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Abstract

Data fusion and multi-cue data matching are fundamental tasks of high-dimensional data analysis. In this
paper, we apply the recently introduced diffusion framework to address these tasks. Our contribution is three-fold.
First, we present the Laplace-Beltrami approach for computing density invariant embeddings which are essential
for integrating different sources of data. Second, we describe a refinement of the Nyström extension algorithm
called “geometric harmonics”. We also explain how to use this tool for data assimilation. Finally, we introduce a
multi-cue data matching scheme based on nonlinear spectral graphs alignment. The effectiveness of the presented
schemes is validated by applying it to the problems of lip-reading and image sequence alignment.
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I. I NTRODUCTION

The processing of massive high-dimensional data sets is a contemporary challenge. Suppose that a
sources produces high-dimensional data{x1, ..., xn} that we wish to analyze. For instance, each data
point could be the frames of a movie produced by a digital camera, or the pixels of a hyperspectral image.
When dealing with this type of data, the high-dimensionality is an obstacle for any efficient processing of
the data. Indeed, many classical data processing algorithms have a computational complexity that grows
exponentially with the dimension (this is the so-called “curse of dimensionality”). On the other hand, the
sources may only enjoy a limited number of degrees of freedom. This means that most of the variables
that describe each data points are highly correlated, at least locally, or equivalently, that the data set has a
low intrinsic dimensionality. In this case, the high-dimensional representation of the data is an unfortunate
(but often unavoidable) artifact of the choice of sensors or the acquisition device. Therefore it should be
possible to obtain low-dimensional representations of the samples. Note that since the correlation between
variables might only be local, classical global dimension reduction methods like Principal Component
Analysis and Multidimensional Scaling do not provide, in general, an efficient dimension reduction.

First introduced in the context of manifold learning, eigenmaps techniques [1], [2], [3], [4] are becoming
increasingly popular as they overcome this problem. Indeed, they allow one to perform a nonlinear
reduction of the dimension by providing a parametrization of the data set that preserves neighborhoods.
However, the new representation that one obtains is highly sensitive to the way the data points were
originally sampled. More precisely, if the data are assumed to approximately lie on a manifold, then the
eigenmap representation depends on the density of the points on this manifold [5]. This issue is of critical
importance in applications as one often needs tomerge datathat were produced by the same source but
acquired with different devices or sensors, at various sampling rates and possibly on different occasions. In
that case, it is necessary to have a canonical representation of the data that retains the intrinsic constraints
of the samples (e.g. manifold geometry) regardless of the particular distribution of the datasets sampled
by different devices.
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Another important issue is that ofdata matching. This question arises when one needs to establish a
correspondence between two data sets resulting from the same fundamental source. For instance, consider
the problem of matching pixels of a stereo image pair. One can form a graph for each image, where pixels
constitute the nodes, and where edges are weighted according to the local features in the image. The
problem now boils down to matching nodes between two graphs. Note that this situation is an instance of
multi-sensor integration problem, in which one needs to find the correspondence between data captured by
different sensors. In some applications, like fraud detection, synchronizing data sets is used for detecting
discrepancies rather than similarities between data sets.

The out-of-sample extension problem is another aspect of the data fusion problem. The idea is to extend
a function known on a training set to a new point using both the target function and the geometry of
the training domain. The new point and the corresponding value of the function can then be assimilated
to the training set. This is an essential component in any scheme that agglomerates knowledge over an
initial data set and then applies the inferred structure to new data. Recently, Belkinet al have developed
a solution to this problem via the concept of manifold regularization [6]. Earlier, several authors used
the Nyström extension procedure in the Machine Learning context [7], [8] in order to extend eigenmap
coordinates. In both cases, the question of the scale of the extension kernel remains unanswered. In other
words, given an empirical function on a data set, to what distance to the training set can this function
be extended ? In particular, given the spectral embedding of the data set, which kernel should be used to
extend it?

By relating the frequency content of the target function on the training set to the extrinsic Fourier
analysis, Coifmanet al provide an answer to this question [9]. They developed the idea of “geometric
harmonics” based on the Nyström extension at different scales, providing a multiscale extension scheme
for empirical functions. We apply this concept to the extension of spectral embeddings and show that the
extension has to be conducted using a specially designed kernel which differs from the eigenmap kernel.

In this article, we show that the questions discussed above can be efficiently addressed by the general
diffusion framework introduced in [5], [10], [11]. The main idea is that, just like for eigenmaps methods,
eigenvectors of Markov matrices can be used to embed any graph into a Euclidean space and achieve
dimension reduction. Building on these ideas, the contribution of this paper is three-fold:

• First, we show that by carefully normalizing the Markov matrix, the embedding can be made invariant
to the density of the sampled data points, thus solving the problem of data fusion encountered with
other eigenmaps methods.

• Then, we address the problem of out-of-sample extension, and we explain how to adaptively extend
empirical functions to new samples using the geometric harmonics. In particular this allows us to
extend the diffusion coordinates to new data points.

• Last, we take advantage of the density-invariant representation of data sets provided by the diffusion
coordinates to derive a simple data matching algorithm based on geometrical embeddings alignment.

The proposed scheme is experimentally verified by applying it to visual data analysis. First, we
address the problem of automatic lip-reading by embedding the lips images using the Laplace-Beltrami
eigenfunctions and deriving an automatic lip-reading scheme where new data is assimilated using geometric
harmonics. Second, we demonstrate the multi-cue data matching aspect of our work by matching image
sequences corresponding to similar head motions.

This paper is organized as follows: we start by recalling the diffusion framework, and the notion of
diffusion maps in Section II-A. We then explain in Section II-B how to normalize the diffusion kernel in
order to separate the geometry (constraints) of the data from the distribution of the points. We describe the
out-of-sample extension procedure via the geometric harmonics in Section II-C and present a nonlinear
algorithms for matching two data sets in Section II-D. Last, we illustrate these ideas by applying it to
lip-reading and sequence alignment in Section III.



3

II. T HE DIFFUSION FRAMEWORK

We start by reviewing the density-invariant embedding and out-of-sample extension schemes (previously
introduced in [5] and [9]) in Sections II-B and II-C, respectively. To exemplify their applicability to high-
dimensional data processing and learning, we apply them to derive a novel high-dimensional data alignment
algorithm in Section II-D.

