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Abstract. Curvilinear structures are common in medical imaging, which
typically require dedicated processing techniques.We present a new struc-
ture to process these, that we call the polygonal path image, denoted P.
We derive fromP some curvilinear structure enhancement and analysis al-
gorithms. We show that P has some interesting properties: it generalizes
several concepts found in other methods; it makes it possible to control
the smoothness and length of the structures under study; and it can be
computed efficiently. We estimate quantitatively its performance in the
context of interventional cardiology for the detection of guide-wires in X-
ray images. We show that P is particularly well suited for this task where
it appears to outperform previous state of the art techniques.
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1 Introduction

Curvilinear structures appear naturally in the human body and thus in medical
images. Their segmentation is a specific but extensively studied topic that covers
a wide variety of naturally elongated biological structures and medical tools: vas-
cular and cerebral structures and interventional tools like catheters, guide-wires,
etc. In this paper, we propose a locally shortest path technique for the processing
of curvilinear structures. The proposed technique associates a generalization of
several state of the art techniques, an intuitive parameterization, and an effi-
cient computational scheme. We illustrate its performance for the difficult task
of guide-wire segmentation in X-ray fluoroscopy. We propose quantified results
on clinical data and comparison with other state of the art techniques.

2 Background

2.1 Guide-Wire Detection in X-Ray Fluoroscopy

Interventional radiology/cardiology therapies imply inserting guide-wires into
the vascular system of patients under the monitoring of X-ray video, called fluo-
roscopy. Such procedures are minimally invasive and have been used increasingly
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often in recent years, in areas ranging from coronary angioplasty to tumor em-
bolization. Over the past years, guide-wire detection in fluoroscopic images has
gained interest and maturity among the image processing community [1,2,3,4]. A
large number of applications rely upon its characteristics, such as visualization
enhancement, 3D guide-wire reconstruction and respiratory motion tracking. In
X-ray images, guide-wires appear as thin, dark curves (see Fig. 1 (a)). The chal-
lenge in their detection arises from their low contrast to noise ratio and the
superposition with disturbing clutter and anatomical structures.

2.2 State of the Art

Curvilinear structure segmentation techniques and particularly guide-wire detec-
tion in X-ray fluoroscopy is often presented as a 3-step pipeline: (1) The local
building of a feature map representing the probability of presence of an elongated
structure at each pixel [2,3,4,5,6]. Its computation often involves considering the
neighborhood of each pixel, on which structures are assumed to be straight. (2)
A semi-local feature map reinforcement, typically enhancing responses aligned
along a pattern - e.g. 2nd order, circle or parabola [1], or tensor voting and co-
herence enhancing diffusion. (3) A global structure segmentation. At this stage,
simple operators like thresholding are generally not sufficient, and a higher level
process is invoked to segment the feature map. It may involve grouping [3,4] or
tracking [6].

However some techniques, like locally shortest paths [7] and geodesic path
voting [8] are exceptions to this framework. They discard complex curve models
(linear, 2nd order etc.) instead relying on the concept of path. Locally shortest
paths associate a locally optimal path to every pixel and use the cost of such
paths for segmentation. Geodesic path voting relies on a starting point on the
structure to segment from which a set of shortest paths are computed to a
large number of automatically determined endpoints in the image. The geodesic
density (number of paths passing through a pixel) is used to enhance lines.

3 Method

3.1 The Polygonal Path Image

Presentation: As noted above, most line enhancement techniques select at
each pixel a curve that best fits locally following a model: line segment, 2nd

order model or “arbitrary” smooth curves. We propose a single tunable model
that generalizes these steps. Our local curve model is a path, that is characterized
by length, and smoothness. Our aim is still to select at each pixel a best-fitting
curve of given smoothness and length. However, instead of assigning to each
pixel a measure associated to a local curve fitting, we propose to use the whole
set of locally fitted curves over the image to derive more comprehensive line
enhancement techniques.

