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Abstract

Geodesic models are considered as a fundamental and powerful tool in the ap-

plications of curvilinear structure extraction, where the target structures are

usually modeled as geodesic paths connecting prescribed points. Despite great

advances in geodesic models, it still remains an unsolved problem of detect-

ing weak curvilinear structures from complicated scenarios. In this paper, a

dynamic high-order geodesic model for curvilinear structure extraction is intro-

duced to alleviate the shortcuts or short branches combination problems suffered

in the classical geodesic approaches. For that purpose, we take into account the

nonlocal pattern of curvilinear structures and the local curvature of geodesic

paths for the construction of geodesic metrics. Accordingly, the proposed model

is able to blend the benefits from the on-the-fly nonlocal smoothness property,

curvature regularization and appearance coherence penalization. The nonlocal

smoothness property carried out via a local bending operator is constructed to

provide a quantitative measure of geodesic advancing directions, meanwhile the

coherence penalization is established to guarantee the consistency of the local

appearance features extracted via a vessel detector. The experiment results on

synthetic and real images illustrate that the proposed method obtains outper-
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formance when compared to the classical geodesic-based tracing algorithms.

Keywords: Curvature-penalized geodesics, local bending constraint, coherence

penalization, curvilinear structures, retinal vessels

1. Introduction

The curvilinear structure tracking is a crucial problem in the field of com-

puter vision and image analysis. There are many important applications such

as the quantitative analysis of vessel structures in medical images for disease

diagnosis and surgical navigation, the detection of roads and rivers in satellite5

images for measurement and planning.

The curvilinear structure tracking is a challenging task due to the high vari-

ability shape and complicated background. Various methods have been devel-

oped to solve the problem including the graph-based models [1, 2], the curve

evolution-based methods [3, 4], the learning-based approaches [5, 6], the low10

rank-based algorithms [7, 8] and the geodesic path-based models [9, 10, 11].

More details about the main features of the models can be found in Table 1.

Among them, the learning-based approaches have achieved impressive perfor-

mance in general segmentation problems by utilizing a set of annotated data for

training [12, 13, 14]. However, this kind of method can not make sure that the15

detected result is continuous especially when the curvilinear structure has weak

appearance features. The geodesic model as an effective tracing tool provides a

more elegant solution for continuous curvilinear structure tracking benefitting

from its global optimization performance and fast numerical solvers. It regards

the centerline of the target structure as the geodesic between source and end20

points. The geodesic path can be tracked on the geodesic distance map obtained

by propagating a wavefront from the source point based on geodesic metrics [15].

The manuscript is organized as follows. In Section 2, we briefly introduce the

related works. Section 3 desribes the background on the Euler-Mumford elastica

geodesic model. Section 4 presents the core contribution of this manuscript. In25

Sections 5 and 6, we present the experimental results and the conclusion.
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2. Related work

We give a short review of the previous geodesic path-based models in two

related areas including automatic and interactive geodesic-based methods.

2.1. Automatic Geodesic-based Methods30

Different kinds of automatic geodesic-based methods have been studied with

aim to extract all the branches of the curvilinear tree structure. The minimal

path growing methods trace the connected tree structure by regarding source

points as a series of key points detected automatically during the course of the

geodesic distance calculation until the stop criteria are met [11, 9], however it is35

hard to design effectively propagation stopping strategy especially for complex

scenario. The geodesic voting methods try to track the complete curvilinear

structure by finding image points with high geodesic density [16]. The target

structures with low appearance features usually have low density values. Then

the backtracking strategy is introduced in the minimal path propagation in order40

to detect all branches of the tree structure [17]The minimum spanning trees

model detects the structure by finding saddle points from the geodesic distance

map [18].However, those methods lack reliability in complex scenario, especially

failing to detect fragile structures with disconnections or misconnections.

2.2. Interactive Geodesic-based Methods45

For the interactive geodesic approaches, various geodesic metrics have been

studied for curvilinear structure tracking in different situations. The original

geodesic model [15] is built upon the type of isotropic Riemannian metrics which

are position-dependent only. Then it is extended to a more general anisotropic

case [19, 20] depending both on path position and orientation information, which50

is conducted by taking into account the tubular anisotropy features [21, 22].

Furthermore, geodesic metrics considering radii or orientations are proposed

by adding abstract dimensions to the image domain, so a planar curve can be
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described by a high-dimensional geodesic path. A basic objective of the radius-

lifted geodesic models is to search for the centerline and boundaries of the curvi-55

linear structure simultaneously. The geodesic model with isotropic radius-lifted

Riemannian metric [10] compute the geodesic path containing the physical posi-

tion and radius values. Then, the anisotropic cases [23] are introduced by lifting

the anisotropic metric [19, 20] to the radius-lifted space. Geodesic models in

orientation-lifted space provide a novel way to utilize the orientation informa-60

tion. The isotropic orientation-lifted Riemannian metric is proposed to search

the geodesic path in the orientation-lifted domain [24]. Moreover, a Rieman-

nian metric [25] is designed by adding orientation dimension to the radius-lifted

domain simultaneously. More importantly, the curvature information [26, 27]

can be introduced into the geodesic model depending on the orientation-lifted65

scheme. The geodesic paths with rigid enhancement associated to Finsler elas-

tica metric [28] or sub-Riemannian metric [29] can be calculated by utilizing the

curvature-penalized fast marching approach [30]. The introduction of curvature

penalization makes a significant breakthrough in geodesic model, which effec-

tively improve its ability to detect curvilinear structures with complex topologies70

and scenes.

The geodesic models mentioned above are limited to the scope such that

their metrics are fixed during the geodesic distance computation. This means

that the metrics in these models cannot benefit from the nonlocal geometric

features generated during the fast marching front propagation. In order to75

remove this limitation, the approaches using dynamic metrics are proposed

in [31, 32, 33, 34, 35, 36]. Specifically, Liao et al. [31, 36] introduced an ef-

fective dynamic geodesic model by incorporating nonlocal path-based features

to steer the front propagation progressively. In this model, the metric used

is limited in the isotropic case. Such an idea is then adapted by [32] to the80

anisotropic tubular model established in the radius-lifted space, thus able to

simultaneously delineate the centerline and boundaries of the curvilinear struc-

tures. Finally, the nonlocal tubular appearance coherence penalty is introduced

into the dynamic anisotropic Riemannian metric, which is helpful to detect tar-
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Table 1: Illustration the main features of the related works.

