 7
|\p(i,j,k>\|g1<p( 3 k), D@, j, k) (4,7 )>

13)

which leads to the following saddle point formulation of our
image segmentation energy

min max {<p, D1/2Vu> + (u, )\f)} , (14)

ue K9 peC

with the convex set

C={p:Q—R*|p(,j,k) <1,Vi,j,k€Q}. (15)

Convex Relaxation

The saddle point problem in (14) is convex, but carried out
over a non-convex set K. A common way to make sets like
K convex is by letting u vary continuously in the interval
[0, 1]. This results in

K={u:Q—10,1]: Su>c}, (16)

with S being a 1 x (XY Z) vector of ones. Now we can
apply the convergent primal-dual algorithm of Pock et al.
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[21] and arrive at the following update rules for u and p:

pn+1 =Tl¢o {pn + TDDl/QVHn}
Tl = Ik {un —7p (_ div (D1/2pn+1) + /\f)}
ﬂn-&-l — 2un+1 _ un ,
a7
with @’ = v = 0, p° = 0 and 7p and 7p being the time
steps for the dual and primal update respectively. According
to [21] the time steps are chosen so that Tp7p < 1/ L2
with L2 = ||div|[; = 4(1/h2 + 1/h2 + 1/h?) for a three-
dimensional input image.

Computing the projections

The reprojection of the dual variable on the convex set C'
can be achieved by a pointwise orthogonal projection of the
dual variable onto the unit ball

p(i, j, k)
max{1,[|p(i, 5, k)[|}

The reprojection of the primal variable onto the convex set
K needs more attention since we have to take non-local
constraints into account. Basically, the projection can be
written as computing the minimizer of

. f1 2
= — .t
mvln{2|u | }s

If the second constraint is omitted, i.e. ¢ = 0 the solu-
tion of (19) is given by a simple pointwise clamping of v to
the interval [0, 1]. In order to solve the full projection we
introduce the Lagrange multiplier 7 to account for the vol-
ume constraint and reformulate the constrained minimiza-
tion problem (19) as the following saddle point problem:

HCp(ivjv k) =

(18)

€[0,1], Sv—c¢>0, (19)

1
anin w50 =)+ 3 llu oI} @0

This problem can again be solved using the primal dual al-
gorithm of [21].

7771+1 — 7771 +op (Sf— C)

2"l — max {07 min {17 v"+op(n" T +u/Tp) }}

l+op/Tp

@nJrl — 2,Un+1 — " ,

(21
with 70 = 0 = u, 770 = 0 and the timesteps opop <
1/|S]. This algorithm is iterated until 7) falls below a certain
threshold e.

0

Computing a Binary Segmentation

A binary segmentation is obtained by thresholding v with
t € [0,1]. Chan et al. [8] showed, that a thresholded w is

a global minimizer of the original problem for almost ev-
ery t. For our segmentation model this holds only when
c is set to zero. Lempitsky et al. [17] propose a rounding
algorithm called pinpointing which verifiably performs bet-
ter than simple thresholding to obtain an integer solution.
However, this algorithm has too high computational com-
plexity for our interactive 3D segmentation task. Thus, we
present the user different thresholds of w simultaneously. In
Fig. 3 an example of this thresholding is depicted. In the
upper part of the bone the different thresholds are far apart,
whereas in regions with a distinct segmentation border these
thresholds close to each other. This output can be seen as
additional cue for the user which tells him in which areas
further input is needed in order to obtain a binary segmen-
tation.

(a) (b)

Figure 3: Non-binary segmentation: We present the user a dif-
ferently thresholded u. In the upper part of (a) the segmentations
(depicted in red) are far apart. In (b) the corresponding u is shown.

4. Results

In the following section we will present experimental re-
sults of our segmentation framework applied to real-world
datasets. We will focus on accuracy as well as speed com-
pared to manual segmentations.