The smoothness of the paths is controlled by considering regular polygonal
paths defined by two parameters: a total arclength L and a length l of every
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line segment. These two parameters have a simple intuitive meaning and are set
according to the properties of the structure to enhance. The polygonal constraint
is a generalization of the classical local path approach [7] (for l = 1) enabling the
encoding of the a-priori tortuosity of the structures to detect. From a higher level
perspective, L is equivalent to the steps of the previous section. Indeed a single
segment in the polygon is equivalent to the local step (i.e. segment matching).
Considering a few segments is like semi-local processing, reinforcing the aligned
responses of the local step. Finally a large number of segments takes into account
long paths as in the global step.

Definition of P: We consider a potential image I of strictly positive values,
with structures of interest exhibiting lower values. For each pixel p ∈ I, Φp is a
set of admissible paths. We assign to each such path P ∈ Φp a cost J(P) that is
the sum of the values of I along P (Eq. 1). The path yielding the lowest cost in
Φp is denoted the locally optimal path P∗

p at pixel p (Eq. 2). The set of admissible
paths is defined by some constraints: Paths shall be regular polygonal lines of
given length L, and shall have controlled curvature: at each pixel the path shall
be included inside a cone of given orientation and aperture [7]. These constraints
enforce locality, the smoothness that is often expected in medical images, and
basically defines a search range around each pixel. We call the “polygonal path
image” (noted P) the structure that contains a path and its cost for each pixel.

J(P) =
∑

p∈I

I(p).1P(p) (1) P∗
p = argmin

P∈ΦL
p

J(P) (2)

Complexity: The computation of P with a brute force approach has expo-
nential complexity with regard to L: O(LkL). Computing all the locally optimal
paths in the image for n polygonal segments before considering the optimal paths
of n+ 1 segments, allows us to achieve linear complexity O(L) by adapting the
original algorithm of Vincent [7]. This makes it possible to consider P with long
paths (e.g. one hundred pixels). For example, it takes approximately 10s to pro-
cess a 5122 image with such long paths. In terms of memory, we require the
initial image times the number of polygon segments to store the paths.

3.2 Structure of the Path Image

Some paths originating from random locations on a clinical image are shown on
Fig. 1 (b). We note that paths tend to converge into bundles around the main
linear structures, where the cost in the potential image is lower. Those origi-
nating outside of the linear structures take the shortest possible way to reach
them. Those that start directly on linear structures stay on them until the end
or until paths constraints are exceeded. High path density is thus characteristic
of the linear structures. Also, the set of paths intersecting at a pixel convey some
local geometry information on the linear structures. Fig. 1 (c) illustrates paths
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(a) (b) (c) (d)

Fig. 1. (a) X-ray fluoroscopy image from an angioplasty exam illustrating a guide-wire,
with a long smooth curve appearance and low contrast to noise ratio. (b): 500 locally
optimal paths originating from random locations. Observe their tendency to converge
to the linear structures of the image and especially to the guide-wire. (c,d) The set of
paths intersecting at one given point (belonging to the guide-wire, in (c), and to the
background in (d), in this case the point is indicated by the dark spot).

intersecting at a point on the guide-wire. We observe (i) a high number of paths
crossing at this point – nearly 11 000 in this case (ii) that they are aligned with
the guide-wire in a small neighborhood around the considered pixel.

3.3 Image Processing with P

PathVoting: Weobserved that paths formbundles around themain linear struc-
tures. Therefore we propose that each minimal path vote for all the pixels it passes
through, to reinforce path overlapping. This approach is similar to that of Carlotto
[9] and to geodesic voting [8], which also perform voting on sets of paths. Several
voting schemes are possible: e.g. each vote can count the same, which is equivalent
to counting the number of paths intersecting at one pixel (we note the resulting
image ϑ(P) - Eq. 3), or each vote can be weighted (with a value denoted ϑw(P) -
Eq. 4).We can also restrict voting to the paths thatmeet some a priori criteria, e.g.
preventing very tortuous paths from voting. Such paths occur in parts of the image
were there is little relevant linear structure and close to high contrast objects. To
this end, we define a tortuosity metric τ to penalize abrupt changes in direction,
i.e. 0 for a path with a change of π/2 rad and 1 for a perfectly straight path. τ(P) is
given by Eq. 5 (whereV(k) is the vector formed by two consecutive vertexes ofP).
The operation of votingwith a path smoothness constraint is denoted ϑτmin(P). Its
result is illustrated in Fig. 2 (b).