Models Advantages Disadvantages

Graph-based models Global optimum
Difficult to remove

background structures

Curve evolution-

based models
Automatic detection

Stuck in undesirable

local minima

Learning-based models Multi-target tracking Manual annotation

Low rank-

based models
Multi-target tracking Noise sensitive

Automatic geodesic-

based models
All branches detection

Lack reliability in

complex scenario

Interactive geodesic-

based models
Global optimum

Shortcuts/short branches

combination problems

get structures with weak appearance features [33]. In summary, the existing85

geodesic models featuring dynamic metrics can reduce the risk of shortcuts and

short branches combination problems in some extent. However, these dynamic

models do not consider the curvature penalization which is an important reg-

ularization term in curvilinear structure tracking, thus limiting their practical

applications.90

2.3. Our Contribution

In this work, we introduce a new method for constructing dynamic metrics

which embedd curvature penalization, in order to overcome the shortcuts and

short branch combination problems occurring when tracing curvilinear struc-

tures featuring complex geometry, long euclidean curve length or strong tor-95

tuosity. The key ingredients of the proposed model involve: i) estimating the

bending measures of locally back-tracked paths to control the advancing direc-

tions of the fast marching fronts, and ii) incorporating the coherence penaliza-

tion of curvilinear appearance features into the construction of dynamic metrics.
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(a) (b) (c) (d)

Figure 1: An example for illustrating the short branches combination problem. (a) and (b)

Image patch and ground truth with source (cyan) point and end (yellow) point. The objective

is to extract the artery vessel (red) between two given points. (c) Vessel extraction results

via the Finsler Elastica minimal path model [28] and the short branches combination problem

occurs. (d) The geodesic path derived from the proposed model indeed seeks the correct vessel

Basically, the proposed method differs to the existing dynamic geodesic models100

in the consideration of curvature penalization that is an important geometric

property in curvilinear structure extraction. In addition, comparing to the tra-

ditional curvature-penalized models [28, 30, 29], our model leverages additional

nonlocal path-based features and appearance coherence to generate more accu-

rate results, as illustrated in Fig. 1. The short branches combination problem105

occurs when the target geodesic path passes through some segments belonging

to different vessels. In Figs. 1a and 1b, the original retinal vessel image and the

corresponding groundtruth of artery (red regions) and vein (blue regions) ves-

sels are illustrated, respectively. The goal is to extract the artery vessel between

the given points. We can see that the geodesic paths from elastica model [28]110

suffer from the short branches combination problems as shown in Fig. 1c, while

the proposed model can accurately find the target.

3. Background on Curvature-penalized Geodesic Model

3.1. Multi-orientation Geometry Description

Let Ω ⊂ R2 denote an open and bounded image domain, and let Ω̂ :=115

Ω × Rscale ⊂ R3 represent radius-lifted domain, where Rscale = [Rmin,Rmax]

indicates the radius space. For a point x̂ ∈ Ω̂, it is a pair (x, r) where x ∈ Ω and

r ∈ Rscale. In the application of curvilinear structure tracking, it is important to

detect the orientations and positions of the targets. In this work, the optimally
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Table 2: Annotation for the key math notations used in this work.

Notation Annotation Notation Annotation

Ω Image domain M Orientation-lifted space

Rscale Radius space S1 Orientation space

Ψ OOF filte responser H Hessian matrix

Υ Indicator of a disk ρ Optimal scale map

η Unit vector ψscore Vessel score map

ψos Orientation score map κ Curvature of the curve

γ Lipschitz curve γ̃ Orientation-lifted curve

D Geodesic distance map C Geodesic path

Φ Appearance features Θ Main orientation set

p Potential function ρ Optimal scale map

φ Coherence penalty ς Optimal orientation

χ Local bending measure g Local bending constraint

oriented flux (OOF) filter is used to extract the appearance features and ori-120

entation information, which is adopted to estimate the presence of curvilinear

structure from the background [37]. Without loss of generality, the gray levels

of the curvilinear structures are assumed to appear to be locally lower than

background.

The response Ψ of the OOF filter at a position x ∈ Ω with a radius r is

encoded in a symmetric matrix of size 2× 2 as

Ψ(x, r) =
1

r

!
H(Gσ) ∗Υr ∗ I

"
(x), (1)

where I : Ω → R is a gray level image, H(Gσ) is the Hessian matrix of a

Gaussian kernel Gσ with standard deviation σ, and Υr is the indicator of a disk

with radius r. For the 2D curvilinear structure tracking problem, the response

Ψ can be expressed by its eigenvalues with assumption λi(·) (i = 1, 2) and

the corresponding eigenvectors vi(·). Without loss of generality, the eigenvalues

are assumed 0 ≈ λ1(·) ≤ λ2(·). These eigenvalues characterizing the appearance
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features can be applied to estimate the optimal radius of a point at the centerline

of a curvilinear structure, by defining an optimal scale map ρ : Ω → Rscale from

λ2(x, r) as

ρ(x) = argmax
r∈Rscale

{λ2(x, r)} . (2)

A vessel score map ψscore, indicating the likelihood of a point x belongs to a

curvilinear structure centerline, can be derived at optimal scale as

ψscore(x) = max {λ2(x, ρ(x)), 0} . (3)

For a point x inside the curvilinear structures, the eigenvector v1(x, ρ(x)) pro-125

vides the curvilinear structure direction for the point x lying inside it.

Let S1 = [0, 2π) represent the orientation space with a periodic boundary

condition, and let M := Ω×S1 denote the orientation-lifted space. A point x =

(x, θ) ∈ M is made up of a physical position x ∈ Ω and an angular component

θ ∈ S1. Let ηθ = (cos θ, sin θ)T denote a unit vector of the orientation θ ∈ S1.

The orientation-dependent scores ψos : M → R+ can be defined

ψos(x, θ) = max{〈η⊥θ , Ψ(x, ρ(x))η⊥θ 〉, 0}, (4)

where η⊥θ is perpendicular to the unit vector ηθ. The orientation scores have

the ability to extend the confidence map Ψ to a orientation-lfited space [28].