All experiments were carried out on a single PC with an
Intel Core 2 Quad processor at 3,4 GHz and 4 GB RAM,
equipped with a NVidia GeForce Tesla graphics card with
4 GB video memory, running a recent 64 bit Linux dis-
tribution. Utilizing this graphics card we are able to han-
dle volumes of 512 x 512 x 300 voxels, which are quite
large datasets. We are able to achieve user interactivity with
frame rates up to 20 fps. We implemented our segmentation
framework using a recent version of CUDA (2.3). A GUI
was created, which allows the user to load volumes in file
formats common for medical imaging (e.g. DICOM, Ana-
lyze), navigate through the dataset, draw and erase weak ( f
like in (8)) and hard (f = co and f = —oo resp. ) fore-
ground and background regions, save and load segmenta-
tions for later analysis and save and load constraints. All
3D renderings were created using ITK-SNAP [23].
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(a) Original Image (b) Image with
added Gaussian
Noise

(c) Segmentation (d) Segmentation
using Isotropic using  Anisotropic
Model Model

Figure 4: Comparison of the segmentation models applied to an
synthetic image. In (b) foreground regions are depicted in green,
background regions in blue. These regions where provided to both
segmentation models. The proposed segmentation model is able
to segment the distorted image correctly.

4.1. Synthetic Example

In Fig. 4 we use an synthetic image to show the influ-
ence of including anisotropic edge information in the seg-
mentation process. In Fig. 4(a) the original image is de-
picted, Fig. 4(b) shows the image distorted with Gaussian
noise, Fig. 4(c) the segmentation with the GAC model and
Fig. 4(d) the segmentation with the proposed model. As
one can see, the GAC prefers convex regions with a mini-
mal length periphery, whereas the additional directional in-
formation also allows to segment the whole “S” correctly.

4.2. Cartilage Segmentation

Segmentation of articular cartilage is a hard task for var-
ious reasons. In addition to the imaging artifacts, cartilage
is a very thin material and its contrast to surrounding soft
tissue like ligaments or muscles is low. Especially the liga-
ments between the medial and lateral condyles of the femur
have the same gray value range as cartilage.

We evaluated our segmentation method using MRT
datasets of human knee joints. All datasets were acquired
using a 3T scanner with a T5-weighted Dess3D sequence.
The voxel resolution is 0.29 x 0.29 x 0.6mm?3. The size of
the datasets is 448 x 512 x 160 voxels. We set the timesteps
7p and 7p for the minimization of the segmentation model

(4) to 0.5. The parameters « = 15.0 and § = 0.55 for the
edge detection function yield the best results for the bone
segmentation for all datasets. The weighting factor A\ was
set to 0.005. Although we are able to process the whole
dataset in terms of memory consumption, it is advisable to
crop the volume to include only the relevant data, to speed
up the segmentation process.

The gray value range of the datasets is scaled to the in-
terval [0, 1]. However, the user may alter the window level
and size to maximize the contrast of the desired object. The
user defines foreground and background regions by simple
drawing on a slice of the dataset with the mouse. As the
user provides more input, the variable u will evolve to the
optimal solution. This evolution process can be observed,
while the algorithm remains interactive. After the first input
is provided, it usually takes several seconds until the opti-
mal solution is found. When modifying the segmentation,
the algorithm reacts very fast, even for large datasets.

Directional Edge Information

In order to show the impact of using directional edge in-
formation, we segmented the cartilage of a whole joint in
3D with directional edge information. We then switched to
the GAC model, leaving the user-provided foreground and
background regions constant. In Fig. 1 the differences be-
tween the two models is depicted using 3D renderings from
the same viewpoint. As one can see, the addition of di-
rectional edge information requires less user interaction to
segment objects with a high surface to volume ratio, like ar-
ticular cartilage, successfully. Figure 5 shows the segmen-
tation result of another data set. All segmentation models
in Fig. 5(b), (c) and (d) were provided the same user input
in (a). Only the anisotropic segmentation model is able to
segment the cartilage surfaces with a reasonable amount of
user input.

Speed Comparisons

For speed examinations, we segmented several datasets and
aimed for an accurate segmentation of the full cartilage of
femur and tibia, with special focus on the medically rele-
vant contact area of these surfaces. We measured the time
until we were satisfied with the segmentation result for each
cartilage and bone separately.

