
A model is worth tens of thousands of examples

Thomas Dagès1, Laurent D. Cohen2, and Alfred M. Bruckstein1

1 Department of Computer Science, Technion Israel Institute of Technology, Haifa,
Israel

{thomas.dages, freddy}@cs.technion.ac.il
2 Ceremade, University Paris Dauphine, PSL Research University, UMR CNRS 7534,

75016 Paris, France
cohen@ceremade.dauphine.fr

Abstract. Traditional signal processing methods relying on mathemat-
ical data generation models have been cast aside in favour of deep neu-
ral networks, which require vast amounts of data. Since the theoretical
sample complexity is nearly impossible to evaluate, these amounts of
examples are usually estimated with crude rules of thumb. However,
these rules only suggest when the networks should work, but do not re-
late to the traditional methods. In particular, an interesting question
is: how much data is required for neural networks to be on par or out-
perform, if possible, the traditional model-based methods? In this work,
we empirically investigate this question in two simple examples, where
the data is generated according to precisely defined mathematical mod-
els, and where well-understood optimal or state-of-the-art mathematical
data-agnostic solutions are known. A first problem is deconvolving one-
dimensional Gaussian signals and a second one is estimating a circle’s
radius and location in random grayscale images of disks. By training
various networks, either naive custom designed or well-established ones,
with various amounts of training data, we find that networks require
tens of thousands of examples in comparison to the traditional methods,
whether the networks are trained from scratch or even with transfer-
learning or finetuning.

Keywords: Deep learning · Model-based methods · Sample complexity.

1 Introduction

Neural network-based machine learning has widely replaced the traditional meth-
ods for solving many signal and image processing tasks that relied on mathemat-
ical models for the data [14, 10]. In some cases, the assumed models provided
ways to optimally address the tasks at hand and resulted in well-performing
estimation and prediction methods with theoretical guarantees [21, 17, 7]. Nowa-
days, gathering raw data and applying gradient descent-like processes to neural
network structures [15, 12, 19, 11] largely replaced modelling and mathematically
developing provably optimal solutions.

It is commonly accepted that, if the networks are complex enough and when
vast amounts of data are available, neural networks outperform traditionally

2 T. Dagès et al.

designed methods [16, 12] or even humans [9, 8, 4]. The required amount of data
is called in statistical learning theory the sample complexity and is related to the
VC-dimension of the problem [20], which is usually intractable for non trivial
networks [2]. Instead, various rules of thumb have been used in the field to guess
how many samples are needed: at least 10-50 times the number of parameters
[1], at least 10 times per class in classification (and 50 times in regression) the
data dimensionality [13] and at least 50-1000 times the output dimension [1].

However, these rules only suggest how much data is needed to get a “good”
network, but they do not relate to the traditional data-generation model-based
methods. A natural question hence arises: do the neural network-based solutions
perform as well as, or even outperform, the processing methods based on tradi-
tional data-generation models when lots of data is available, and if so how much
data is necessary? We address this question in two simple empirical examples,
where the data is produced according to precisely defined models, and where well
understood optimal or state-of-the-art mathematical solutions are available. The
first is the deconvolution of Gaussian signals, optimally solved with the Wiener
filter [21]. The second is the estimation of the radius and centre coordinates of a
disk in an image, which can be elegantly solved using a Pointflow method [22].
This work aids engineers to decide when to use model-based classical methods
or simply feed lots of data (if available) to deep neural networks.

Section 2 presents our comparison for the one-dimensional signal recovery,
and Section 3 deals with estimation of disk characteristics in an image.

2 One-dimensional signal recovery

We suggest to first analyse a simple and well-understood problem in the one-
dimensional case where the optimal solution is provingly known.

2.1 Data model and optimal solution

The original data consists of real random vectors ’ of size D that are centred,
i.e. E(’) = 0, and with known autocorrelation R’ = E(’’>) 2 RD�D. However,
’ is degraded by blur and noise producing the observed data ’data as follows:

’data = H’+ n; (1)

whereH 2 RD�D is a known deterministic matrix and n is random additive noise
independent from ’ that is centred E(n) = 0 and with known autocorrelation
matrix Rn 2 RD�D. It is well-known [21] that the best linear recovery of ’ in
the L2 sense, i.e. minimising the Expected Squared Error (ESE) ESE (’̂; ’) =
E
�
k’̂� ’k22