3.2. Euler-Mumford Elastica Geodesic Model

The curvature-penalized geodesic models exploit the curvature as the regu-130

larization for computing smooth geodesic curves. Significant examples of exist-

ing curvature-penalized geodesic approaches involve the Euler-Mumford elastica

model [28], the Reeds-Sheeps models [29] and the Dubins car model [30]. In this

work, we take the Euler-Mumford elastica model as the basis of the proposed

geodesic model. In the remaining of this section, we briefly introduce the elas-135

tica model involving the orientation-lifted geodesic metric and the associated

eikonal equation.

Let Lip([0, 1],Ω) represent the set of Lipschitz continuous curves γ : [0, 1] →

Ω. The Euler-Mumford elastica model [28] utilizs a squared curvature term to
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establish the weighted curve length of a smooth curve γ : [0, 1] → Ω as

L(γ) :=
# 1

0

ζ(γ(u), γ′(u))(1 + β2κ(u)2)‖γ′(u)‖du, (5)

where ζ : Ω × R2 → R+ is a data-driven cost function derived from the image

features, κ : [0, 1] → R denotes the curvature of the smooth curve γ : [0, 1] → Ω

and γ′ is its first-order derivative. The parameter β > 0 is a constant controlling

the importance of the curvature. In order to minimize the length (5) featuring

second-order property of curves, an orientation-lifting strategy is exploited, in

conjunction with a parametric function ϑ : [0, 1] → S1 which represents the

turning angle of a smooth curve γ as

γ′(u) = ηϑ ‖γ′(u)‖, (6)

yielding that for any u ∈ [0, 1]

κ(u) =
ϑ′(u)

‖γ′(u)‖ . (7)

In this case, the curve γ is mapped to an orientation-lifted curve γ̃(u) =

(γ(u),ϑ(u)) ∈ M. Incorporating the representation (7) to the length (5), the

energy functional is obtained as following

L(γ̃) =

# 1

0

ζ(γ(u),ϑ(u))

$
‖γ′(u)‖+ |βϑ′|2

‖γ′(u)‖

%
du, (8)

subject to the assumption (6).

The length (8) related to the elastica geodesic metric [28] F : M×R3 → R+
0

reads for any point x = (x, θ) ∈ M and any vector ẋ = (ẋ, θ̇) ∈ R3 as follows

F(x, ẋ) =

&
'(

')

‖ẋ‖+ |βθ̇|2
‖ẋ‖ , if ẋ = ηθ‖ẋ‖,

∞, otherwise.

(9)

yielding an equivalent expression of L as

L(γ̃) =

# 1

0

ζ(γ,ϑ)F(γ̃, γ̃′)du, (10)

where the image data-driven function ζ : Ω × R2 → R+ can be constructed

based on the orientation-dependent scores ψos defined in Eq. (4) with a weighted
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parameter α ∈ R+ as

ζ(x) = exp(−αψos(x)). (11)

Therefore, the minimization of the energy in Eq. (5) can be approximately

addressed by seeking the minimal path of the weighted curve length L, which140

can be solved by the Eikonal PDE framework.

Given a source point s ∈ M and a target point x ∈ M, the geodesic path

Cs,x : [0, 1] → M linking from s to x globally minimizes the length (10) among

the set Lip([0, 1],M) of all Lipchitz continuous curves γ̃ : [0, 1] → M

Cs,x = argmin
γ̃∈Lip([0,1],M)

{L(γ̃); γ̃(0) = s, γ̃(1) = x}. (12)

The geodesic path Cs,x contains the spatial positions of a tubular centerline.

The geodesic distance map Ds defined as the length of Cs,x, i.e.

Ds(x) = min
γ̃∈Lip([0,1],M)

*
L(γ̃)

+
, s.t.

&
'(

')

γ̃(0) = s

γ̃(1) = x.

(13)

The geodesic distance map Ds admits the unique viscosity solution to a

generalized Eikonal equation

Hx(∇Ds(x)) =
1

2
ζ(x)2, ∀x ∈ M\{s} (14)

with a boundary condition Ds(s) = 0, where H is the elastica Hamiltonian [30]

defined as the Legendre-Fenchel conjugate of ( 12F)2

Hx(x̂) =
1

8

$
〈x̂, ηθ〉+

,
〈x̂, ηθ〉2 + (θ̂/β)2

%2

. (15)

for any point x ∈ M and any co-vector x̂ = (x̂, θ̂) ∈ R3.

The target geodesic path Cs,x can be obtained by re-parameterizing a geodesic

curve C∗ which is the solution to the following ODE

C′
∗(u) = V(C∗(u)), with C∗(0) = x, (16)

where V is the geodesic flow defined as

V(x) := argmax
‖v̂‖=1

〈v̂, ẋ〉
F(x, ẋ)

. (17)
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The ODE (16) is solved backward in time till the source point s is reached.

Numerically, it can be solved via a finite differences scheme [30].

3.3. Motivation145

In the practical applications of curvilinear structure tracking, one of the ba-

sic objects is to delineate the target structure between two given points. The

classic geodesic models treat the centerline of the curvilinear structure as a

geodesic path. However, the derived geodesic paths are prone to yielding the

shortcuts or short branches combination problems, especially when the target150

structures have strong tortuosity, long Euclidean distance, complex topologies

or complicated background. The geodesic models with curvature regulations

may reduce the risk of the problems. However, they are not always suitable

in many practical applications due to the curvature-penalized geodesic mod-

els treat the centerline of curvilinear structures as the globally optimization.155

Moreover, these models equipped with static metrics only take into account the

point wise geometry features. As an example is shown in Fig. 1, the target

artery vessel locates near the vein vessel with stronger appearance features and

intersects with it. We can get that the derived curvature-penalized geodesic

path tends to evolve along the structures with strong appearance features, that160

is, the short branches combination problem occurs as described in Fig. 1c. Ac-

cording to the prior information that the tubular features vary slowly along the

same target curvilinear structure, it requires the geodesic metric not only utilizes

the appearance features, but also the continuity of the features. Therefore, we

propose a dynamic curvature-penalized geodesic metric embedded with the ap-165

pearance feature coherence penalty and local bending constraint, which enables

the proposed metric to considering more useful local and nonlocal image fea-

tures, simultaneously. We make a test and the result is depicted in Fig. 1d. The

proposed model can avoid the above mentioned problems as much as possible.
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4. Dynamic Curvature-penalized Geodesic Metric170

The prior information that the appearance features vary smoothly along the

same curvilinear structure is utilized in this work to track the curvilinear target

from the complex tree networks. Different from the current curvature-penalized

geodesic methods only considering the tubular appearance features, we also take

into account the nonlocal coherence properties of these features. Furthermore,175

the nonlocal path feature is also exploited to steer the evolution of the geodesic

path. The proposed metric based on those features involving the local bending

constraint and the tubular features coherence property enables to force the

geodesic path passing through the target curvilinear structure correctly.

