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Abstract
Although tracing linear structures in 2D images and 3D

image stacks has received much attention over the years,
full automation remains elusive. In this paper, we formu-
late the delineation problem as one of solving a Quadratic
Mixed Integer Program (Q-MIP) in a graph of potential
paths, which can be done optimally up to a very small tol-
erance. We further propose a novel approach to weighting
these paths, which results in a Q-MIP solution that accu-
rately matches the ground truth.

We demonstrate that our approach outperforms a state-
of-the-art technique based on the k-Minimum Spanning
Tree formulation on a 2D dataset of aerial images and a
3D dataset of confocal microscopy stacks.

1. Introduction
Fully automated reconstruction of tubular tree-like struc-

tures such as the neuronal arbors in optical microscopy im-
age stacks, blood vessels in retinal scans, or road networks
in aerial images remains an open computer vision problem.
Current techniques still lack robustness to imaging artifacts
such as noise, inhomogeneous contrasts, non-uniform illu-
mination, and scene clutter. As a result, practical systems
require extensive manual intervention. For example, in the
recently completed DIADEM challenge [2], the algorithms
that proved best at tracing dendritic trees were also those
that provided the best tools for manual editing. In neuro-
science research, the requirement for such editing dramat-
ically slows down the process and makes it impossible to
exploit the vast amount of data that modern microscopes
can produce.

Part of the problem comes from the fact that techniques
that rely on local criteria to create the trees are generally
greedy in nature and lack robustness to large gaps in the im-
age data while techniques that involve minimizing a global
objective function usually do so using heuristics that can get
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trapped in undesirable local minima.
To overcome these limitations, we introduce a novel

framework, which involves building a tree that is provably
very close to the global optimum of a Quadratic Mixed In-
teger Program (Q-MIP). This is the first contribution of this
paper, which is made practical by the second one, an orig-
inal classification-based approach to assessing the proba-
bility that a tubular path corresponds to a real curvilinear
structure. The resulting probability estimates are reliable
enough so that the corresponding log-likelihood ratios can
be directly injected into the Q-MIP and that its solution cor-
responds to the desired response. This is in contrast to more
traditional approaches to scoring paths by integrating pixel
values along their length, which often fails to adequately
penalize short-cuts and makes it difficult to compute com-
mensurate scores for paths of different lengths.

We evaluated both the path classification and the tree re-
construction components of our approach on a 3D dataset of
confocal micrographs containing neurites and a 2D dataset
of aerial images containing road networks. We compared
our results against manually annotated tubular delineations
in both cases and achieved high classification and recon-
struction accuracies on the evaluated datasets.

2. Related Work
The analysis and reconstruction of tree-like struc-

tures [15, 7, 19] has recently received much attention. Most
automated techniques rely on a local tubularity measure
that returns the likelihood of a point being on the cen-
terline of a tubular structure. Examples include matched
filter scores [1, 25], Hessian and Oriented Flux function-
als [21, 12, 16], and classification scores derived from steer-
able filter responses [14, 13]. They are used to find the most
likely paths using a search mechanism that can be either lo-
cal or global.

Local search methods involve algorithms, which, start-
ing from a set of seed points, incrementally grow branches
by iteratively adding new points and paths [1, 3, 23]. These
algorithms are computationally efficient since the tubularity



Figure 1: Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values [22] results in, from left
to right, shortcuts, spurious branches, and missing branches.
(Bottom) Our classification approach to scoring paths yields
the right answer in all three cases.

measure needs only be evaluated on a small subset of the
image points in the vicinity of the seeds. However, due to
their greedy nature, they lack robustness to imaging noise,
especially when there are large gaps along the filaments.
Furthermore, they typically require separate procedures to
detect branching points.

Global search methods aim at achieving greater ro-
bustness by computing the tubularity measure everywhere.
They then extract paths from the resulting tubularity image
by either thresholding and thinning it [5] or extracting lo-
cal maximum seed points and connecting nearby points by
high-tubularity paths [22]. These paths are then represented
as a weighted graph and the tree-reconstruction problem is
formulated as one of finding the minimum-weight tree that
resides within this graph. Algorithms that find a Minimum
Spanning Tree (MST) [11, 25, 23] or a Shortest Path Tree
(SPT) [20] belong to this class. They can handle gaps in the
image data but can easily produce spurious branches when
seed points that are not part of the tree structure are mistak-
enly detected, which happens all too often in noisy data. As
a result, a post-processing step is usually required and is not
guaranteed to correct all such mistakes.

