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AN ADAPTIVE GEODESIC VOTING METHOD FOR CURVILINEAR
TREE STRUCTURE EXTRACTION ∗

Abstract. Geodesic voting method is known as a powerful tool for extracting curvilinear struc-
tures, which is able to find a tree structure from a single point. However, this method may fail to
generate accurate results in complex scenarios such as complex network-like structures, due to the
limitation of single source point. In order to solve this problem, we propose an adaptive curvature-
penalized geodesic voting method where multiple source points with geometric voting constraint
can be used for constructing the voting score map. In addition, we exploit the introduced adaptive
geodesic voting method for the task of retinal vessel tracking, in conjunction with a deep learning-
based junction points detection procedure. Experimental results on both synthetic images and retinal
images prove the efficiency of the introduced adaptive geodesic voting method.
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1. Introduction. The extraction of curvilinear structures is a fundamental task
in the fields of image analysis and medical imaging. Significant applications include
blood vessel tracking from medical images, roads detection from aerial images and find
optimal trajectories in motion planning and robotic navigation. In the past decades,
models on addressing the curvilinear structure extraction have been extensively stud-
ied. Despite great advances around this issue, accurately extracting complex curvi-
linear tree structures remain a challenging task, due to their elongated shapes [16].

Approaches based on the curvilinear detectors are a type of simple yet powerful
methods [8], which are capable of transforming the images to process to an enhanced
map. These models can take advantages of the geometry of curvilinear structures,
thus have been widely exploited the curvilinear feature descriptors. Typical examples
on curvilinear detectors include [6,12,18,25]. Models [3,24] driven based deep learning
techniques refer to the curvilinear structure segmentation as a binary classification
problem. Thus the strong ability of the neural network in features representation
allows these models to extract satisfactory results even in some difficult tasks. How-
ever, it is difficult for both types of approaches mentioned above to benefit from the
connectivity prior of curvilinear structures, thus very often leading to segmentation
featuring gaps.

The optimal paths are taken as an efficient curvilinear descriptor, which can over-
come that problem, since a curvilinear structure can be naturally modeled as a con-
tinuous curve. Significant examples include the active contour models [17,26] and the
minimal paths models based on the Hamiltonian-Jacobi-Bellman (HJB) equation [20],
relying on an energy minimization framework. Cohen and Kimmel [4] connect the
computation of globally optimal paths to the HJB equation, giving various appli-
cations of minimal paths in image analysis. From then on, many efforts have been
devoted to exploiting minimal paths to address curvilinear structures from various im-
ages [1, 7, 9]. However, most of these minimal paths-based models can be categorized
as an interactive segmentation method, where the endpoints of a curvilinear structure
should be prescribed manually. The geodesic voting method [22] uses a set of sampled
points as the endpoint candidates, from which a large number of minimal paths can
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Fig. 1.1. Results of the geodesic voting method. The top row shows synthetic images with green
dots indicating the planar points of the source points. The second row illustrates the extraction
results, with single source point (column 1), multiple source points (column 2) and multiple source
points in noisy image (column 3).

be obtained. The basic idea is that if most of these sampled points are inside or
nearby the curvilinear structures, then the density of the respective minimal paths
can be used to measure the appearance of curvilinear structures. The geodesic voting
method can extract a complete curvilinear tree structure from a single source point.
Unfortunately, it is difficult for this model to get satisfactory results in complicated
scenarios, due to the limitations of single source point.

In this work, we propose an adaptive geodesic voting method which can use
multiple source points to enhance the curvilinear structure extraction results. We
introduce a geometric voting constraint in order to remove the voting scores from
unexpected minimal paths. In addition, in contrast to the original model which only
considers isotropic curvilinear features, the introduced model utilizes a second-oder
model where the path curvature is taken into account. Fig. 1.1 illustrates examples
on the geodesic voting method on synthetic images. In columns 1 and 2, the tests are
performed in the same image but with different numbers of source points. We can
observe that the result in column 1 suffers from gaps while the result of the introduced
adaptive voting method with multiple source points is satisfactory. In column 3, we
perform the adaptive geodesic voting method in a noisy image, where one can also
observe accurate extraction result.