A. Diffusion maps and diffusion distances

Let Ω = {x1, ..., xn} be a set ofn data points. In this section, we recall the diffusion framework as
described in [5], [12], [13]. The main point of this set of techniques is to introduce a useful metric on
data sets based on the connectivity of points within the graph of the data, and also to provide coordinates
on the data set that reorganize the points according to this metric.

The first step in our construction is to view the data pointsΩ = {x1, ..., xn} as being the nodes of
a symmetric graph in which any two nodesxi and xj are connected by an edge. The strength of this
connection is measured by a non-negative weightw(xi, xj) that reflects the similarity betweenxi andxj.
The very notion of similarity between two data points is completely application-driven. In many situations
however, each data point is a collection of continuous numerical measurements and, maybe after rescaling
some of the features, it can be thought of as a point in a Euclidean feature space. In this case, similarity
can be measured in terms of closeness in this space, and it is custom to weight the edge betweenxi and
xj by exp(−‖xi − xj‖2/ε), whereε > 0 is a scale parameter. This choice corresponds to the belief that
the only relevant information lies in local distance measurements. Indeed,xi andxj will be numerically
connected if they are sufficiently close. In diffusion kernels, graphs represent the structures of the input
spaces, and the vertices are the objects to be classified. In addition, Belkin and Niyogi [2] explain that, in
the case of a data set approximately lying on a submanifold, this choice corresponds to an approximation
of the heat kernel on the submanifold. Last, in [5], it is shown that any weight of the formh(‖xi− xj‖2)
(whereh decays sufficiently fast at infinity) allows to approximate the heat kernel.

More generally, we allow ourselves to consider arbitrary weight functionsw(·, ·) that verify the following
two conditions1, for all x andy in Ω:

• it is symmetric:w(x, y) = w(x, y),
• it is pointwise non-negative:w(x, y) ≥ 0.
This level of generality allows to take into account the case when data points are represented by a

collection of categorical features. In this situation, it can be useful to employ a Gaussian kernel with
a Hamming distance. But rather than to give a list of recipes, we would like to underline the fact that
the choice of the weight functionshould be entirely application-driven. The weight function or kernel
describes the first-order interaction between the data points as it defines the nearest neighbor structures in
the graph. It should capture a notion of similarity as meaningful as possible with respect to the application,
and therefore could very well take into account any type of prior knowledge on the data. The analysis of
the data provided by the diffusion techniques depends heavily on the choice of the weight function. Last,
note that the only real requirement for our technique to be applicable is to be able to define alocal notion
of similarity between the point. In other words, one must be able to answer the question of whether two
points are (very) similar or not. This is a much simpler question than having to define aglobal distance
between all pairs of points.

Following a classical construction in spectral graph theory [15], namely the normalized graph Laplacian,
we now create a random walk on the data setΩ by forming the following kernel:

p1(x, y) =
w(x, y)

d(x)
,

whered(x) =
∑

z∈Ω w(x, z) is the degree of nodex.

1Sincew(·, ·) is supposed to represent the similarity between data points, it will be fair to assume thatw(x, x) > 0
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Since we have thatp1(x, y) ≥ 0 and
∑

y∈Ω p1(x, y) = 1, the quantityp1(x, y) can be interpreted as the
probability for a random walker to jump fromx to y in a single time step. IfP is then × n matrix of
transition of this Markov chain, then taking powers of this matrix amounts to running the chain forward
in time. Let pt(·, ·) be the kernel corresponding to thetth power of the matrixP . In other words,pt(·, ·)
describes the probabilities of transition int time steps.

The asymptotic behavior of this random walk has been used to find clusters in the data set [15], [16],
[17], where the first non-constant eigenfunction is used as a classification function into two clusters. This
was justified as a relaxation of a discrete problem of finding an optimal cut in a graph [16]. This approach
was later generalized to using more eigenvectors in order to compute a larger number of clusters (see for
instance [18], [19], [13]). Several papers form machine learning (in particular [14]) have underlined the
connections and applications of the graph Laplacian to machine learning. Within the manifold learning
community, the first few eigenvectors of this Markov chain have been employed for dimensionality
reduction. In [20], [2] Belkin and Niyogi showed that when data is uniformly sampled from a low-
dimensional manifold, the first few eigenvectors ofP are discrete approximations of the eigenfunctions
of the Laplace-Beltrami operator on the manifold, thus providing a mathematical justification for their
use in this case.

If the graph is connected, then fort = +∞ this Markov chain is governed by a unique stationary
distributionφ0 (see appendix I), which means that for allx andy,

lim
t→+∞

pt(x, y) = φ0(y) .

The vectorφ0 is the top left eigenvector ofP , i.e., φT
0 P = φT

0 , and it can be verified thatφ0(y) is given
by

φ0(y) =
d(y)∑

z∈Ω d(z)
.

The pre-asymptotic regime is governed according to the following eigendecomposition [12]:

pt(x, y) =
∑

l≥0

λt
lψl(x)φl(y) , (1)

where {λl} is the sequence of eigenvalues ofP (with |λ0| ≥ |λ1| ≥ ...) and {φl} and {ψl} are the
corresponding biorthogonal left and right eigenvectors (see appendix II for a proof). Furthermore, because
of the spectrum decay, only a few terms are needed to achieve a given relative accuracyδ > 0 in the
previous sum.

Unifying ideas from Markov chains and potential theory, thediffusion distancebetween two pointsx
andz was introduced in [12], [5] as

D2
t (x, z) =

∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
. (2)

This quantity is simply a weightedL2 distance between the conditional probabilitiespt(x, ·), andpt(z, ·).
These probabilities can be thought of as features attached to the pointsx and z, and they measure the
influence or interaction of these two nodes with the rest of the graph.

By increasingt, one propagates the local or short-term influence of each node to its nearest neighbors,
and this means thatt also plays the role of a scale parameter. The comparison of these conditional
probabilities introduces a notion of proximity that accounts for the connectivity of the points in the graph.
In particular, unlike the shortest path, or geodesic distance, this metric is robust to noise as it involves an
integration along all paths of lengtht starting fromx or z. Empirical evidence supporting this claim is
provided in [13]. The diffusion distance incorporates the notions of mixing time and clusterness used in
classical graph theory [21].
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The connection between the diffusion distance and the eigenvectors goes as follows (see appendix II):

D2
t (x, z) =

∑

l≥1

λ2t
l (ψl(x)− ψl(z))2 . (3)

Note that ψ0 does not appear in the sum because it is constant. This identity means that the right
eigenvectors can be used to compute the diffusion distance. The diffusion distance therefore generalizes
the use of the eigenvectors for finding bottlenecks and clusters in the graph [21], and extends this approach
by taking into account more than just the second largest eigenvalue.