4.1. Appearance Features with Coherence Enhancement180

The appearance feature is usually capable of distinguishing the target from

the tree structures and the background, but it is hard to identify the correct

appearance feature belonging to the target within the crossing region, resulted

from that two crossed structures have different appearance features, which is

prone to shortcuts or short branches combination problems in the geodesic-based185

curvilinear tracking applications. To avoid this problem, an asymmetric oriented

Gaussian kernel associated to the orientation information is constructed for

appearance feature coherence enhancement [33], which helps to discriminate the

appearance features in the overlapped regions. In this work, we introduce two

ways to characterize the tubular appearance features by the orientation scores190

and the image gray levels for the metric construction, which are suitable for

different curvilinear detection applications. We exploit the asymmetric oriented

Gaussian kernel to obtain the coherence enhanced appearance features in order

to design the correct appearance features of crossing points.

4.1.1. Coherence-enhanced Orientation Scores195

At first, the orientation score defined in Eq. (4) is used to estimate the tubu-

lar appearance feature, which is constructed by extending the response of OOF

filter to the orientation-lifted space. In order to characterize the appearance
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Examples for coherence-enhancement appearance features and orientation cluster-

ing. (a) and (e) Retinal and road images patches with points denoted as yellow dots. (b) The

coherence-enhanced orientation score. (f) The multi-orientation coherence enhancing gray

level score. (c) and (g) Values of the potential maps associated to the yellow points. (d) and

(h) The clustered orientations.

feature correctly along the target structure, an coherence-enhanced orientation

score map Φos : M → R+
0 is developed in [33] and for each orientation θ ∈ S1 it

is defined as

Φos(x, θ) =
(Gθ+π ∗ (ψos(·, θ)/‖ψos‖∞)) (x)

-
Ω
Gθ+π(x)dx

, (18)

where ∗ denotes the convolution operator,
-
Ω
Gθ+π(x)dx is used for normaliza-

tion, ψos is the orientation score, andGθ is the the asymmetric oriented Gaussian

kernel defined in [33] constructed by combining the oriented anisotropic Gaus-

sian kernel [38] and a cutoff function. An example is shown in Fig. 2b, the curve

indicates the coherence-enhanced orientation score of the yellow point in retina200

image shown in Fig. 2a.

4.1.2. Multi-orientation Coherence Enhancing Gray Level Scores

In this section, we give the method to estimate the appearance feature by

image gray levels. There are two main problems existing in gray levels describing

the tubular structures. One is the gray levels of the crossing section are affected205

by the structures with strong appearance characteristics, so it is hard to tell

the correct gray levels of the target structure. The other one is the appearance
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feature derived from the point-wise gray levels is susceptible to noises.

In order to overcome the above problems, we propose to exploit the gray

level average value of a local square region to represent the appearance features

instead of point-wise gray levels. For each point x = (x, θ), a rectangular area

centered at x is generated along the the direction θ. The average value of the

gray levels within the local region is considered as the appearance feature for

the point x. In implementation, the local rectangular region can be approxi-

mated by the asymmetric oriented Gaussian kernel Gθ, therefore the coherence

enhancement can be easily implemented by filtering the image I : Ω → R over

the domain Ω with the kernel Gθ. The obtained multi-orientation coherence-

enhanced gray level scores Φgl : M → R+
0 for fixed orientation θ ∈ S1 are

formulated as

Φgl(x, θ) = max{0, (Gθ ∗ I)(x)}. (19)

In Fig. 2f, the curve indicates the multi-orientation coherence-enhanced gray

level score of the yellow point in retina image shown in Fig. 2e. For convenience,210

we will collectively refer to the coherence-enhanced orientation scores Φos and

the multi-orientation coherence-enhanced gray level scores Φgl as the coherence-

enhanced appearance features denoted as Φ in the following parts.

4.2. Orientation Clustering

In this work, we take into account the main orientation scheme carried out by

the orientation clustering to construct the metric for simplicity, that is, we only

consider the appearance features along the main orientations to establish the

appearance coherence measurement and exploit the main orientations to com-

pute the local bending measurement. The main orientations can be estimated

according to the locally optimal appearance features. A set of main orientations

θ∗ ∈ S1 is expressed as

Θx = {θ∗;Φ(x, θ∗) > Φ(x, θ), ∀θ ∈ L(θ∗, l), and Φ(x, θ∗) > m(x)}, (20)

where Φ denotes the coherence-enhanced appearance features including coherence-215

enhanced orientation score map Φos (see Section 4.1.1) and the multi-orientation
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coherence-enhanced gray level score map Φgl (see Section 4.1.2), L(θ∗, l) rep-

resents the interval centred at θ∗ with length l, and m is the mean of Φ over

the orientation dimension expressed as m(x) = (1/2π)
- 2π

0
Φ(x, θ)dθ, which is

utilized as a threshold to identify the local maxima. In Figs. 2b and 2f, the220

points with locally optimal appearance features are indicated by black dots.