The recent k-Minimum Spanning Tree (k-MST) formu-
lation addresses this issue by posing the problem as one of
finding the minimum cost tree that spans only an a priori
unknown subset of k seed points [22]. However, the method
relies on a heuristic search algorithm and a dual objective
function, one for searching and the other for scoring, with-
out guaranteeing the global optimality of the final recon-
struction. Furthermore, it requires an explicit optimization

over the auxiliary variable k, which is not relevant to the
problem. By contrast, the Mixed Integer Program formula-
tion we advocate in this paper involves minimization of a
single global objective function that allows us to link legit-
imate seed points while rejecting spurious ones by finding
the optimum solution to within a small user-specified toler-
ance.

The key ingredient that makes this approach practical is
our ability to assign paths connecting seed points probabili-
ties that faithfully represent their true likelihood of belong-
ing to the real tree structure. As a result, the global op-
timum we find fits better to the desired tree in the image,
with fewer missing or spurious branches. To this end, we
develop novel appearance features based on gradient his-
tograms to perform path classification on the basis of train-
ing data. This is in contrast to all other approaches currently
used by both local and global search methods to score the
paths they construct. For example, global methods that rely
on geodesic distances express this cost as an integral of a
function of the tubularity values [22, 18]. Similarly, active
contour-based methods typically define their energy terms
as such integrals over the paths [23, 17]. Since the tubular-
ity values only depend on local image evidence, they are not
particularly effective at ignoring paths that are mostly on the
curvilinear structures but also partially on the background.
Moreover, because the scores are computed as sums of val-
ues along the path, normalizing them so that paths of differ-
ent lengths can be appropriately compared is non-trivial. By
contrast, we will show that our approach returns compara-
ble probabilistic costs for tubular paths of arbitrary length.
Furthermore, our path features capture global appearance,
while being robust to noise and inhomogeneities.

3. Approach
We first briefly outline our reconstruction algorithm,

which goes through the following steps depicted by Fig. 2:

1. We compute a tubularity value at each image location
xi and radius value ri, which quantifies the likelihood
that there exists a tubular structure of radius ri, at loca-
tion xi. Given an N -D image, this creates an (N + 1)-
D scale-space tubularity image such as the one shown
in Fig. 2(b).

2. We select high-probability points in this tubularity im-
age as seed points and connect them through high-
tubularity paths in scale-space. This results in a di-
rected graph (see Fig. 2(c)).

3. Having trained a path classifier using such graphs
and ground-truth trees, we assign log-likelihood ratio
weights to pairs of consecutive edges of a given graph
at detection time (see Fig. 2(d)).

4. We use these weights and solve a Mixed Integer Pro-
gram to compute the maximum-likelihood directed
tree in this graph (see Fig. 2(e)).



(a) (b) (c) (d) (e)
Figure 2: Algorithmic steps. (a) Aerial image of a suburban neighborhood. (b) 3-D scale-space tubularity image. (c) Graph
obtained by linking the seed points. They are shown in red with the path centerlines overlaid in green. (d) The same graph
with probabilities assigned to paths using our path classification approach. Blue and transparent denote low probabilities, red
and opaque high ones. Note that only the paths lying on roads appear in red. (e) Final reconstruction obtained by solving the
Q-MIP problem.

These four steps come in roughly the same sequence as
those used in most algorithms that build trees from seed
points, such as [11, 25, 23, 22], but with two key differ-
ences. First, whereas heuristic optimization algorithms such
as MST followed by pruning or the k-MST algorithm offer
no guarantee of optimality, our approach guarantees that the
solution is within a small tolerance of the global optimum.
Second, our approach to scoring individual paths using a
classifier instead of integrating pixel values as usually done
gives us more robustness to image noise and helps ensure
that the global optimum is close to the ground truth.

4. Q-MIP Formulation
In this section, we first discuss the construction of the

graph of Fig. 2(c), which is designed to be an over-complete
representation for the underlying network of tubular struc-
tures. We then show how finding the most likely arbores-
cence 1 can be formulated as a Q-MIP problem.

4.1. Graph Construction
Building graphs such as the one depicted by Fig. 2(c) is

done in three steps.
First, we compute a scale space tubularity measure based

on the oriented flux cross-section trace measure [16]. This
measure is used to assess if a voxel lies on a centerline of a
filament at a given scale.