Furthermore, and as mentioned before, because of the spectrum decay, only a few terms are needed to
achieve a given relative accuracyδ > 0 in the previous sum. Letm(t) be the number of terms retained,
and define the diffusion map

Ψt : x 7−→ (
λt

1ψ1(x), λt
2ψ2(x), . . . , λt

m(t)ψm(t)(x)
)T

. (4)

This mapping provides coordinates on the data setΩ, and embeds then data points into the Euclidean
spaceRm(t). In addition, the spectrum decay is the reason why dimension reduction can be achieved.
This method constitutes a universal and data-driven way to represent a graph or any generic data set as a
cloud of points in a Euclidean space. We also obtain a complete parametrization of the data that captures
relevant modes of variability. Moreover, the dimensionm(t) of the new representation only depends on the
properties of the random walk on the data, and not on the number of features of the original representation
of the data. In particular, if we increaset, thenm(t) decreases and we capture larger-scale structures in
the data.

B. Data merging using the Laplace-Beltrami normalization

We now direct our attention to the case when the original data pointsΩ = {x1, ..., xn} are assumed2 to
approximately lie on a submanifoldM of Rd. The so called “manifold model” holds for a large variety of
situations, such as when the data is produced by a source controlled by a few free continuous parameters.
For instance, consider the rotation of a human head and the lips motion of a speaker. We will study these
examples later in this paper.

On the manifoldM, the data points were sampled with a densityq(·) that may reflect some important
aspect of the phenomenon that generated the data. For instance, as described in [12], for some data sets,
the density is related to the free energy surface that governs the samples. On the other hand, the density
may depend on the acquisition process and may be unrelated to intrinsic geometry or dynamics of the
underlying phenomenon. In this situation, the distribution of the points is an artifact of the sampling
process, and consequently, any “good” representation of the data should be invariant to the density.

Classical eigenmap methods provide an embedding that combines the information of both the density
and geometry. For instance, with the Laplacian eigenmaps [2], one starts by forming the graph with
Gaussian weightswε(x, y) = exp(−‖x − y‖2/ε), and then constructs the random walk as described in
the previous section. The eigenvectors are then used to embed the data set into a Euclidean space. It was
shown in [5] that in the large sample limitn → +∞ and small scaleε → 0, the eigenvectors tend to
those of the Schrödinger operator∆ + E, where∆ is the Laplace-Beltrami operator onM, andE is a
scalar potential that depends on the densityq. As a consequence, the Laplacian eigenmaps representation
of the data heavily depends on the density of the data points. In particular, it makes it impossible to fuse
two data sets obtained from the same sensors but with different densities.

In order to solve this problem, we suggest to renormalize the Gaussian edge weightswε(·, ·) with an
estimate of the density and to form the random walk on this new graph. This is summarized in Algorithm
1.

2Note that the density normalization that we describe in this section can be applied to more general structures such as a cloud of points.
In this case, the diffusion coordinates will be invariant to the density of the points within this cloud.
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Algorithm 1 Approximation of the Laplace-Beltrami diffusion

1: Start with a rotation-invariant kernelwε(x, y) = h
(
‖x−y‖2

ε

)
.

2: Let
qε(x) ,

∑
y∈Ω

wε(x, y) ,

and form the new kernel

w̃ε(x, y) =
wε(x, y)

qε(x)qε(y)
. (5)

3: Apply the normalized graph Laplacian construction to this kernel,i.e., set

dε(x) =
∑
z∈Ω

w̃ε(x, y) ,

and define the anisotropic transition kernel

pε(x, y) =
w̃ε(x, y)

dε(x)
.

Let Pε be the transition matrix with entriespε(·, ·). The asymptotics forPε are given in the following
theorem.

Theorem 1:In the limit of large sample and small scales, we have

lim
ε→0

lim
n→+∞

I − Pε

ε
= ∆ .

In particular, the eigenvectors ofPε tend to those of the Laplace-Beltrami operator onM. We refer to
[5] for a proof. A similar analysis for the case of a uniform densityq ≡ 1 is provided in [2], [22].

This result shows that the diffusion embedding that one obtains from an appropriately renormalized
Gaussian kernel does not depend on the densityq of the data points ofM. This algorithm allows one to
successfully capture the nonlinear constraints governing the data, independently from the distribution of
the points. In other words, it separates the geometry of the manifold from the density.

C. Out-of-sample extension and the geometric harmonics

In most applications, it is essential to be able to extend the low-dimensional representation computed
on a training set to new samples. LetΩ be a data set andΨt be its diffusion embedding map. We now
present the geometric harmonic scheme that allows us to extendΨt to a new data set̃Ω. Since we need
to relate the new samples to the training set, we will assume thatΩ is a subset of a Euclidean spaceRd.

As mentioned in the introduction, the Nyström extension method is a popular technique employed in
the machine learning community [7], [8] for the extension of empirical functions from the training set to
new samples. As we discuss later, this method suffers from several drawbacks, and the scheme that we
present in this section aims at solving these problems.

For the sake of completeness, we first recall the idea of Nyström extension [23]. We then point out its
weaknesses, present our geometric harmonics extension scheme and explain how it solves the problems of
the Nyström extension. Letσ > 0 be a scale of extension, and consider the eigenvectors and eigenvalues
of a Gaussian kernel3 of width σ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω .

3In order to simplify our presentation of the extension algorithm, we choose to work with a Gaussian kernel. In general, one can use any
symmetric kernel with an exponential decay.
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Since the kernel can be evaluated in the entire space, it is possible to take anyx ∈ Rd in the right-hand
side of this identity. This yields the following definition of the Nyström extension ofϕl from Ω to Rd:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd . (6)

Note thatϕl is being extended to a distance proportional toσ from the training setΩ. Beyond this distance,
the extension numerically vanishes.