We can conclude that an experienced user is able to seg-
ment the femoral and tibial bones and cartilage surfaces of
a human knee joint in 30-40 minutes. A manual segmenta-
tion using simple drawing tools and specialized touch dis-
plays usually lasts 2-3 hours, as shown by McWalter et al.
[18]. They were able to segment the cartilage of patella
and tibia in 60 minutes each. Note that the segmentation
of the femoral cartilage is difficult because of the ligaments
between the medial and lateral condyles. We estimate an
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(a) Seeds

(b) Isotropic Model

(c) Isotropic Model + vol-
umetric constraint

(d) Anisotropic Model

Figure 5: Segmentation results of the cartilage surfaces of a human knee joint. The user input in (a) was provided to both segmentation
models. While this is sufficient for the anisotropic segmentation model to correctly segment the cartilage (d), the Isotropic Model fails
(b).An additional volume constraint causes the Isotropic Model to leak out (c).

other hour for the segmentation of this cartilage surface us-
ing their method.

Using the Volume Constraint

The global volumetric constraint enables the user to define
a minimum size of the segmentation. The user interface of
the designed segmentation application shows the user the
current segmentation size. Within a study, the volume of
bone and cartilage stays roughly the same. Thus, after the
first successful segmentation the user sets ¢ to the current
segmentation size for the next segmentation. This reduces
the amount of necessary user input. In our Experiments we
found out that 10-15% of the voxels belonging to femoral
cartilage have to be provided by the user, and 15-20% of
the voxels belonging to tibial cartilage. With a volumet-
ric constraints these numbers reduced by 5%. Note that in
Fig. 5(c) the volume constraint causes the Isotropic Model
to leak out.

4.3. Tubular Object Segmentation

We applied our segmentation framework to the task of
segmenting medical tubular objects like the airway tree of
the human lung and blood vessels of the liver. The experi-
ments were carried out using CT datasets with an isotropic
voxel size of 0.57mm and an image size of 512 x 512 x 300.
To assist the user in providing foreground and background
regions we applied a tubular structure detector based on an
approach proposed by Bauer et al. [1, 2]. The detections
were used as foreground regions, background regions were
created by thresholding a distance transformation of the de-
tections. Figure 7(a) shows the initial seeds for the segmen-
tation of a liver vessel dataset. Figure 7(b) shows the seg-
mentation result using the isotropic segmentation model, (c)
with an additional volume constraint and (d) the segmenta-
tion with the Anisotropic Model. As one can clearly see in

the magnification, the Anisotropic Model is able to segment
the fine details of the vessels near the border of the liver.

The segmentation of one human airway is shown in Fig.
6. Figure 6(b) shows the segmentation result of the GAC
model. In Fig. 6(c) an additional volume constraint ¢ was
provided to force the segmentation to reach also the fine
structures at the end of the airway. The Anisotropic Model
is able to segment also the fine details in the bottom right of
Fig. 6(d).

5. Conclusion

This paper presented a interactive segmentation frame-
work for thin volumetric structures. This framework com-
bines local anisotropic edge information with a global vol-
ume constraint. In contrast to the energy formulation of
Boykov and Kolmogorov [3] we are able to formulate a non-
local volumetric constraint ¢ which can be very useful for a
variety of segmentation tasks where the size of the object
is roughly known. Due to the continuous formulation we
do not suffer from metrication errors during the minimiza-
tion process. The used minimization algorithm is proven
to find the globally optimal solution for our segmentation
problem. The iterative minimization of the segmentation
model can easily be computed in parallel because in each
update step every voxel only depends on its neighboring
voxels. This perfectly suits the implementation on a modern
user-programmable graphics card.

In Section 4 we applied our segmentation method to real-
world datasets. We were able to achieve a considerable
speedup compared to manual segmentation methods. In our
experiments we found out that the limiting factor was the
user interface. Future work will have to deal with improving
the user interaction with three-dimensional data sets and vi-
sualization of the intermediate segmentation result directly
in 3D. As shown in Section 4.3 the potential function may
not only be provided by the user but also by specifically de-

3182



Segmentation
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(a) Seeds (b)

using (c)
ing Isotropic Model
volumetric constraint

Segmentation  us- (d) Segmentation using
+ Anisotropic Model + vol-
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Figure 6: Segmentation of an airway tree: Comparison of different segmentation models. Note the fine details which can only be segmented
using directional edge information in the segmentation model.

signed detection algorithms. A statistical model based on
previous segmentations which improves with every newly
segmented object would also help to minimize user interac-
tion and will be part of our future research.
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