ϑ(P) =
∑

p∈I

1Pp (3) ϑw(P) = −
∑

p∈I

w(p)1Pp (4)

τ(P) =
1

l2(n−2)

n−2∏

k=1

V(k).V(k + 1) (5)
ϑτmin(P) =

∑

p∈I
τ(Pp)>τmin

1Pp (6)

Pruning in P: Another way exploiting the structure of the path image is to
prune paths so as to select only a small set of relevant and non-redundant locally
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(a) (b) (c) (d) (e)

Fig. 2. (a) Dark top-hat of Fig. 1 (a), used as potential image. (b) Result of ϑτmin=0.6.
Despite a low CNR the guide-wire is significantly enhanced. (c) Path pruning with
x = 50% and τmin = 0.75. Observe how the conjunction of pruning and constrained
path smoothness help segment the guide-wire. (d) Close-up on a guide-wire segment
in Fig. 1 (a) overlaid with the directions extracted from P. They indicate the direction
of the closest curvilinear structure. On the structure itself the direction of the arrow is
not relevant, but the orientation is accurate. (e) Same direction field overlaid on ϑτmin .

optimal paths. To do so, we define a neighborhood relationship between paths
based on the partial Hausdorff distance. Then, we select the path of minimal cost
in P and prune all the neighboring paths. We iterate this process in a greedy
fashion, selecting the path of minimal cost again and pruning its neighbors, until
there is no more path in P or some stopping criterion is reached. The remaining
set of paths (typically less than 100) describes the linear features in the image
(see Fig. 2 (c)).

Estimating Local Orientation: We have illustrated in Fig. 1 that, when
they reach a linear structure, paths tend to follow and align with it. Therefore
the set of paths intersecting at a pixel on a curvilinear structure can be used to
derive its orientation (an angle in [0, π[). Outside of the curvilinear structures
the paths follow the shortest path leading to a linear structure. Their direction
thus indicates the shortest path to line-like structures. To estimate it, let us
consider at a given pixel p, the set of the paths {Pi} intersecting at p. For each
of these paths, we compute the tangent unit vector at point p: {ti}. Then we
find the unit vector vp yielding the maximal sum of scalar products with the
{ti}. This method is illustrated in Fig. 2 (d, e).

3.4 Evaluating and Comparing Line Enhancement Methods

To quantify the performance of our line enhancement techniques, we use ROC
analysis to characterize their ability to assign larger values to the pixels of the
structure of interest rather than to the background pixels. The Area Under
the ROC Curve (AUC) is an estimate of the probability that a classifier will
rank a randomly chosen pixel of the structure higher than a randomly chosen
pixel of the background. When the number of background pixels far exceeds
the number of pixels of the structure of interest, the computation of the AUC
can be restricted to the low false positive rate range, in our case [0, 5%]. We
normalize the AUC by the range, i.e. 5% here. In this context a random guess
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would yield a performance of only 2.5% and a perfect detector 100%. This metric
is denoted the “partial AUC”. In order to illustrate further the performance of
the method we compute the false positive rate for a fixed true positive rate of
90%. Obviously, the better the method, the lower this metric. To compute these
metrics, a trained operator manually defined ground truth T for each image,
representing the centerline of the structure. We denote by D the set of points
detected in an image for a given threshold. In order to take into account the
real width of the curvilinear structure, we define true positives as the pixels of
T that lie closer to D than a pre-defined distance d (typically the radius of the
guide-wire). False positives are defined as the detected pixels that lie further
from T than d. To make our results unbiased w.r.t. the line-width parameter
of the line enhancement techniques, we skeletonize the detected pixels before
computing the detection rates. Finally, in order not to corrupt our assessment
of line enhancement techniques with the presence of other interventional tools
or similar curvilinear structures we also compute the metrics associated to false
positives in an ROI around the marked truth.