Second, we sample seed points from the tubularity image
by iteratively selecting the maximum tubularity points and
then suppressing their neighborhoods. Finally, we compute
paths linking the seed points using a variant of the minimal
path method applied in the scale space domain [18]. There-
fore, a geodesic tubular path connecting seed points vi and

1An arborescence is a directed tree with a distinguished vertex, called
the root, with in-degree zero and such that there is a unique directed path
from it to every other vertex in the tree.

vj is taken to be

pij = argmin
γ

∫ L

0

P (γ(s)) ds, (1)

where P is an exponential mapping of the tubularity mea-
sure, s ∈ [0, L] is the arc-length parameter and γ is a
parametrized curve mapping s to a location in RN+1 [4].
The first N dimensions are spatial ones while the last one
denotes the scale.

4.2. Standard Formulation
Formally, the procedure described above yields a graph

G = (V,E), whose vertices V = {vi} represent the seed
points and directed edges E = {eij = (vi, vj)} represent
geodesic tubular paths linking them. Algorithms [11, 25,
23, 22] that rely on this kind of formalism can all be un-
derstood as maximizing an a posteriori probability given
a tubularity image and optionally a set of meta parameters
that encode geometric relations between vertices and edge
pairs. For example, in the recently published [22], building
the tree is shown to be equivalent to solving

min
t∈T (G)

 ∑
eij∈E

caij tij +
∑

eij , ejk∈E
cgijk tij tjk

 , (2)

where T (G) denotes the set of all arborescences in G, tij is
a binary variable indicating the presence or absence of eij
in arborescence t. caij represents the cost of an edge, which
can be either negative or positive and is computed by inte-
grating pixelwise negative log-likelihood ratio values along
the path connecting the vertices, while cgijk encodes the ge-
ometric compatibility of consecutive edges. As shown in
Fig. 3, these geometric terms are important to eliminate
edge sequences that backtrack or curve unnaturally. This



(a) (b) (c)
Figure 3: Considering geometric relationships between
edges helps at junctions. (a) A closeup view of the graph
built by our algorithm at a branching point. (b) Minimiz-
ing a sum of individual path costs yields these overlapping
paths. (c) Accounting for edge-pair geometry yields the cor-
rect connectivity.

approach, however, has two severe shortcomings. First, be-
cause the caij and cgijk are computed independently, they are
not necessarily commensurate or consistent with each other.
As a consequence, careful weighting of the two terms is re-
quired for optimal performance. Second, optimizing using
a heuristic algorithm [8] does not guarantee a global opti-
mum.

We address the first issue by computing probability es-
timates, not on single edges, but on edge pairs so that both
appearance and geometry can be accounted for simultane-
ously, as will be discussed in Section 5. Given such esti-
mates, we solve the second problem by reformulating the
tree reconstruction problem not as the heuristic minimiza-
tion of an energy such as the one of Eq. 2 but as a solution
of a Q-MIP problem, for which we can find exact solutions.

4.3. Integer Program in Terms of Edge Pairs
Let F = {eijk = (eij , ejk)} be the set of pairs of con-

secutive edges in G and S = {pijk} be the paths corre-
sponding to these pairs. By analogy to the binary variable
tij of Eq. 2, let tijk denote the presence or absence of eijk
in the arborescence. Let Tijk be the corresponding hidden
variable denoting whether pijk truly corresponds to a tubu-
lar structure in the image. Let also t and T be the set of all
tijk and Tijk variables respectively.

Using Bayes’ rule and assuming a uniform distribution
over the image I and the paths S, the optimal arborescence
t∗ ∈ T (G) maximizes

P (T = t|I, S) ∝ P (I, S|T = t)P (T = t) . (3)

Since we encode geometric relationships in the pairwise
edge terms, we use a uniform prior for the arborescences
and drop the prior term P (T = t) from Eq. 3. Further-
more, as hinted above, we assume conditional independence
of image evidence along the tubular paths {pijk}, given
that we know whether their edge pairs {eijk} belong to the

tree structure. We therefore represent the likelihood term
P (I, S|T = t) as a product of individual edge pair likeli-
hoods. Following similar steps as in [22], this leads to

t∗=argmin
t∈T (G)

∑
eijk∈F

− log

(
P (Tijk = 1|Iijk, pijk)

P (Tijk = 0|Iijk, pijk)

)
tijk (4)

=argmin
t∈T (G)