We now know how to extend the eigenfunctions of the kernel, and since these eigenfunctions form a
basis of the set of functions on the training set, any functionf on the training set can be decomposed as
the sum

f(x) =
∑

l

〈ϕl, f〉ϕl(x) wherex ∈ Ω ,

and we can define the Nytström extension off to the rest ofRd to be

f(x) ,
∑

l

〈ϕl, f〉ϕl(x) wherex ∈ Rd . (7)

This scheme seems very attractive, but it raises the question of the choice of the kernel of extension. In
our exposition above, we considered a Gaussian of widthσ, which implies that functions will be extended
to a distance proportional toσ (the extension numerically vanishes beyond a multiple of this distance).
Classically (see [7], [8]), when extending eigenmaps, the kernel being used for the extension is the same
as the one employed for the computation of the eigenmaps on the training set. The focal point of the
extension scheme that we now present is precisely to contradict this approach. Indeed, when computing
the diffusion embedding or any other type of Laplacian eigenmap, one strives for using as small a scale√

ε as possible. The reason behind this is that, as shown in Theorem 1 and in [2], [22], [5], in the limit
of small scales, the diffusion maps approximate the eigenvectors of the Laplace-Beltrami, allowing to
capture the geometry of the underlying structure of the data set (such as the manifold geometry if there is
an underlying manifold). On the contrary, when extending the diffusion coordinates off the training set,
it is our interest to extend them as far as possible in order to maximize their generalization power. This
has two consequences:

• The scaleσ of the kernel used for extending should be as large as possible.
• This scale should not be the same for all functions that we are trying to extend. Indeed, we expect

the scale of extension to be related to the complexity of the function to be extended. Low-complexity
functions should be easy to extend very far from the training set. For instance the constant function
on Ω is the simplest function on the training set, and should be extendable to the entire spaceRd.
On the contrary, a function with wild variations onΩ should have a limited range of extension, as
their values off the training set are more difficult to predict.

These two observations give rise to the idea of adapting the scale of extension (and hence the kernel)
to the functionf to be extended. Therefore, all we need now is a criterion for determining the maximum
scale of extension forf . To this end, fixσ > 0, and observe that in Equation 6,µl → 0 as l → +∞,
which implies that the Nyström extension scheme described by Equation 7 is ill-conditioned. Of course,
we can circumvent this problem if, in the same sum, we only retain the terms corresponding toµ0/µl

smaller than a given thresholdη > 0:

f(x) ,
∑

l:µ0<ηµl

〈ϕl, f〉ϕl(x) wherex ∈ Rd . (8)

This way, the extension procedure has a condition number less than toη, and this variable plays the role
of a regularization parameter. However,f andf no longer coincide onΩ, which means thatf is no longer
an extension off . This is precisely the basis of decision about the scaleσ: if it turns out that the difference
betweenf andf on Ω is still acceptable (as measured by the reconstruction error), then this means that
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f is extendable at a distanceσ from Ω. Otherwise, it means thatσ needs to be reduced. Indeed, if we
decrease the value ofσ, then the kernel of extension becomes finer, and its eigenvalues will decay more
slowly. This allows the sum in Equation 8 to contain more terms, andf to be a better approximation of
f on Ω. This geometric harmonics technique formalizes these observations into a scheme presented in
Algorithm 2.

Algorithm 2 Multiscale extension scheme of diffusion coordinates via geometric harmonics

1: Let Ω ⊂ Rd be the training set andf = ψi : Ω → R be the diffusion coordinate to be extended
(1 ≤ i ≤ m(t)). Choose a condition numberη > 0 and an admissible errorτ > 0.

2: Choose an initial (large) scale of extensionσ = σ0.
3: Compute the eigenfunctions of the Gaussian kernel with widthσ on the training setΩ:

µlϕl(x) =
∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Ω ,

and expandf on this orthonormal basis (on the training setΩ):

f(x) =
∑

l≥0

clϕl(x) wherex ∈ Ω .

4: Compute the error of reconstruction on the training set that one obtains by retaining only the
coefficients such thatη > µ0/µl in the sum above:

Err =


 ∑

l: η≤µ0/µl

|cl|2



1
2

.

If Err > τ then divideσ by 2 and go back to point 3. Otherwise continue.
5: For eachl such thatη > µ0/µl, extendϕl via the Nyström procedure:

ϕl(x) , 1

µl

∑
y∈Ω

e−‖x−y‖2/σ2

ϕl(y) wherex ∈ Rd ,

and define the extensionf of f to be

f(x) ,
∑

l≥0

clϕl(x) wherex ∈ Rd .

To summarize our ideas, if we increase the scale of extension, then the error of reconstruction onΩ
will increase. Hence, the reconstruction error limits the maximal extension range. In fact, this limitation
can be regarded as relating the complexity of the function on the training set to the distance to which it
can be extended off this set. Here, the notion of complexity is measured in terms of frequency content
on the training domain. For instance, a constant function has almost no complexity and one should be
able to extend it in the entire space. If the number of oscillations of this function increases, then the
distance to which one can extend it gets smaller. This illustrated on Figure 1. The geometric harmonics
are therefore perfectly appropriate for extending the diffusion coordinates to new samples as higher-order
and lower-order diffusion coordinates do not have the same number of oscillations.

D. Multi-cue alignment and data matching

The purpose of this section is to explain how the diffusion embedding can be efficiently used for data
matching. Suppose that one has two data setsΩ1 = {x1, ..., xn} and Ω2 = {y1, ..., yn′} for which one
would like to find a correspondence, or detect similar patterns and trends, or on the contrary, underline
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Fig. 1. Extension of two functions from the unit circle toR2. The function on the left is very smooth on the training set, and therefore
can be extended far away from it. On the contrary, the function on the right oscillates much on the training set, and this limits its scale of
extension.

their dissimilarity and detect anomalies. This type of task is very common in applications related to
marketing, automatic machine translation, fraud detection or even counter-terrorism. However, working
with the data in its original form can be quite difficult as the two sets typically consist of measurements
of very different nature. For instanceΩ1 could be a collection of measurements related to wether in a
given region, whereasΩ2 could describe agriculture production in the same region. As a consequence,
it is almost always impossible to directly compare the two data sets, simply because they might not be
represented using the same type of features. The main idea that we introduce here is that the diffusion maps
provide a canonical representation of data sets reflecting their intrinsic geometry. This new representation
is based on the graph structure of a set, that is, the neighbor relationship between points, and not on their
original feature representation. As a consequence,instead of comparing the data sets in their original
forms, it can be much more efficient to compare their embeddings. In particular, ifΩ1 andΩ2 are expected
to have similar intrinsic geometry structures, then they should have similar embeddings.