The remaining of this paper is organized as follows. Section 2 presents the back-
ground on computing elastica geodesic paths and section 3 presents the core of this
work: the adaptive geodesic voting method. The numerical experimental results and
the conclusion are given in Sections 4 and 5.

2. Background on the Elastica Geodesic Model. The second-order elastica
geodesic model [2, 13, 15] is designed to search for the global minimization of the
classical Euler-Mumford elastica problem [19]. Let Ω ⊂ R2 be an open and bounded
space which we referred to as the image domain and let S1 := R\2πZ denote the
circle. The elastica geodesic model considers a curvature-regularized energy of a
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smooth curve γ : [0, 1] → Ω, reading as

Length(γ) :=

󰁝 1

0

α
󰀃
γ(t), η(t)

󰀄󰀃
1 + (ξκ(t))2

󰀄
dt, (2.1)

where α : M := Ω × S1 → R+ is a data-driven cost, η : [0, 1] → S1 is the turning
angles of γ subject to ∀t ∈ [0, 1], ṅ(η(t)) = (cos(η(u)), sin(η(u)))γ′(t)󰀂γ′(t)󰀂, ξ > 0 is a
weighting constant controlling the relative importance of the curvature κ : [0, 1] → R
of γ. Using the turning angles η, the curvature κ can be reformulated as κ(t) =
θ̇(t)/󰀂γ′(t)󰀂.

The minimization of the length in Eq. (2.1) is carried out in the Hamiltonian-
Jacobi-Bellman (HJB) equation framework, via a degenerated metric F : M× R3 →
[0,∞] for any orientation-lifted point x = (x, θ) ∈ M and any vector ẋ = (ẋ, θ̇) ∈ R3

F(x, ẋ) =

󰀫
󰀂ẋ󰀂+ (ξθ̇)2

󰀂ẋ󰀂 , if ẋ = ṅ(θ)󰀂θ̇󰀂,
∞, otherwise

In the elastica geodesic model, given a fixed source point s and any target point x,
the minimization of Length(γ) yields a minimal action map U such that U(x) denotes
the minimal curve length from s to x, i.e.

U(x) = inf {Length(γ) | γ ∈ Lip([0, 1],M), γ(0) = s, γ(1) = x} ,

where Lip([0, 1],M) is the set of all Lipschitz continuous curves γ : [0, 1] → M. For-
tunately, the estimation of U can be efficiently obtained by solving the HJB equation
such that U(s) = 0, and for any x ∈ M\{s}

H(x,∇U(x)) = 1

2
α(x)2, (2.2)

where ∇U is the euclidean gradient of the map U , and where H : M×R3 → [0,∞] is
the Hamiltonian of the metric F with a closed form [13]

H(x, x̂) =
1

8

󰀕
〈x̂, (ṅ(θ), 0)〉+

󰁴
〈x̂, (ṅ(θ), 0)〉2 + ξ−2θ̂2

󰀖2

,

for any point x = (x, θ) ∈ M and for co-vector x̂ = (x̂, θ̂) ∈ R3, where we recall
that ṅ(θ) = (cos θ, sin θ). Then a minimal path G : [0, T ] :→ M, or a geodesic, where
T := U(x), is generated as the solution to the following gradient descent ordinary
differential equation (ODE) on the minimal action map U

G′(t) = ∂2H
󰀃
G(t),∇U(G(t))

󰀄
, s.t. G(0) = x, G(T ) = s. (2.3)

The minimal path G can be easily re-parameterized so as to get a new minimal path
Gs,x ∈ Lip([0, 1],M).