∑
eijk∈F

cijk tijk, (5)

where Iijk represents image data around the path pijk. The
probability P (Tijk = 1|Iijk, pijk) denotes the likelihood
of the path pijk belonging to the tree structure, which we
compute based on global appearance and geometry of the
paths as described in Section 5. The cijk variables rep-
resent the probabilistic likelihood ratios we assign to the
edge-pairs. As we will show next, optimizing the objective
function of Eq. 5 with respect to the constraints t ∈ T (G)
amounts to solving a minimum arborescence problem [9]
with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, we
can express the cost of Eq. 5 as a quadratic function of these
variables. The constraints t ∈ T (G) can also be defined in
terms of these variables by adapting the network flow for-
mulation presented in [9], which provides a compact system
with a polynomial number of variables and constraints. As-
suming that the root vertex vr of the optimal arborescence
is given, the minimization of Eq. 5 can then be reformulated
as the Q-MIP

argmin
t∈T (G)

∑
eij ,ejk∈E

cijk tij tjk (6)

s.t.
∑

vj∈V \{vr}

ylrj ≤ 1, ∀vl ∈ V \ {vr},

∑
vj∈V \{vk}

yljk ≤ 1, ∀vl ∈ V \ {vr},

∑
vj∈V \{vi,vr}

ylij −
∑

vj∈V \{vi,vl}

ylji = 0,
∀vl ∈ V \ {vr},
∀vi ∈ V \ {vr, vl},

ylij ≤ tij , ∀eij ∈ E, vl ∈ V \ {vr, vi, vj},
ylil = til, ∀eil ∈ E,
ylij ≥ 0, ∀eij ∈ E, vl ∈ V \ {vr, vi},
tij ∈ {0, 1}, ∀eij ∈ E,

where the ylij are auxiliary continuous variables that denote
the flow from the root vertex to all others. More specifically,
ylij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal arbores-
cence t∗ does not contain vl and hence such a path does not
exist, then ylij = 0. The first two constraints ensure that



there can be at most one path in t∗ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t∗ includes a path from the root to the vertex
vl passing through edge eil if t∗ contains eil.

Even though this Q-MIP problem is NP-Hard [9], its so-
lution can be found up to an arbitrarily small tolerance2

from the true optimum using a branch-and-cut strategy3. As
a result, this optimization took only a few minutes on a dual
core PC for the examples presented in the result section.

5. Path Classification
The outcome of the Q-MIP procedure introduced in

the previous section depends critically on the probabilistic
weights cijk of Eq. 5, which are assigned to edge pairs.

A standard approach to computing such weights is to
integrate tubularity values along the paths, as in Eq. 1.
However, as shown in Fig. 4, the resulting estimates

Figure 4: Tubular graph
of Fig. 2(c) with edge
weights computed by in-
tegrating tubularity val-
ues along the paths in-
stead of using our path
classification approach.
We use the same color
scheme as in Fig. 2(d) to
demonstrate how much
less informative these
weights are.

are often unreliable because
a few very high values along
the path might offset low
values and, as a result, fail
to adequately penalize spuri-
ous branches and short-cuts.
Furthermore, it is often diffi-
cult to find an adequate bal-
ance between allowing paths
to deviate from a straight line
and preventing them from
meandering too much.

In this section, we pro-
pose a path-classification ap-
proach to computing the
probability estimates that we
found to be more reliable.
More specifically, given a
tubular path computed as
discussed in Section 4.1, we
break it down into several
segments and compute one
feature vector based on gra-
dient histograms for each.
We then use an embedding
approach [24] to compute fixed-size descriptors from the
potentially arbitrary number of feature vectors we obtain.
Finally, we feed these to an SVM classifier and turn its out-
put into a probability estimate.

As shown in Fig. 1, this approach penalizes paths that
mostly follow the true tree structure but cross the back-
ground. Thus, it discourages shortcuts, which is something
that integrating along the path fails to do.

2We used an absolute MIP gap tolerance of 1e-4 in all our experiments.
3We used the Gurobi optimization software for solving the Q-MIPs.

Figure 5: Three aspects of our feature extraction process.
An extended neighborhood of points around the path cen-
terline C(s) is defined as the envelope of cross-sectional
circles shown in black. This neighborhood is divided into
R radius intervals highlighted by the yellow, green and red
tubes (here R = 3) and a histogram is created for each such
interval. A point x contributes a weighted vote to an angu-
lar bin according to the angle between the normal N(x) and
the image gradient∇I(x) at that point.