There has been a body of work related to graph based manifold alignment. Gori et. al [24] align weighted
and unweighted graphs by computing a ‘signature’ for each node that is based on repeated use of the
invariant measure of different Markov chains defined on the data. The nodes/samples are then matched
in two ways. First, in a one-by-one basis, where nodes with similar signatures are coupled. Second, in a
globally optimal approach using a bipartite graph matching scheme. Ham et. al [25] align the manifolds,
given a set of a-priori corresponding nodes or landmarks. A constrained formulation of the graph Laplacian
based embeddings is derived by including the given alignment information. First, they add a term fixing the
embedding coordinates of certain samples to predefined values. Both sets are then embedded separately,
where certain samples in each set are mapped to the same embedding coordinates. Second, they describe
a dual embedding scheme, where the constrained embeddings of both sets are computed simultaneously,
and the embeddings of certain points in both datasets are constrained to be identical. The work of Bai et.
al [26] presents a similar framework to our scheme. The ISOMAP algorithm is used to embed the nodes
of the graphs corresponding to the aligned datasets, in a low-dimensional Euclidean space. The nodes are
thus transformed into points in a metric space, and the graph-matching is recast as the alignment of point
sets. A variant of the Scott and Longuet-Higgins algorithm is then used to find point correspondences.
An approach to Many-to-Many alignment was presented in [27] by Keselman et. al. They aim to match
corresponding clusters of nodes in both datasets, rather then match individual nodes. The datasets are
embedded in a metric space using the Matousek embedding and sets of nodes are then aligned using the
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Earth Mover’s Distance, which is a distribution-based similarity measure for sets.
In the data alignment segment of our work, we resolve the alignment of datasets with a common low-

dimensional manifold, but different densities, by incorporating the use of the density-invariant embedding.
This issue was overlooked in previous works based on spectral embeddings [24], [25], [26], [27], although
spectral and ISOMAPS embeddings are highly sensitive to the way the data points were originally sampled.
Hence, the underlying assumption in [24], [25], [26], [27] that the low-dimensional embedding of datasets
sharing a common low-dimensional manifold will be similar, might prove invalid.

In addition to dealing with the density issue, we present a semi-supervised algorithm for finding a
one-to-one correspondence between two data sets. The scheme we introduce consists in aligning two
graphs in a nonlinear fashion, based on a finite number of landmarks (matching points or nodes). The
main idea is to lift each graph into the same diffusion space, and to align the resulting clouds of points
using a simple affine matching4. The diffusion maps provide a nonlinear reduction of dimensionality, and
therefore our scheme is appropriate for the alignment of high-dimensional data sets with low-intrinsic
dimensionality. In addition, as explained in the previous sections, if we use the density-invariant diffusion
maps, the alignment scheme will be insensitive to the different distributions of points of the two data sets.

As for the notations, suppose that we havek < n, n′ landmarks in each set, that is a sequence ofk pairs
(xσ(1), yτ(1)), ..., (xσ(k), yτ(k)) for which there is a known correspondence. This set of examples is the only
prior information that we use in the algorithm. We assume thatxσ(1) 6= xσ(2) 6= ... 6= xσ(k). The scheme
given in Algorithm 3 computes a surjective functiong : Ω1 → Ω2 such thatg(xσ(1)) = yτ(1), ..., g(xσ(k)) =
yτ(k).

Algorithm 3 Nonlinear graph alignment
1: Start withk landmarks(xσ(1), yτ(1)), ..., (xσ(k), yτ(k)).
2: Compute the diffusion embeddings{x̃1, ..., x̃n} and {ỹ1, ..., ỹn′} of Ω1 and Ω2 where, for each set,

the time parameter was chosen so thatk− 1 eigenvectors are retained. In other words,x̃i and ỹj both
live in Rk−1.

3: Compute the affine functionf : Rk−1 → Rk−1 that satisfies the landmark constraints:

f(x̃σ(1)) = ỹτ(1), ..., f(x̃σ(k)) = ỹτ(k) .

4: Define the correspondence betweenΩ1 andΩ2 by

g(xi) = arg min
y∈Ω2

{‖f(xi)− y‖} ,

wherexi ∈ Ω1,

The idea behind the scheme presented is to embed both data sets into the (same) diffusion space, and
to use an affine alignment functionf in the diffusion space. We assume that the choice of the kernels for
computing the embeddings was already made by the user, and that they were selected in order to obtain
meaningful graphs with respect to the application that the user has in mind. The number of eigenvectors
used for the embedding is directly related to the number of landmarks, which in turns, represents the
quantity of prior information for aligning. The larger the number of known constraints on the alignment,
the larger the dimensionality of the aligning mapping. This is consistent with the fact that higher order
eigenvectors capture finer structures. These observations pave the way for a general sampling theory for
data sets. Indeed, the landmarks can be regarded as forming a subsampling of the original data sets. This
subset determines the largest (or Nyquist) frequency used to represent the original set. This frequency is
measured as the number of eigenvectors employed.

4We note that the alignment procedure can be automated for low-dimensional embeddings (up toR3) by utilizing point matching schemes
such as ICP [28] and Geometrical Hashing [29].
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Note also that the affine function that we use for aligning induces a nonlinear mapping defined on
lower dimensional embedding of the sets, and is even more nonlinear in the original space. It is possible
to introduce more robustness to our scheme by embedding in a lower dimension than the number of
landmarks, and to look for the best affine function that aligns the landmarks, where “best” is measured
in a least-square sense.

III. EXPERIMENTAL RESULTS

A. Application to lip-reading

The validity of our approach is now demonstrated by applying it to lip-reading and sequence alignment,
which are typical high-dimensional data analysis problems. From the statistical learning point of view, this
example allows us to apply the ideas presented in the previous sections to three fundamental and related
problems in the learning of high-dimensional data in general, and visual data in particular. First. we apply
the diffusion framework to perform an efficient nonlinear dimensionality reduction. Second, we extend it
to derive an intensity invariant embedding, essential for incorporating several data sources. Finally, we
deal with the extension of a given embedding, computed on a given data set, to a new sample. This is
the essence of a ‘learning’ schemes that associates knowledge obtained on a training set to a new set of
samples.