Numerically, the HJB equation (2.2) can be efficiently addressed by the state-of-
the-art Hamiltonian fast marching method (HFM) [13]. The HFM adopts a monotone-
advanced front propagation scheme in a single-pass way, allowing to terminate the
algorithm when all the target points are reached. In addition, we adopt the robust
scheme proposed in [14] for numerically solving the ODE (2.3).

3. Adaptive Geodesic Voting Method with Multiple Source Points.
In this section, we introduce the core of this work, named the adaptive curvature-
regularized geodesic voting method with multiple source points.
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3.1. Constructing the Sets of Source and Target Points. In this section,
we introduce an adaptive geodesic voting method allowing multiple source points to
set up the model. We start by defining the set of orientation-lifted points which
are taken as the source points of the geodesic voting method. We denote by S :=
{s1, · · · , sK} ∪ {s̃1, · · · , s̃K} the set of the given source points for the introduced
adaptive geodesic voting method. Each orientation-lifted source point si (resp. s̃i)
consists of a planar point si ∈ Ω and an angle ϑi ∈ S1 (resp. ϑi + π), i.e. si = (si,ϑi)
(resp. s̃i = (si,ϑi + π)). The planar points si can be prescribed manually or by an
application-specified algorithm such as vessel junction detection method. The angles
ϑi associated to each planar point si points to the tangent directions of the curvilinear
structure at si. Note that the model allows that a planar point si corresponds to
more than two angles, due to the potential junction structures. Basically, the angles
associated to si are regarded as the local minimizers of α(si, ·). We say that (si,ϑk) ∈
S and (si,ϑk + π) ∈ S if ϑk satisfies α(si,ϑk − 󰂃) < α(si,ϑk) ≥ α(si,ϑk + 󰂃), i.e.
α(si,ϑk) is a peak in a small local neighbourhood [ϑk − 󰂃,ϑk + 󰂃].

Furthermore, let ℘ := {p1, p2, · · · , pN} ∪ {p̃1, p̃2, · · · , p̃N} be a set of sampled
points, which provide the target points for the introduced adaptive geodesic voting
method. Again, the point pi has the same planar point pi with the point p̃i, but
opposite directions ṅ(θi) and −ṅ(θi). The angles θi corresponding to the planar
points pi are estimated via θi := argminθ∈[0,2π[ α(pi, θ). As in the literature [21,22],
all of the planar points {pi}1≤i≤N are produced using the farthest points sampling
scheme implemented by the fast marching method [14], applied in an iterative way.

3.2. Adaptive Geodesic Voting Method with Multiple Source Points.
The classical geodesic voting method [22] investigates only one single source point for
computing the voting paths, very often leading to shortcut problems. We solve this
issue by introducing a new curvature-penalized geodesic voting method featuring a
multiple source points mechanism with a geometric voting constraint. Algorithm 1
presents the main steps of the introduced adaptive geodesic voting method.

The geodesic voting score map is regarded as a core ingredient in the geodesic
voting method [22]. In the basic definition of the set S, each planar point si may cor-
respond to multiple orientation-lifted points included in the set S. For this purpose,
we split S into a family of subsets in terms of planar points

ℑi := {s = (s,ϑk) ∈ S, k ≥ 2}, (3.1)

where each set ℑi contains all the orientation-lifted points s such that they have the
identical planar point s but different angles. The final geodesic voting map, denoted
by Ψ : Ω → Z+

0 , can be computed as the summation of all ψi for 1 ≤ i ≤ K:

Ψ(x) =
󰁛

i

ψi(x), ∀x ∈ Ω. (3.2)

In our work, we suppose that each set ℑi leads to a voting score map ψi : Ω →
Z+ ∪ {0}. At each planar point pj ∈ Ω which is the planar point involved in ℘,
we expect to track only one minimal path Gi,j = (γi,j , ηi,j) with Gi,j(0) ∈ ℑi and
Gi,j(0) ∈ {pj , p̃j} to contribute to the voting score map ψj . This is done by firstly
addressing the following minimal curve length problem

inf
󰀋
LengthF (Γ) | Γ ∈ Lip([0, 1],M), Γ(0) ∈ ℑi, Γ(1) ∈ {pj , p̃j}

󰀌
(3.3)
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where LengthF (Γ) is the weighted curve length of Γ associated with the metric F and
cost function α:

LengthF (Γ) =

󰁝 1

0

α(Γ(t))F(Γ(t),Γ′(t))dt. (3.4)

Using the HJB equation framework as discussed in Section 2, the minimization
of (3.3) can be carried out by the minimal action map Ui which is the viscosity solution
to the HJB equation

󰀫
H(x,∇Ui(x)) =

1
2α(x)

2, ∀x ∈ \ℑi

Ui,j(x) = 0, ∀x ∈ ℑi.
(3.5)

Specifically, once the minimal action map Ui is estimated, from the target points
{pj , p̃j} we can obtain two minimal paths by reparameterizing the solution to the
gradient descent ODE (2.3) on the minimal action map Ui. Among them, the target
minimal path Gi,j = (γi,j , ηi,j) is the one with minimal value of Ui. In this case, by the
minimal action map Ui, one can computeK minimal paths minimal path {Gi,j}1≤j≤K ,
where K is the half number of the points in ℘.

In principle, if the planar point pj is inside a curvilinear structure, the path Gi,j

delineates the curvilinear structure whose endpoints are γi,j(0) and γi,j(1) associated
with tangent directions ṅ(ηi,j(0)) and ṅ(ηi,j(1)), respectively. However, for the case
that the curvilinear structures are very complex and the two points pj and si are too
far to each other, the planar curve γi,j very often suffers from the shortcut problem.
In order to reduce the possibility of such an issue, we introduce a geometric voting
constraint. Specifically, we suppose that only a minimal path Gi,j whose target point
Gi,j(1) = pj will contribute to the voting score map ψj if the distance between pj
and si is sufficiently low. In this work, this distance is measured using the curvature-
weighted length of Gi,j , that is defined as

L(Gi,j) =

󰁝 1

0

󰁴
γ′
i,j(t)

2 + β η′i,j(t)
2 dt =

󰁝 1

0

󰁴
1 + β κi,j(t)2󰀂γ′

i,j(t)󰀂dt (3.6)

where κi,j : [0, 1] → R is the curvature of the curve γi,j and β > 0 is a constant.
Eventually, the voting score map ψi can be estimated by

ψi(x) =

N󰁛

j=1

δx(γi,j)χL(Gi,j)>λ (3.7)

where N is the total number of points included in the set ℘ of target points, δx(γi,j)
is the voting detection function [22] such that δx(γi,j) = 1 if ∃t ∈ [0, 1], γi,j(t) = x
and δx(γi,j) = 0 otherwise, and χL(Gi,j)>λ is defined as

χL(Gi,j)>λ :=

󰀫
1, if L(Gi,j) > λ,

0, otherwise,

with λ > 0 being a thresholding value. By Eq. (3.2), the target voting score map Ψ
can be computed, where a high value Ψ(x) indicates a high possibility that the planar
point x ∈ Ω is located in the centerline of a curvilinear structure. Therefore, after a
thresholding procedure to the voting score map Ψ, we can obtain the tracking result
of a complex curvilinear three structure.
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Algorithm 1: Adaptive Geodesic Voting with Multiple Source Points

Input : The metric F , the sets S, ℘ and a constant λ.
Output: The voting score map Ψ

Initialization:
• Split the set S into M subsets ℑi with 1 ≤ i ≤ M .
• Set i ← 1 and Ψ(x) ← 0, ∀x ∈ Ω

1 for i ≤ M do
2 Compute the minimal action map Ui using ℑi as the source point set.
3 Set j ← 1 and ψi(x) ← 0, ∀x ∈ Ω.
4 for j ≤ K do
5 Compute the minimal path Gi,j .
6 if L(Gi,j) > λ then
7 Compute the voting score map ψi using Eq. (3.7).
8 end
9 Set j ← j + 1.