An orientation clustering approach is given based on coherence-enhanced

appearance features. For each point xθ = (x, θ) with fixed orientation θ ∈ S1,

we try to cluster it to the corresponding point xθ∗ = (x, θ∗) and the clustered

orientation θ∗ ∈ Θx is recognized as the main orientation to the point xθ. Firstly,

a potential function p : M → R+
0 is defined based on the coherence-enhanced

appearance features Φ and its mean value m along the orientation space with

periodic boundary condition as

p(x, θ) = |(Φ(x, θ)−m(x)|. (21)

Examples of the potential values are shown in Figs. 2c and 2g. Secondly, for each

point xθ∗ = (x, θ∗) with main orientation θ∗ ∈ Θx, we compute the distance

map from xθ∗ to each point x = (x, θ) along the orientation dimension based

on the potential function p. Note that xθ∗ and xθ have the identical physical

position x. The distance value at the point xτ = (x, τ), where τ ∈ [0, 2π), can

be computed as

U(τ ; (x, θ∗)) =
&
'''''''(

''''''')

....
# τ

θ∗
p(x, θ)dθ

.... , if |τ − θ∗| ≤ π,
# θ∗

0

p(x, θ)dθ +

# 2π

τ

p(x, θ)dθ, if τ − θ∗ > π,

# τ

0

p(x, θ)dθ +

# 2π

θ∗

p(x, θ)dθ, otherwise .

(22)

Finally, the orientation clustering is achieved by using the geodesic distance

map U . For each point x = (x, θ), it is clustered to the main orientation point

with minimum distance between them, and we can get an optimal orientation
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(a) (b) (c) (d)

Figure 3: (a) The geodesic path (red line) from the latest accepted point (yellow dot) to

the source point (cyan dot). (b) Geodesic distances superimposed on the retinal image. (c)

Truncated local geodesic path from the latest accepted point xmin to the the obtained reference

point p illustrated as green star. (d) The vector features denoted as yellow arrows associated

to the points.

map ς : M → Θx as

ς(x, θ) = argmin
θ∗∈Θx

{U(θ; (x, θ∗))}. (23)

In Figs. 2b and 2f, we can observe that the points clustered to the same main

orientation are denoted by the same color. The obtained optimal orientation

maps are illustrated in Figs. 2d and 2h, respectively.

4.3. A New Dynamic Curvature-penalized Metric225

In this part, we propose a dynamic curvature-penalized geodesic metric T :

M × R3 → R+
0 based on the coherence penalty of appearance features and the

local bending constraint. The new metric can be formulated as

T (x, ẋ) = h(x)g(x)F(x, ẋ), (24)

where h : M → R+ denotes the data-driven speed function with appearance

feature coherence penalty (Section 4.3.2) and g : M → {1,∞} presents the lo-

cal bending constraint operator by utilizing the orientation lifted scheme (Sec-

tion 4.3.3), which guarantee that the geodesic evolves without sharp turning.

Moreover, we exploit the elastica metric F , see Eq. (9) to encode the curvature230

information .
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4.3.1. Reference Point Detection

In this work, we introduce the appearance feature coherence penalty and

local bending constraint into the classic curvature-penalized geodesic metric.

These nonlocal features are constructed by searching for an extra reference point235

in the orientation-lifted space. This reference point can be derived from the local

truncated geodesic paths by the backtracking strategy, thanks to the single front

propagation nature of the fast marching algorithm.

As described in section 3.2, the geodesic path can be tracked by solving the

gradient descent ODE in Eq. (16) on the associated distance map. Here we de-240

scribe the approach to search for the reference point from a local geodesic path.

In the course of the fast marching front propagation, the geodesic distance map

is computed within the regions where the wavefront already visited. Therefore,

it is possible to extract a geodesic path from the point x inside the wavefront,

which connects to the source point s by utilizing the gradient descent ODE on245

the obtained geodesic distance map. Given a prescribed criterion, the reference

point can be identified from the truncated local geodesic path.

From the viewpoint of implementation, the geodesic path Cx,s = (Gx,s, 2)

parameterized by its arc-length is easily backtracked in the orientation-lifted

space, where 2 ∈ S1 depicts the orientation information of the path and Gx,s(·) ∈250

Ω denotes the planar curve that is obtained by projecting the orientation-lifted

geodesic path into the image domain. Let |Gx,s| be the Euclidean length of the

projected path Gx,s. The reference point indicated as p = (p, θp) is detected

from the geodesic path Cx,s, such that the projected path of the local geodesic

satisfies the prescribed criteria |Gx,p| = Γ and Γ ∈ R+ is a given constant. In255

Fig. 3a, we observe the geodesic path can be tracked where the geodesic distance

map has been computed shown in Fig. 3b. The local truncated geodesic path

from the latest accepted point xmin with length Γ is backtracked denoted in

Fig. 3c to obtain the reference point p.
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4.3.2. Appearance Feature Coherence Penalty260

Once the reference point p = (p, θp) is recognized, the non-local feature

related to the appearance feature coherence measurement can be constructed

based on the coherence-enhanced orientation score map in Eq. (18) or the multi-

orientation coherence-enhanced gray level score map in Eq. (19). For simplicity,

the appearance feature coherence penalty φ for the point x is formulated based

on the optimal orientation map ς as

φ(x) = exp(µ|Φ(x, ς(x))− Φ(p, θp)|) (25)

where µ is a positive constant to control the strength of consistency penalization

and ς(x) is the main orientation that the point x clustered to on the optimal

orientation map ς. When the point x and its corresponding reference point

p are located at the same curvilinear structure, the value of φ(x) should be

low according to the slow-varying prior for the appearance features. Then we

can get the image data-based cost function h : M → R+ embedded with the

appearance feature coherence penalty as

h(x) = exp(−αψos(x)) · φ(x) (26)

where the weighted parameter α is a positive constant as defined in Eq. (11).

4.3.3. Local Bending Constraint Operator

Although the appearance feature coherence penalty can effectively avoid the

shortcuts and short branches combination problems in many complicated situ-

ations, it is still hard to distinguish the target from neighboring structures with265

similar appearance features. Therefore, the local bending constraint operator

g : M → {1,∞} is constructed by the bending measure derived from the refer-

ence point in the orientation-lifted space. Different from the bending measure

estimated by two extra points from the local geodesic path in [31, 32], only

one reference point is needed in this work benefiting from the orientation-lifted270

scheme.