Lip-reading has recently gained significant attention [30], [31], [32], [33], [34] and we now provide
background and previous results in that field. The ultimate goal of lip-reading is to design human-like
man-machine interfaces allowing automatic comprehension of speech, which in the absence of sound is
denoted as lip-reading and the synthesis of realistic lip movement. The design of such a system involves
three main challenges: first, the feature extraction, which aims at converting the images of the lips into a
useful description, must be achieved with minimal preprocessing. Then, in order to be efficiently processed,
the data must be transformed via a dimension reduction technique. Last, in order to assimilate new data
for recognition, one must be able to perform data fusion.

Previous lip-reading schemes have mainly focused on the first two points. Concerning the feature
extraction, some works [30], [34] analyze directly the intensity values of the input images, while others
[35], [31] start by detecting curves and points of interest around the mouth whose locations are then used
as features. The combination of audio-visual cues was used in [36] where the visual cues are the extracted
lip contours which are tracked over time. We note that combining audio-visual is beyond the scope of
this work and will be dealt by us in the future. Identifying, tracking and segmenting the lips is a difficult
task and possible solutions include: active contours [37], probabilistic models [38] and the combination of
multiple visual cues (shape, color and motion) [39] to name a few. In practice, one strives to use a simple
preprocessing scheme as possible and in our scheme we employ a simple stabilization scheme discussed
below.

Regarding the dimensionality reduction, several schemes have been used. Preliminary work employed
linear algorithms such as the PCA and SVD subspace projections [35], [34]. For instance, Liet al [34]
use a linear PCA scheme similar to the eigenfaces approach to face detection. Recognition is performed
by correlating an input sequence with the eigenfeatures obtained from PCA. More recent schemes [30]
utilize non-linear approaches such as the MDS [40]. Some of the techniques provide a general embedding
framework for lipreading analysis [30], while others [34], [31] concentrate on a particular task such as
phoneme or word identification. The work in [41] is of particular interest, since it is one of the first
to explicitly formulate the lipreading problem as a “Manifold Learning” issue and tries to derive the
inherent constraints embedded in the space of lip configurations. A Hidden Markov Model (HMM) is
used to model a small number of words (names of four drinks) which define the Markov states and the
manifold. The HMM is then used to recognize the drinks’ names where the input is given by tracking
the outer lips contour using Active Contours. Utilizing both audio and visual information significantly
decreased the error rate, especially in noisy environments. Kimmel and Aharon [30] applied the MDS
scheme to visual lips representation, analysis and synthesis. A set of lips images is aligned and embedded
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in a two dimensional domain which is then sampled uniformly in the embedding domain to achieve
uniform density. The pronunciation of each word is defined as a path over the embedding domain and
used for visual speech recognition, by path matching. Lips motion synthesis is derived by computing
the geodesic path over the embedding domain, where the start and end point are given as input. Anchor
points in the low-dimensional embedding domain were then used to match the lips configurations of two
different speakers.

Analysis of lip data constitutes an application where it is important to separate the set of nonlinear
constraints on the data from the distribution of the points. As an illustration of the Laplace-Beltrami
normalization as well as the out-of-sample extension scheme, we now describe an elementary experiment
that paves the way to building automatic lip-reading machines, and more generally, machine learning
systems.

We first recorded a movie of the lips of a subject reading a text in English. The subject was then
asked to repeat each digit “zero”, “one”, ... , “nine” 40 times. A minimal preprocessing was applied to
the recorded sequence. More precisely, it was first converted from colors to gray level (values between 0
and 1). Moreover, using a marker put at the tip of the nose of the speaker during the recording, we were
able to automatically crop each frame into a rectangular area around the lips. Each of these new frames
was then regarded as a point inR140×110, where140× 110 is the size of the cropped area.

The first data set, consisting of approximately 5000 frames, corresponds to the speaker reading the
text. This set was used to learn the structures of the lip motion. More precisely, we formed a graph
with Gaussian weightsexp(−‖xi − xj‖2/ε) on the edges between all pairs of points, where the distance
‖xi−xj‖ was merely calculated as the EuclideanL2 distance between framesi andj. The scaleε > 0 was
chosen by looking at the distribution of the distances from each point to the other points. We selected

√
ε

such that each data point would be numerically connected with at least one other point in the graph. This
value, which was found to be equal to 1000, turned out to make the graph of the data totally connected.
The choice of this number was also coherent with the shape of the distribution of the distances (see Figure
2) in that, on average, each point is connected to a small fraction of the other points.
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Fig. 2. The distribution of distances between all pairs of data points. The choice of the scale
√

ε = 1000 corresponds to having each data
point connected to at least one other data point. The resulting graph happened to be totally connected. This histogram shows that the choice
of this scale parameter leads to a sparse graph: each node is connected, on average, to a small number of other nodes.

We then renormalized the Gaussian weights using the Laplace-Beltrami normalization described in
Section II-B. By doing so, our analysis focused on viewing the mouth as a constrained mechanical
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system. In order to obtain a low-dimensional parametrization of these nonlinear constraints, we computed
the diffusion coordinates on this new graph. The spectrum of the diffusion matrix is plotted on Figure 3
and the embedding in the first 3 eigenfunctions is shown on Figure 4.
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Fig. 3. The top 100 eigenvalues of the diffusion matrix for the lips data. The spectrum decays rapidly.
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Fig. 4. The embedding of the lip data into the top 3 diffusion coordinates. These coordinates essentially capture two parameters: one
controlling the opening of the mouth and the other measuring the portion of teeth that are visible.

The task we wanted to perform was isolated-word recognition on a small vocabulary. The example
that we considered was that of identification of digits. Each word “zero”, “one”,..., “nine” is typically
a sequence 25 to 40 frames that we need to project in the diffusion space5. In order to do so, we used
the geometric harmonic extension scheme presented in Section II-C to extend each diffusion coordinate
to the frames corresponding to the subject pronouncing the different digits. After this projection, each
word can be viewed as a trajectory in the diffusion space. The word recognition problem now amounts
to identifying trajectories in the diffusion space.

5Note that this second data set wasnot used to compute the diffusion maps.
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We can now build a classifier based on comparing a new trajectory to a collection of labeled trajectories
in a training set. We randomly selected 20 instances of each digit to form a training set, the remaining
20 being used as a testing set. In order to compare trajectories in the diffusion space, a metric is needed,
and we chose to use the Hausdorff distance between two setsΓ1 andΓ2, defined as

dH(Γ1, Γ2) = max

{
max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

.