In the remainder of this section, we describe our path
features, embedding scheme, and training data collection
mechanism in more details.

5.1. Histogram of Gradient Deviation Descriptors
Gradient orientation histograms have been successfully

applied to detecting objects in images and recognizing ac-
tions in videos [6, 10, 24]. In a typical setup, the image is
first divided into a grid of fixed-size blocks, called cells, and
then for each cell, a 1-D histogram of orientated gradients
(HOG) is formed from the pixel votes within it. Histograms
from neighboring cells are then combined and normalized
to form feature vectors invariant to illumination and con-
trast changes. Finally, these features are fed into a classifier
to detect objects of interest. We adapt this strategy by defin-
ing Histogram of Gradient Deviation (HGD) descriptors as
follows.

Given a tubular path γ(s) such as the one depicted by
Fig. 5, with s being the curvilinear abscissa, let C(s) be the
centerline and r(s) the corresponding radius mappings. We
partition the path into equal-length overlapping segments
and, for each, we compute histograms of gradient orien-
tation deviations from the normal vectors emanating from
the centerline. The histograms are populated by points be-
longing to a certain neighborhood N (γ) around the cen-
terline of the path. This neighborhood is defined as the
envelope of cross-sectional circles as illustrated by Fig 5.
To ensure that all the gradient information surrounding the
tube is captured, we extend this neighborhood by a margin
m(s) = K ∗ r(s) proportional to the radii values.

For a given image point x ∈ N (γ), let N(x) be the
normal ray vector emanating from the centerline C passing
by x, and C(sx) the closest point to it. Each such point
contributes a weighted vote ‖∇I(x)‖ to a histogram bin,
which we take to be

Ψ(x)=

{
angle(∇I(x),N(x)) , if ‖x− C(sx)‖ > ε
angle(∇I(x),Π(x)) , otherwise, (7)



where Π(x) is the cross-sectional plane, which we use to
compute the deviation angle when x belongs to the center-
line and the normal ray vector is not defined.

To obtain a description of paths’ appearance on the cross-
sectional plane, we further split the neighborhood N (γ)
intoR equally spaced radius intervals as shown in Fig. 5 and
create a histogram for each such interval. Given B orienta-
tion bins, the radius interval and the angular bin indices for a
point x are then given by min(R− 1, bR‖N(x)‖/(r(sx) +
m(sx))c) and min(B − 1, bBΨ(x)/πc) respectively. For
each segment, this produces R histograms, each one corre-
sponding to a radius interval. We interpolate points within
each such interval to ensure that enough votes are used to
form the histograms. Finally, we normalize each histogram
by the number of points that voted for it.

This yields a set of histograms for each segment, which
we combine into a single HGD descriptor.

5.2. Embedding
The above procedure produces an arbitrary number of

HGD descriptors per path. To derive from them a fixed-size
descriptor, we first use a Bag-of-Words (BoW) approach
to compactly represent their feature space. The words of
the BoW model are generated by randomly sampling a pre-
defined number of descriptors from the training data. For
a given path of arbitrary length, we then compute an em-
bedding of the path’s HGD descriptors into the codewords
of the model. Adapting the sequence embedding approach
of [24], we find the minimum Euclidean distance from the
path’s descriptors to each word in the model. This yields a
feature vector of minimal distances that has the same length
as the number of elements in the BoW model.

To account for geometry and characterize paths that
share a common section, such as the one shown in Fig. 3(a),
we incorporate into these descriptors the maximum cur-
vature along the centerline curve C. It is computed as
argmax‖T′(s))‖, where T(s) is the unit tangent vector.

5.3. Parameters
In all our experiments, we used the same parameters to

compute our HGD descriptors: Segment length 2 pixels;
segment sampling step 0.5 pixels implying a 75% overlap; 9
angular bins; two radius intervals; radius marginK = 0.33,
and a randomly sampled BoW model of 300 codewords.

For classification purposes, we used an SVM classifier
with an RBF kernel. During training, the C and the γ pa-
rameters were optimized by performing a grid search using
a standard 5-fold cross validation procedure on the confocal
microscopy images of Fig. 7. At run time, the resulting pa-
rameters are used for both the neurite and the road images.

5.4. Collecting Training Data
To train the SVM classifier, we obtain positive samples

by simply sampling the ground-truth trees associated to our

training images. To obtain negative samples, we first build
tubular graphs in these training images using the method
of Section 4.1. We then randomly select paths from these
graphs and attempt to find matching paths in the ground
truth tree. For a given path, this is done by finding the two
nodes of the tree that are closest to the start and end points
of the path. It is considered as a true negative if the length
of its largest centerline section that is outside the volume of
the matched path is larger than a threshold, taken to be 4
pixels in all our experiments.