�
with respect to the matrix M 2 RD�D such that ’̂ = M’data , is

given by applying the Wiener filter W = R’H
>(HR’H

> + Rn)�1, i.e. ’̂� =
W’data . Moreover, if we further assume both ’ � N (0; R’) and n � N (0; Rn)
are Gaussian, then the Wiener filter W minimises the ESE over all possible
recoveries including nonlinear ones. Furthermore, note that if R’ is circulant,

A model is worth tens of thousands of examples 3

i.e. ’ is cyclostationary, and so is n, e.g. if n has independent entries implying Rn
is diagonal, and if H is circulant, then W is also circulant and Wiener filtering is
a pointwise multiplication in the Fourier domain given by applying the unitary
Discrete Fourier Transform [DFT] with (k; l)-th entry [DFT]k;l = 1p

D
e�i

2�kl
D .

In our tests, the dimensionality is D = 32 and the problem is circulant.
We use an interpretable symmetric positive-definite autocorrelation matrix R’
parameterised by a large number � = 0:95 to create high spatial correlation over
a large support decaying with distance and H is a local smoothing convolution.
The first lines of R’ and H are

�
1 � �2 �3 �3 �2 �

�
and

�
1 1 0 0 1

�
. The

noise is i.i.d. n � N (0; �2
nI) with �n = 0:1. We display example data in Figure

1, the designed H, R’, and Rn along with their associated Wiener filter W in
Figure 2.

Fig. 1. Two example signals ’data, with their associated blur H’ and noise n.

H R’ Rn W

Fig. 2. Chosen model matrices and associated optimal Wiener filter.

2.2 Neural models

We wish to evaluate the capabilities of neural networks by comparing them to
humanly designed methods by classical experts using no training. Our crite-
rion is the amount of random training samples N needed to reach or overtake
human expertise. Working in the Gaussian case for the data model of equa-
tion (1), we create various random training datasets containing N data sam-
ples ranging in N 2 f10; 100; 1000; 10000; 100000g. We train a variety of small
Convolutional Neural Networks (CNNs) of various depths K 2 f0; 1; 2; 3g. The
depth of the network is measured as the number of successions of convolution-
pointwise-nonlinearity layers. Each network ends with a final fully connected

4 T. Dagès et al.

layer A (with bias bA), i.e. a final unconstrained affine transformation. For sim-
plicity, our CNNs will be single-channel only and without various architecture
tricks, e.g. dropout, batch normalisation, or pooling. The network functions,
denoted fk for k 2 f1; : : : ;Kg can thus be written as:

fk(’data) = A� � ~CK � � � ~CK�1 � � � � � � � ~C1(’data) + bA; (2)

where ~Ci(x) = Cix + bi is the i-th convolution layer comprising the circulant
matrix Ci for the convolution and its additive unconstrained bias bi and � =
ReLU the standard pointwise nonlinearity in neural networks. Note that a CNN
with depth 0 degenerates to an unconstrained affine transformation in RD (no
pointwise nonlinearity or convolution): f0(’data) = A’data + bA.

The networks are trained to minimise the Mean Squared Error (MSE)3, a
proxy for the ESE, using the N generated samples. Denoting fk;N;� the resulting
networks (where � a hyperparameter of the optimisation algorithm), we have:

MSE train(fk;N;�) = 1
N

NX
i=1

kfk;N;�(’data
train;i)� ’train;ik22; (3)

where for a sample collection set , ’set;i and ’data
set;i denote the i-th original and

degraded samples. This quantity is to be compared with ESE (fk;N (’data); ’),
which evaluates the performance on all possible data of a network trained on
N instances only. Naturally, this quantity cannot be computed by hand and
is approximated by another MSE calculation on a large test set using Nt test
samples independently generated from the training ones:

MSE test(fk;N;�)= 1
Nt

NtX
i=1

kfk;N;�(’data
test;i)�’test;ik22����!

Nt!1
ESE (fk;N;�(’data); ’):

(4)
In our tests, Nt = 100000. Note that implicitly in ESE (fk;N;�(’data); ’) the
network fk;N;� is the given result of a minimisation algorithm. For randomised
algorithms, it is thus to be understood as the expectation conditional to the
learned network fk;N;�: ESE (fk;N;�(’data); ’) = E(kfk;N;�(’data)�’k22 j fk;N;�).

We train our networks using Stochastic Gradient Descent with Nesterov mo-
mentum parameter equal to 0:9. We train the networks using various learning
rates � 2 f0:0001; 0:0005; 0:001; 0:005; 0:01; 0:05; 0:1g over 50 epochs, performing
Nr = 50 independent training trials per learning rate, and compute the final me-
dian performance per learning rate on a validation set generated independently
of the train and test data comprising Nv = 100000 validation samples:

MSE val(fk;N;�)= 1
Nv

NvX
i=1

kfk;N;�(’data
val;i)�’val;ik22 �����!