Although this distance does not use the temporal information, it has the advantage of not being sensitive to
the choice of a parametrization or to the sampling density for either setΓ1 andΓ2. For a given trajectory
Γ from the testing set, our classifier is a nearest-neighbor classifier for this metric,i.e., the class ofΓ is
decided to be that of the nearest trajectory (fordH) in the training set. The performance of this classifier
averaged over 100 random trials is shown in Table I. In this case, the data set was embedded in 15
dimensions.

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
zero 0.93 0 0 0.01 0 0 0.06 0 0 0
one 0 1 0 0 0 0 0 0 0 0
two 0.05 0 0.88 0.05 0.01 0 0.01 0 0 0

three 0.01 0 0.02 0.93 0 0 0.01 0.01 0.01 0.01
four 0 0 0.01 0.01 0.97 0 0 0.01 0 0
five 0 0 0 0.01 0 0.84 0.01 0.14 0 0.01
six 0.04 0 0 0.01 0 0 0.92 0.02 0 0.01

seven 0.02 0 0 0.04 0 0.07 0.10 0.69 0.05 0.03
eight 0 0.01 0 0 0 0.03 0.01 0.04 0.77 0.14
nine 0 0 0 0.02 0 0 0 0.02 0.12 0.85

TABLE I

CLASSIFIER PERFORMANCE OVER100 RANDOM TRIALS. EACH ROW CORRESPONDS THE CLASSIFICATION DISTRIBUTION OF A GIVEN

DIGIT OVER THEN 10 CLASSES. THE DATA SET WAS EMBEDDED IN15 DIMENSIONS.

The classification error ranges from 0% to 31% with an average of 12.2%. The best classification rate is
achieved for the word “one” which, in terms of visual information, stands far away from the other digits.
In particular, typical sequences of “one” involve frames with a round open mouth, with no teeth visible
(see first row of Figure 5). These frames essentially never appear for other digits. The worst classification
job is for the word “seven” which seems to be highly confused with the words “five” and “six”. As shown
on Figure 5, typical instances of these words appear to be similar in that the central frames involve an
open mouth with visible teeth. In the case of the “six” and “seven”, teeth from the lower jaws are visible
because of the “s” sound. Regarding the similarity between “five” and “seven”, the ”f” and ”v” sounds
translate into the lower lip touching the teeth of the upper jaw.

The accuracy that we obtain is comparable to former schemes [30], [41], while using significantly
less preprocessing. For instance, in [30], the lips images are hand picked and stabilized using an affine
motion model, while in [41] the contours of the lips are tracked by Active Contours. Our lips images are
acquired by taping a continuous 5 minutes sequence and a simple cropping is performed to compensate
for translations. We note that the above comparison is qualitative rather than quantitative, as the different
schemes were applied to different datasets that are not publicly available.

B. Synchronization of head movement data

We now illustrate the concept of graph alignment as well as the algorithm presented in Section II-D.
We recorded 3 movies of subjects wearing successively a yellow, red and black mask. Each subject was
asked to move their head in front of the camcorder. We then considered the three sets consisting of all
frames of each movie. Let YELLOW, RED and BLACK denote these sets. Our goal was to synchronize
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"FIVE"

"ONE"

"SEVEN"

"SIX"

Fig. 5. Typical frames for the words “one”, “five”, “six”, “seven”.

the movements of the different masks by aligning the 3 diffusion embeddings. The objective of this
experiment was twofold

• We first wanted to illustrate the importance of having a coordinate system capturing the intrinsic
geometry of data sets. The intrinsic geometry is the basis of our alignment scheme: the key point
is that, as we will show, all three sets exhibit approximately the same intrinsic geometry, and that
the diffusion coordinates parameterize this geometry. It is to be noted that working directly in image
space would be highly inefficient since any picture of the red or black mask is at a large distance from
the set of pictures of the yellow mask (this is a straight consequence of the high dimensionality of the
data). On the contrary, the diffusion coordinates will capture the intrinsic organization of each data
sets, and therefore will provide a canonical representation of the sets that can be used for matching
the data. Note also that our approach does not require any prior information on the type of data we
are dealing with.

• The other point that we wished to illustrate is the importance of using the density-invariant diffusion
maps. As we will show, although the three sets have approximately the same intrinsic geometry (the
data points lie on the same 2D submanifold), the distribution of the points on this manifold are quite
different. Therefore, it is necessary to employ the density re-normalization technique described in
Section II-B.

These two points constitute the main ingredients for a successful alignment of the sets.
We now describe the experiment in more details. Each set of frames was regarded as a collection of

points inR10000, where the dimensionality coincides with the number of pixels per image. Following the
lines of our algorithm, we formed a graph from each set with Gaussian weightsexp(−‖xi − xj‖2/ε).
The quantity‖xi − xj‖ represents theL2 norm between imagesi and j, and here again, the scale was
chosen so that each data point would be numerically connected to at least one other data point. We expect
each set to lie approximately on a manifold of dimension 2, as each subject essentially moved their head
along two anglesα andβ shown on Figure 6 and as the light conditions were kept the same during the
recording. Therefore, each data sets is the expression of a highly constrained mechanical system, namely
the articulation between the neck and the head.

It is clear that the density of points on this manifold is essentially arbitrary and varies with each subject
and recording. Indeed, the density is essentially a function of the type of movement of each subject, their
speed of execution, and also the type of mask that they were wearing. Since we were only interested
in the space of constraints, that is the geometry of the manifold, we renormalized the Gaussian weights
according to the algorithm described in Section II-B, and constructed a Markov chain that approximates
the Laplace-Beltrami diffusion. Figure 7 shows the embedding in the first three eigenfunctions for each
data set. They are extremely similar. We then defined 8 matching triplets of landmarks in each set. The
landmarks were chosen to correspond to the main head positions. We computed the diffusion embedding
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β

α

Fig. 6. Each subject essentially moved their head along the two anglesα andβ. There was almost no tilting of the head. Hence, the data
points approximately lie on a submanifold of dimension 2.
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Fig. 7. The embedding of each set in the first 3 diffusion coordinates. The color encodes the density of points. All three sets share this
butterfly-shaped embedding

in 7 dimensions and we then calculated two affine functionsgY R : R7 → R7 and gY B : R7 → R7 that
match the landmarks from YELLOW to BLACK, and from YELLOW to RED.