In the orientation-lifted space, a vector feature is designed to indicate the

tubular direction. We consider the unit vector ηθ related to the orientation
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θ ∈ S1 as the vector feature to depict the tubular direction as yellow arrows in

Fig. 3(d). According to the definition, we can get two vector features from the

backtracked reference point and the current point within the wavefront, which

are constructed in the course of the fast marching front propagation. Note

that we take into account the main orientation from the optimal orientation

map ς of the current point x = (x, θ) to establish the vector feature. For the

reference point p = (p, θp), the orientation can be derived from the backtracked

orientation-lifted geodesic path made up of positions and orientations. Then,

the local bending measure χ : M → [−1, 1] for the point x is estimated by the

angle between two vector features associated to the reference point p = (p, θp)

as

χ(x) =
〈ηθp , ης(x)〉
‖ηθp‖ ‖ης(x)‖

, (27)

where 〈·, ·〉 is the scalar product operator. We get that a small value of χ

illustrates a geodesic path of strong bending.

Finally, the local bending constraint operator g : M → {1,∞} is defined as

g(x) =

&
'(

')

1, χ(x) > χ0,

+∞, otherwise,

(28)

where χ0 is a threshold for the bending measure χ. According to the prior infor-

mation that the direction of the curvilinear structure usually varies smoothly,275

the bending constraint operator is designed to steer the geodesic path evolution

without large bending. When the value of bending measure χ(x) > χ0, the local

geodesic path has small bending and g(x) = 1, which means the fast marching

front propagates as usual. Otherwise the local geodesic path may turn sharply,

we set g(x) = +∞ to froze the point causing high bending.280

Given an example in Fig. 3d, p represents the reference point, a and b are

points located at the front. If a is the current Accepted point, we can get the

angle between the two vector features derived from a and its reference point p

are small, so g(x) = 1 and the geodesic path evolves smooth. If b is the current

Accepted point, the obtained angle is large which may cause high bending of285

the geodesic, therefore we froze the evolution by set g(x) = +∞. In summary,
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an appropriate threshold is effective to avoid the shortcut or short branches

combination problems.

Algorithm 1 Dynamic Metric-based Front Propagation

Input: The appearance feature Φ, points s and q.

Output: Geodesic distance map Ds.

Initialization:

• Set Ds(s) ← 0, Q(s) ← Trial.

• Set Ds(x) ← ∞, Q(x) ← Far, ∀x ∈ Mh \ {s}.

1: while stopping criterion is not reached do

2: Set Q(xmin) ← Accepted;

3: Backtrack the local geodesic path from xmin;

4: Find the reference point p;

5: Compute the bending measure χ(xmin) via Eq. (27);

6: if χ(xmin) ≤ χ0 then

7: Set Ds(xmin) ← ∞;

8: else

9: for all y ∈ S−1(xmin) and Q(y) ∕= Accepted do

10: Set Q(y) ← Trial;

11: Estimate appearance feature coherence penalty φ via Eq. (25);

12: Update metric T via Eq. (24);

13: Update distance value Ds(y);

14: end for

15: end if

16: end while

4.4. Fast Marching Implementation

4.4.1. Fast Marching Fronts Propagation Scheme290

The Hamimtonian fast marching (HFM) method [30] is an effective numeri-

cal solver to the Eikonal equations with respect to curvature-penalized models.

We refer to [30] for the details on the analysis of the discretization of the cor-
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Figure 4: Row 1: The geodesic path derived from the FE model [28] (left) and the geodesic

map superimposed on the retinal image (right). Row 2: The geodesic path computed by the

proposed model (left) and the geodesic map superimposed on the retinal image (right).

Figure 5: The sensitivity of the tracking result corresponding to the backtracked truncated

geodesic length Γ and local bending threshold χ0. Row 1: The detection accuracy. Row 2:

The running times.

responding Eikonal equations. As discussed in [30], the HFM is performed

in the discretization domain Mh := M ∩ (hZ2 × (hZ\2πZ)), where h is the295

discretization scale. During the fast marching front evolves, the geodesic dis-

tance is computed, meanwhile a label map Q : Mh → {Far, Trial, Accepted}

is also estimated. In initialization, we set Q(x) = Far for all the grid points

x ∈ Mh\{s} with geodesic distance Ds(x) = ∞ associated to the source point

s, and Q(s) = Trial with Ds(s) = 0.300
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The definition of the neighbourhood system is crucial in the fast marching

method. We denote by S(x) the metric-dependent neighbourhood of a grid point

x ∈ Mh. Its inverse neighbourhood is defined as S−1(x) := {y ∈ Mh;x ∈ S(y)},

which means the point y belongs to the neighbourhood of point x. In the

geodesic distance update iteration, a point xmin ∈ Mh with minimum geodesic305

distance value among all the Trial points is tagged as Accepted. Once the latest

Accepted point is obtained, the geodesic distance for each point y ∈ S−1(x) with

Q(s) ∕= Accepted can be updated.

4.4.2. Dynamic Metric-based Fronts Propagation Implementation

In this section, we give the method to update the curvature-penalized metric310

T dynamically during the fast marching fronts evolve, which can be achieved

by combining the fronts propagation scheme and the locally truncated geodesic

backtrack strategy.

During the geodesic distance computing process, the latest Accepted point

xmin is detected from the Trial points. We can backtrack a geodesic path315

Cxmin,p = (Gxmin,p, ·) from the point xmin, where p is the detected reference

point corresponding to xmin. The reference point p is derived from the back-

tracked geodesic path when the Euclidean curve length of the truncated geodesic

satisfying the criteria |Gxmin,p| = Γ. In the following, the reference point is used

for all neighbouring points of xmin labeled as Trial. Then the bending con-320

straint operator and appearance feature coherence penalty can be computed

to update the metric T . The bending constraint operator g determines if the

propagation should be halted, which is carried out by the bending constraint

measure χ. If χ > χ0, the appearance feature coherence penalty is estimated to

update the metric and the fronts propagate as usual, or the front propagation325

is frozen, and the point is tagged as Accepted. The front propagation scheme

is terminated till the end point has been tagged as Accepted or Trial, or all

the grid points have been tagged as Accepted or Trial. More details can be

found in the pseudo-code in Algorithm 1. From Fig. 4, we get that the local

bending constraint carried out by the front frozen scheme is capable of forcing330
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the geodesic pass through the desired structure.