4 Results

Our clinical case database consists of 12 clinical sequences of 9 images each, for
a total of 108 images. These images depict angioplasty exams with the injection
catheter, the guide-wire, the angioplasty balloon, the anatomical background,
and occasionally, stents and sternal wires. We compared our technique to two
state of the art line enhancement techniques : Frangi’s Vesselness [5] and Rotated
Filter Bank (RFB) [2]. They were found in several recent publications [2,10] to
constitute the current state of the art for methods that compute in each pixel the
probability to lie in a linear structure. Note that we are aware of dedicated meth-
ods for guide-wire segmentation that return a high level object describing the
guide-wire [3,4]. However, these methods typically rely on low-level descriptors,
and so can benefit from the type of work we present here. We hand-optimized
the set of parameters for each technique independently. Regarding Vesselness, we
set α and β to the values proposed in Frangi’s article [5]. The scale factor σ was
set to 2 pixel: the approximate guide-wire radius. For the RFB we relied on a
study [10] that concluded that a length of 61 and a width of 3 pixels was optimal
for this application. For ϑ(P) and ϑτmin(P), we set : l = 21, L = 210, τmin = 0.6.
The potential image on which the path costs are computed was obtained with a
simple morphological dark top-hat.

We computed the mean (AUCμ) and standard deviation (AUCσ) of the AUC
over the database and the FPR for a given TPR of 90%. We report them graph-
ically in Fig. 3. We observe that the line enhancement techniques derived from
P performed significantly better. This is exemplified by greater AUR values
and lower FPR. The local descriptors RFB and Vesselness performed similarly,
within a few percents whereas P achieves more than twice their performance.
In order to illustrate the performance of the different techniques, we selected an
optimal threshold that minimizes the sum of the missed detection rate and the
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false detection rate. We illustrate the thresholded images obtained with the four
methods in Fig. 3. The outcomes are well aligned with the conclusions driven
from the partial AUC: P based methods perform significantly better. We observe
that the results are generally speaking quite satisfactory: most of the guide-wire
is segmented, and only a few false positives remain in the background. We can
observe how the smoothness constraints in ϑτmin(P) removes some anatomical
false positives that yield tortuous paths. However two problems remain: Over
the whole database, the guide-wire tip, which is very contrasted attracts too
many paths (creating false positives in its vicinity) and is too tortuous to be
accurately fitted by our detector with the same setting as the guide-wire body
- It must be detected separately. Secondly, some linear structures are detected
in the background that are not guide-wires. Since they satisfy all the properties
that we selected for guide-wires, a higher level processing, based on other criteria
can handle them. For instance the presence of a tip is very characteristic of the
guide-wire, as well as the motion that animates it.

Fig. 3. Top : Performance of the four line enhancement techniques over our database.
From left to right: AUC results, the height of the columns is AUCμ and the error bars
represent mean AUCμ ± AUCσ. FPR for TPR= 90%. In both graphs the red series
is computed over the whole image and the blue one only inside the ROI. The ROI
used for FP is a band around the ground truth (see right image). Bottom rows: 2
result examples for optimal thresholds. From left to right : input image, ground truth,
Vesselness, RFB, ϑ(P) and ϑτmin(P). Observe that traditional methods enhance a large
amount of non relevant structures in the background and fail to enhance some parts of
the guide-wire. These problems are not present with ϑτmin(P). Note these are the exact
results of the techniques, no pruning has been performed for the P based methods.

5 Conclusion and Further Work

We have presented a new curvilinear structure processing scheme, the polygo-
nal path image. We have demonstrated its suitability for the task of guide-wire
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detection in X-ray fluoroscopy. We showed that P has several interesting prop-
erties: (i) the ability to control the smoothness and length of the structures to be
analyzed, (ii) a unification of local, semi local, and global curvilinear structure
analysis in a single framework and (iii) an efficient computational scheme. This
structure is a rich descriptor of the curvilinear structures present in images from
which we derived several tools: line enhancement, segmentation and direction
field computation techniques. We have demonstrated the relevance of polygo-
nal path voting schemes for guide-wire segmentation quantitatively in the ROC
analysis formalism and compared it to state of the art techniques. Future work
may include some natural extensions of the usage/construction of P, including
enhancement and segmentation operators on the path image and the quantita-
tive evaluation of the direction fields and of path pruning. Regarding guide-wire
segmentation, P is a new approach to the problem that yields significant im-
provement over state of the art methods. We plan to study in the near future
the incorporation of P into a complete guide-wire segmentation algorithm.
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