Two conclusions can be drawn from this experiment. First, the diffusion embedding revealed that the
data sets were approximately 2-dimensional, as expected (see Figure 7 for the embeddings in the first 3
diffusion coordinates). The diffusion coordinates captured the main parameters of variability, namely the
anglesα and β. From the embedding plots, it can be seen that all three embedded sets have strikingly
similar shapes.This supports our intuition that all sets should have similar intrinsic geometries. From
this observation, we were able to successfully compute two aligning functionsgY B andgY R, and we used
them to drive the movements of the black and red masks from those of the yellow mask. The result of
the matching of the three data sets is shown on Figure 8. A live demo of this experiment can be found
at [42].

The other conclusion concerns the importance of having used the density normalized diffusion coor-
dinates. A key point in our analysis is that to compare the intrinsic geometries of each set, we need
to be able to get rid of the influence of the points on the 2D submanifold. In order to underline the
importance of this idea, we also computed the embedding of the three Yellow and BLACK without this
renormalization. According to the discussion of Section II-B, the embedded sets should now reflect both
the constraints (the intrinsic geometry) and the distribution of the points (the density on the submanifold).
The result is shown on Figure 9, and although the embedding of the BLACK set still retain this butterfly
shape that we previously obtained when renormalizing, the YELLOW set is now embedded as some
portion of an ovoid. Although this statement can seem very qualitative, it is now clear that the alignment
of these sets should fail. This experiment therefore underlines the importance of being able to compute
density-invariant embeddings of the data.
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Fig. 8. The embedding of the YELLOW set in three diffusion coordinates and the various corresponding images after alignment of the
RED and BLACK graphs to YELLOW.
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Fig. 9. The embeddings of the YELLOW (a) and BLACK (b) sets in three diffusion coordinates without the density renormalization. These
embedded sets now have very different shapes, and their alignment is impossible.

IV. CONCLUSION AND FUTURE WORK

In this work we introduced diffusion techniques as a framework for data fusion and multi-cue data
matching by addressing several key issues. First, we underlined the importance of the Laplace-Beltrami
normalization for data fusion by showing that it allows to merge data sets produced by the same source
but with different densities. In particular, the Laplace-Beltrami embedding provides a canonical, density-
invariant embedding which is essential for data matching. Second, we suggested a new data fusion scheme,
by extending spectral embeddings using the geometric harmonics framework. Finally, we presented a novel
spectral graph alignment approach to data fusion.

Our scheme was successfully applied to lip-reading where we achieved high accuracy with minimal
preprocessing. We also demonstrated the alignment of high-dimensional visual data (“rotating heads”
sequence).

In the work presented, we have focused on the situation when all sources are highly correlated. In
the future we plan on extending our approach to multi-cue data analysis by integrating different signals
from weakly correlated sources into a unified representation. This should open the door to applications
related to multi-sensor integration. Finally, we also are studying a spectral based approach to the analysis
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of signals as dynamical random processes. Our current work did not utilize the temporal information of
the video sequences. By constructing a dynamical Markov process model, we intend to improve the lips
reading accuracy.
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APPENDIX I
EXISTENCE AND UNIQUENESS OF THE STATIONARY DISTRIBUTION

The goal of this section is to show that if the graph is connected, then the stationary distributionφ0 is
guaranteed to exist. The first step is to notice that the data set is finite, and therefore so is the state space
of our Markov chain. Thus by a classical version of the Perron-Frobenius theorem, it suffices to prove
that the chain is irreducible and aperiodic.

• The irreducibility is a mere consequence of the fact that the graph is connected. Indeed, letxi and
xj be two data points, and letτ be the length of a path connectingxi and xj. Since the graph is
connected, we know thatτ < +∞. We conclude thatpτ (xi, xj) > 0, which implies that the chain
irreducible.

• Concerning the aperiodicity, remember thatw(·, ·) represent the similarity between data points, so
we can assume that for all data pointxi, we havew(xi, xi) > 0. Consequently,p1(xi, xi) > 0, which
implies that the chain is aperiodic.

Finally, we can conclude that our Markov chain has a unique stationary distributionφ0.

APPENDIX II
DIFFUSION DISTANCE AND EIGENFUNCTIONS

The random walk constructed from a graph via the normalized graph Laplacian procedure yields a
Markov matrix P with entriesp1(x, y). As it is well known [15], this matrix is in fact conjugate to a
symmetric matrixA with entriesa(x, y), given by

a(x, y) =

√
d(x)

d(y)
p1(x, y) =

w(x, y)√
d(x)d(y)

.

ThereforeA hasn eigenvaluesλ0, ..., λn−1 and orthonormal eigenvectorsv0, ..., vn−1. In particular,

a(x, y) =
n−1∑

l=0

λlvl(x)vl(y) . (9)

This implies thatP has the samen eigenvalues. In addition, it hasn left eigenvectorsφ0, ..., φn−1 andn
right eigenvectorsψ0, ..., ψn−1. Also, it can be checked that

φl(y) = vl(y)v0(y) andψl(x) = vl(x)/v0(x) . (10)

Furthermore, it can be verified thatv0(x) =
√

d(x)/
√∑

z d(z), and thereforeφ0(y) = d(y)/
∑

z d(z) and
ψ0(x) = 1. In addition,

φ0(x)ψl(x) = φl(x) . (11)

It results from Equations 9 and 10 thatP t admits the following spectral decomposition:

pt(x, y) =
n−1∑

l=0

λt
lψl(x)φl(y) , (12)
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together with the biorthogonality relation
∑
y∈Ω

φi(y)ψj(y) = δij , (13)

whereδij is Kronecker symbol. Combining this last identity with Equation 11, one obtains

∑
y∈Ω

φi(y)φj(y)

φ0(y)
= δij .

This means that the system{φl} is orthonormal inL2(Ω, 1/φ0). Therefore, if one fixesx, Equation 12
can interpreted as the decomposition of the functionpt(x, ·) over this system, where the coefficients of
decomposition are{λt

lψl(x)}.
Now by definition,

Dt(x, z)2 =
∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
= ‖pt(x, ·)− pt(z, ·)‖2

L2(Ω,1/φ0) .

Therefore,

Dt(x, y)2 =
n−1∑

l=0

λ2t
l (ψl(x)− ψl(z))2 .
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