4.5. Discussion

The proposed method establishes the metric in a dynamic way by invoking

the appearance feature coherence penalty and local bending constraint in the

orientation-lifted space. The Euler-Mumford elastica model [28], the Reeds-335

Sheeps model [29] and the Dubins car model [30] are three state-of-the-art

curvature-penalized geodesic path approaches with strong penalizations of cur-

vature, which are all implemented by lifting the path into the configuration

space of positions and orientations. The geodesic distance can be computed by

the fast marching method. In this work, we give the method to construct the340

dynamic curvature-penalized model based on the the Euler-Mumford elastica

metric. Obviously, it is easy to construct the dynamic model depending on the

Reeds-Sheeps or the Dubins car models by utilizing the proposed scheme.

Finally, we analyze the run time complexity for the fast marching implemen-

tation of the proposed model. The numerical scheme in our work is established345

upon the HFM method associated to the metric in Eq. (9), whose complexity is

O(KN lnN), where N represents the number of grid points in discretized do-

mainMh and whereK is the discretization parameter for the elastica metric [30].

Thus, in our model the run time complexity can be O(KN lnN +NW ), where

W is set as the computation time for the metric update operation as introduced350

in Section 4.3.

5. Experimental Results

In this work, we conduct experiments on tracking tubular structures from

synthetic images, vessels from retinal fundus images and roads from satellite

images quantitatively and qualitatively. For the quantitatively evaluation, an

accuracy measurement Ξ is defined to compare the results from the tested mod-

els with the ground truth, defined as

Ξ =
|P ∩P|
|P| , (29)
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Origin Aniso dIso FSR FE Pro-

posed

Figure 6: Qualitative comparison between different models on synthetic images. The cyan

and yellow dots indicate the source and end points, respectively. The red lines represent the

obtained paths from each models.

where P denotes the grid point set of the path tracked by the proposed model,

P denotes the set of grid points from the ground truth region and it is a binary

segmentation if the target structures. |P| stands for the number of elements355

P, and |P ∩P| represents the number of grid points of P passing through the

ground truth region P. The value of the accuracy measurement Ξ ranges from 0

to 1. The higher of the accuracy measurement value indicates that the detection

results are more identical to the ground truth, which means the performance of

the tested models is better.360
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5.1. Parameter Setting

In the OOF filter, we set the standard deviation σ of the Gaussian kernel Gσ

as 1.5 to construct the Hessian matrix. The possible radii ranges from Rmin = 1

to Rmax = 8 to generate the radius space. The weight parameter µ in Eq. (25)

determines the impact from the appearance features, and α in Eq. (26) controls365

the influence of the appearance feature coherence penalization in the data-driven

function. When the appearance feature is blurred, the α should be small and

the value of µ should be high [33]. The parameter β in the metric is set as 20

to control the importance of curvature.

In the proposed model, the parameter Γ with respect to Euclidean length of370

the backtracked truncated geodesic path and the threshold value χ0 for the lo-

cal bending measurement are crucial in the dynamic metric construction. The

sensitivity of the tracking results from the proposed model in regard to the

parameters Γ and χ0 are studied on the synthetic images. To efficiently evalu-

ate the performance, we generated synthetic images with six types of curvilinear375

structures containing ones have high curvature, long Euclidean distance or cross-

ing with each other as shown in column 1 of Fig. 6. Each structure has three

different radii r ∈ {1, 2, 3} pixels, respectively. Besides, each kind of image has

three scales with size of 150 × 100, 225 × 159 and 300 × 200 grid points. All

images are normalized and added Gaussian noises with 21 levels from σn = 0 to380

σn = 0.5. Each level of noise is added 10 times independently. Finally, a num-

ber of 11340 synthetic images are used for the experiments. We get that as the

level of noises increases, the advantage of the local bending constraint becomes

obvious. An appropriate combination of the parameters Γ and χ0 used in the

proposed dynamic metric can helpfully avoid the shortcuts and short combina-385

tion problems to tracking the target structures correctly. Some experimental

results with different noised levels are shown in Fig. 5. Both the accuracy and

running time values depicted in Fig. 5 are the average of results from all images

with same noise level. We consider Γ = 6 and χ0 = 0.8 as reasonable choice

for the metric. It turns out that longer paths require more computation time390

and too high bending threshold lead to miss some target structures. All the
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Ground truth Aniso dIso FSR FE Proposed

Figure 7: Qualitative comparison of different models on retinal images of DRIVE dataset

(Rows 1-2) and IOSTAR dataset (Rows 3-4). The green line depicts the ground truth of

the target structure. The cyan and yellow dots indicate the source and end points, respectively.

The red lines represent the obtained minimal paths from each model.

experiments are performed on a standard Intel Core i7 of 3.2 GHz architecture

with 64Gb RAM.

5.2. Qualitative Comparison with State-of-the-art Metrics

We also compared the proposed dynamic curvature-penalized metrics with395

the state-of-the-art geodesic models, including the progressive geodesic model

with progressive isotropic dynamic metric (dIso) [31], the geodesic model with

anisotropic Riemannian metric (Aniso) [23], the Euler-Mumford elastica model

(FE) [28] and the Reeds-Sheeps models (FSR) [29]. The dIso model [31] intro-

duced the local bending constraint to the isotropic metric [10] with aiming to400

overcome the shortcuts problems existing in the traditional isotropic geodesic

method. The Aniso metric [23] exploits the anisotropic tubular features to han-
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Origin Aniso dIso FSR FE Proposed

Figure 8: Qualitative comparison results of different models on satellite images. The cyan

and yellow dots indicate the source and end points, respectively. The red lines represent the

obtained minimal paths from each model.

dle the problems. Both the FE and FSR models take into account the curvature

penalization to get the smooth geodesic paths. In this work, the proposed dy-

namic curvature-penalized metric is built based on the FE metric and regarded405

as Proposed metric. For the experiment on synthetic images and retinal im-

ages, the coherence-enhanced orientation score in Eq. (18) is used to compute

the appearance feature coherence penalization. We exploit the multi-orientation

coherence-enhanced gray level score in Eq. (19) to construct the appearance fea-

ture coherence penalization in the road detection from the satellite images.410

Firstly, we compare the Proposed metric with the Aniso metric, the dIos

metric, the FSR metric and the FE metic on the synthetic images. The struc-

tures are described in 5.1 detailedly. The goal is to detect the target structure

between the prescribed points in column 1 of Fig. 6. In columns 2-6, we show

part of the results (red line) on the synthetic images with size of 300× 200 and415

27



Origin FSR FE Proposed

Figure 9: Comparative results on synthetic images containing structures with same gray

levels. The cyan and yellow dots indicate the source and end points, respectively. The red

lines represent the obtained minimal paths from each model.