6. Results
We evaluated our approach both on 3D confocal mi-

croscopy image stacks of Olfactory Projection Fibers (OPF)
of the Drosophila fly and on 2D aerial images of a subur-
ban neighborhood. The OPF dataset consists of 9 images,
which we split into a training and a validation set, leaving
3 images in the latter. Similarly, the Road dataset consists
of 14 images, 7 of which are used for training, and 7 for
testing. Sample images from both datasets and our results
are depicted by Fig 7.

In both cases, we used a semi-automated delineation tool
we developed to obtain the ground truth tracings4. Note that
the OPF dataset was used in the DIADEM challenge [2] dis-
cussed in the introduction and that ground truth was avail-
able for it. However, we found it to be both incomplete and
imprecise, in particular with respect to the width and pre-
cise centerline location of the paths, which is why we chose
to use ours.

The DIADEM challenge involved many groups world-
wide. Of these, five made it into the final round and the
ones that scored highest relied on a various levels of man-
ual intervention. We compare ourselves to the k-MST ap-
proach of [22], which was both one of the five and fully au-
tomated. To ensure that the comparison is fair, we extended
the original implementation of [22] by taking into account
path radius values when scoring graph edges. This is done
by integrating the tubularity values along the paths in the
scale-space tubularity image, such as the one in Fig. 2(b).
This is how we computed the weighted graph of Fig. 4.

6.1. Path Classification
To train the SVM classifier, we randomly sampled 10000

positive and 10000 negative paths from the graphs. For as-
sessing the ROC performance, we used 2500 positive and
negative samples at detection time.

Fig. 6(a) shows the classification performance of our
path features on the two datasets. The roads yield a higher
true positive rate (TPR) at a fixed false positive rate (FPR)
than the OPF one, which is mostly attributable to the rich
gradient information available in the road images. Fig. 6(b-
e) provides an analysis of the effect of the feature parameter

4The ground truth tracings and our acquisition software are publicly
available at http://cvlab.epfl.ch/data/delin.
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Figure 6: (a) ROC curves for the Road and OPF datasets. (b-e) Influence of the feature extraction parameters on the
classification accuracy for the OPF dataset.

OP4 OP6 OP8 ny1 ny3 ny6 ny7 ny12 ny14 ny15
k-MST [22] 0.865 0.898 0.722 0.314 0.209 0.195 0.159 0.24 0.32 0.235
HGD-QMIP 0.923 0.911 0.722 0.92 0.936 0.907 0.915 0.565 0.308 0.683

Table 1: Tree reconstruction accuracy measured by the DI-
ADEM [2] scores on our test datasets. OPi and nyi denote
images from the OPF and the road datasets respectively.

settings discussed in Section 5.3 on classification accuracy.
Briefly, increasing the number of radius intervals, the angu-
lar bins and the codebook entries improves the accuracy at
the expense of a higher computational cost. Short segment
lengths provides a fine grained sampling of paths and hence
yields a higher performance.

6.2. Tree Reconstruction
Fig. 7 illustrates three sample reconstructions for the

OPF and Road datasets. Additional ones are supplied as
supplementary material. While the k-MST algorithm gen-
erates spurious branches and shortcuts, ours consistently
eliminates outliers without either shortcuts and missing
branches. This is especially visible in the road images for
which the tubular graphs are dense.

For a more quantitative evaluation, we use the DIADEM
metric [2], which computes a similarity score between a re-
construction and the ground-truth tree. Table 1 provides the
DIADEM scores for the test images of the two datasets. Our
approach systematically outperforms the k-MST algorithm
except in one case on which both methods perform poorly.

7. Conclusion
We have proposed a novel approach to tubular tree struc-

ture delineation that lets us find the desired tree as the global
optimum of a well-designed objective function. A key in-
gredient is a classification-based approach to scoring the
quality of paths, which allows us to outperform a state-of-
the-art method without having to manually tune the algo-
rithm parameters for each new dataset.

This stability of the parameters, however, comes at the
cost of requiring training data, which can be tedious to ob-
tain. Future work will therefore focus on Transfer Learning
techniques that should allow us to retrain our system using
minimal amounts of such training data for each new modal-
ity we have to deal with.
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