Nv!1
ESE (fk;N;�(’data); ’):

(5)

3 The loss function is actually scaled to 1
D
MSE train as is commonly done in practice.

A model is worth tens of thousands of examples 5

The validation set is used to choose the best learning rate for each amount of
training data ��(N) by taking:

��(N) = argmin
�

MEDIAN r(MSE val(fk;N;�)); (6)

where MEDIAN r takes the median over the r � Nr best independent runs
on the validation set per �. Given that a significant amount of runs do not
converge or get trapped early in a poor local minimum depending on the random
initialisation, choosing r � Nr ensures that only the networks finding a good
local minimum are considered. The final performance of CNNs SCOREk;r(N)
for each amount of data N is then the median of the test performance over those
selected r trials4 of the final test score at the chosen learning rate ��(N):

SCOREk;r(N) = MEDIANr(MSE test(fk;N;�∗(N))): (7)

We display the evolution of the networks’ performance on the amount of
training data N in Figure 3 for each depth k, with detailed scores in Table 1,
along with the performance of the Wiener filter. Regardless of N , the Wiener
filter outperforms the neural models as expected by the theory, but their per-
formance converges to the Wiener’s one when a lot of data is available, with
similar performance when at least 10000 training samples are available. We can
thus consider this study as providing a criterion that a model would be preferable
if data is limited to fewer than 10000 samples to train on.

Fig. 3. Median test scores for CNNs with depth k 2 f0; 1; 2; 3g on r = 10 selected runs
(k = 0 is just a linear layer). Vertical bars represent the standard deviation of the MSE
of these runs. The right figure is a zoomed-in plot of the left one for large N .

3 Two-dimensional geometric estimation

We next analyse a more complicated yet well-understood problem based on
Euclidean geometry. The goal is to estimate basic geometric properties on simple
data: the radius and centre location of a random disk in an image. It was shown
in [6] that this seemingly trivial task is more complex than expected for neural
models even when focusing on radius estimation of centred disks.
4 Selected on the validation set.

6 T. Dagès et al.

N 0 10 100 1000 10000 100000

Wiener 1.743 — — — — —
Linear (k = 0) — 6.204 2.295 1.811 1.751 1.748
CNN (k = 1) — 12.386 3.662 1.924 1.799 1.762
CNN (k = 2) — 15.614 3.789 2.051 1.842 1.767
CNN (k = 3) — 20.395 4.911 2.167 1.869 1.771

Table 1. Median MSE scores SCOREk;r of the CNNs on r = 10 selected runs, com-
pared to the theoretically optimal Wiener filter.

3.1 Data model

The original data now consists of D � D random two-dimensional grayscale
images of disks. Images are centred at (0; 0), and for a pixel x 2 [�D�12 ; D�12]2:

’(x) =

(
b if kx� ck2 > r

f if kx� ck2 � r;
(8)

where r is the circle’s radius, c = (cx; cy) its centre, and f (resp. b) is the
foreground (resp. background) intensity. These parameters are independently5

and uniformly chosen at random: r � U(["r2
D�1
4 ; (1 � "r

2)D�14]) with "r = 0:4,
c � U([(D � 1) "c2 �

D�1
2 ; (D � 1)(1� "c

2)� D�1
2]2) with "c = 0:5, b � U([0; 1]),

and f j b � U([0; 1]n [b��; b+�]) with � = 50
255 the minimum contrast6. However,

’ is degraded with blur and noise giving the observed data ’data as follows:

’data = g�b � ’+ n; (9)

where g�b(x) = 1
2� exp(�kxk

2
2

2�2
b

) is a Gaussian convolution kernel, and n is i.i.d.
white noise n � N (0; �nID2). We plot example data in Figure 4. The task is to
estimate the three geometric numbers (r; c) = (r; cx; cy) from ’data .

Fig. 4. Four examples of clean ’ and degraded ’data disk images.

3.2 Expert engineer’s solution

Unlike in the Wiener case, the optimal estimator minimising the ESE is not
so trivial to find. Instead, we choose a method called Pointflow designed by an
expert engineer that perfectly tackles the problem at hand.
5 Except f and b which are slightly correlated to ensure a minimal contrast jf�bj > �.
6 In our tests, we take D = 201 implying that r � U([10; 40]) and c � U([�50; 50]2).