Gaussian noise σn = 0.5. The radius of the structure is one pixel. The pro-

posed minimal path prefers to pass through the curvilinear structures locally

smooth. The geodesic path associated to the Proposed metric has the ability

to delineate the desired structures correctly, especially for the structures with

long euclidean distance and crossing structures. In the synthetic image and the420

following retinal image experiment, the parameters are set as α = 5 and µ = 10

in the image data-driven cost function.

In Fig. 7, we compare the performances of the Aniso metric, the dIos metric,

the FSR metric, the FE metic and the Proposed metric on the retinal images

from the DRIVE [39] and IOSTAR datasets [40]. The ground truth of the425

target structure is shown as green line in column 1. The comparative results

are illustrated in columns 2 to 6. We also observe the shortcuts or the short

branches combination problem occurs on the images in columns 2 to 5, where

the obtained paths combining the segments with strong appearance features.

Although, different improvements have been made in the state-of-the-art metrics430

to solve problems. Especially the FSR and FE metrics considering the curvature

penalization are capable of solving the problems in some extent. However,

it is difficult for both the metric to get the accurate results in the situation

of extracting a weak target structure with strong tortuosity especially when

the target is close to another structure with strong appearance features. The435

28



geodesic path derived from the Proposed metric depicts the target structures

correctly in column 6, which benefits from the appearance feature coherence

penalization scheme and the front freezing strategy.

In Fig. 8, we illustrate the minimal paths derived from the state-of-the-art

metrics and the proposed metric on the satellite images with aiming to tracking440

the roads [5]. The expected curvilinear structures have long distance and high

tortuosity between ource point and end point as shown in column 1. The classic

metrics fail to detect the target depicted in columns 2 to 5, while the Proposed

metric can detect the desired structures accurately shown in column 6. In this

experiment, the multi-orientation coherence-enhanced gray level score is used445

to compute the appearance feature coherence penalization. We set α = 3 and

µ = 20 for the road detection in the image data-driven cost function.

In Fig. 9, we illustrate the gosesic paths derived from the FSR metric, FE

metric and the Proposed metric in the case that the gray levels of the target

structures are almost identical to its neighboring ones. The Proposed metric is450

based on the coherence-enhanced gray level score and the parameters are same

as those in the above road detection experiment. In column 1, the two struc-

tures are crossed with each other. The target is the one with long euclidean

distance and high tortuosity between two prescribed points. The minimal path

models with the FSR metric and FE metric both fail to detect the expected455

structures as shown in columns 2 and 3. The Proposed metric is able to detect

the structure accurately shown in column 4. Besides, a minimal path model

associated with a dynamic Riemannian metric embedded with an appearance

feature coherence penalty is recently proposed in [33] to extract tubular struc-

tures from the complicated vessel tree networks. However, it is difficult to track460

the crossed structures with same gray levels. Our Proposed metric benefiting

from the front freezing scheme has the ability to solve this problem and follow

the target structure.
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Figure 10: Average values of Ξ for evaluating the performance of the considered models in

synthetic images.

Table 3: Average values of Ξ for evaluating the performance of the considered models in artery

vessels tracing on retinal images from the DRIVE and IOSTAR datasets

Datasets Aniso dIso FSR FE Proposed

DRIVE 59.99% 61.14% 58.51% 62.71% 94.18%

IOSTAR 80.21% 87.60% 89.38% 85.63% 96.27%

5.3. Quantitative Comparison

In this part, we quantitatively compare the performance of the Aniso metric,465

the dIos metric, the FSR metric, the FE metic and the Proposed metric on

synthetic and retinal images. The accuracy measurement Ξ is utilized for the

evaluation the results from the tested models with the ground truth.

The information corresponding to the synthetic images are described de-

tailedly in 5.1. Each level of Gaussian noises with 21 levels from σn = 0 to470

σn = 0.5 is added 10 times independently for each scale image containing. The

average values of the accuracy measurement Ξ derived from different metrics in

each noise level is illustrated in Fig. 10. We can get that the curvature-penalized

geodesic models including the FSR metric, the FE metic and the Proposed met-

ric achieve better performance than the Aniso metric and the dIos metric. As475

the noise level increases, the model with Proposed metric shows significant ad-

vantages and get robust results.

We also compare the proposed metric with the state-of-the-art metrics quan-
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titatively on retinal images from the DRIVE [39] and IOSTAR datasets [40]. In

previous works, the tubular structure detection performances are usually tested480

on the retinal image patches including structures crossing or close to each other.

Our experiments in this work are to detect the artery structures between two

prescribed points on the entire images instead of the image patches. We choose

the retinal artery which is close to or crosses a vein with stronger appearance

features as the target vessel structure. We take into account 107 artery ves-485

sels from the DRIVE dataset and 135 artery vessels from the IOSTAR dataset.

For each target structure, the prescribed points are same for all the models.

The average accuracy scores for different models are demonstrated in Table. 3.

We get that the average values of Ξ derived from our proposed models in each

dataset are 94.18% and 96.27%, which shows that the proposed metric has sig-490

nificant advantages. According to all the experiments, the results prove that

the proposed models outperform the compared state-of-the-art models in both

robustness and accuracy.

Limitation. The experiments above have illustrated promising results. Cur-

rently, the proposed model can only be applied to address the problem of 2-495

dimensional curvilinear structure extraction in an interactive manner. In future,

we will extend this work to automatic curvilinear tree structure extraction and

to 3D tubular structure extraction.

6. Conclusion

In this paper, we propose a new minimal path model associated with dy-500

namic curvature-penalized metric for curvilinear structure tracking. A crucial

contribution is to introduce the coherence property of appearance features and

nonlocal feature into the curvature-penalized metric, by designing the appear-

ance feature coherence penalization and local bending constraint. The metric

updating scheme can exploit the prior information of tubular feature changing505

smoothly, which effectively reduces the risk of shortcuts and short branches

combination problems to obtain more accurate and robust tracking results.
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