10 end
11 Set Ψ(x) ← Ψ(x) + ψi(x), ∀x ∈ Ω and set i ← i+ 1.

12 end

3.3. Numerical Implementation.

3.3.1. The Computation of the Minimal Action Maps. The numerical
implementation of the introduced adaptive geodesic voting method are established
over a regular grid Mh = M ∩ (hZ2 × hZ/2πZ) with grid scale h = 2π/Nθ, where
Nθ is the discrete angles along the orientation dimension and where hZ/2πZ :=
{0, h, 2h, · · · , (Nθ − 1)h}. In addition, the discretized image domain Ωh is denoted as
Ωh = Ω ∩ hZ2.

The computation of the minimal action map Ui is the core in the proposed model,
implemented using the HFM method [13]. The HFM method invokes the following
discretized system of the HJB equation (3.5)

󰁛

1≤l≤L

ωl(x)
󰁛

1≤j≤J

ρjl(x)

󰀕
Ui(x)− Ui(x− hėjl(x))

h

󰀖2

+

= 1, (3.8)

where ωl(x) > 0, ρjl(x) > 0 are positive weights, ėjl(x) ∈ Z3 are offsets with integer
coordinates, (a)+ = max{0, a} denotes the positive part of a scalar value a. The
weights ωl(x) are computed using the Fejer rule. The weights ρjl(x) and the offsets
ėjl(x) are estimated using Sellings decomposition of positive quadratic forms. For
more details we refer to [13]. The offsets ėjl(x) forms a neighbourhood system S
adaptive to the metric F . Specifically, one has S(x) = {ėjl(x) ∈ Z3, 1 ≤ j ≤ J, 1 ≤
l ≤ L} such that (x− hėjl) ∈ Mh is a neighbour point of x. The course of the HFM
can be seen in Algorithm 2.

The computation of the curvature-weighted length (3.6) can be estimated once
the paths Gi,j are tracked. Also, it is can be obtained in an accumulation way during
the computation of the map Ui, using the upwind gradient of Ui, see [10].

3.3.2. The Computation of the Cost Function α. The cost function α char-
acterizes the appearance features of curvilinear structures, such that α(x, θ) should
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Algorithm 2: Computing the Map Ui via the HFM Method

Input : A metric F and a source point s ∈ Ωh.
Output: Minimal action map Ui.
Initialization:

• Set Ui(x) ← 0, ∀x ∈ ℑi and Ui(x) ← ∞, else.
• Tag each grid point x ∈ Mh as Trial.
• Construct the set T involving all Trial points.
• Construct the stencils S associated to the metric F .

1 while T ∕= ∅ do
2 Set x∗ ← argminx∈T Ui(x).
3 Tag x∗ as Accepted and set T ← T \{x∗}.
4 for each Trial point y such that x∗ ∈ S(y) do
5 Set Ui(y) as the solution to the discretized HJB equation (3.8).

6 end

7 end

have a high value if the planar point x is passed by a curvilinear structure and ṅ(θ)
is collinear to the its tangent direction. In our work, the cost α is computed using
Frangi filter [5]. Let Gr be a Gaussian kernel of variance r2 and let Hr(x) be the
Hessian matrix of the Gaussian kernel Gr. The output of the Frangi filter can be ex-
pressed as (Hr ∗ I), where I : Ω → R is the image to process, provided that the gray
levels of curvilinear structures are locally darker than background. At a planar point
x belonging to a curvilinear structure, the matrix Q(x, r) = (Hr ∗ I)(x) have two
eigenvalues λ1(x, r), λ2(x, r) and two corresponding eigenvectors v1(x, r), v2(x, r),
subject to λ1(x, r) ≤ λ2(x, r). The analysis Q(x, r) yields a multi-scale vesselness
map f(x, r) = g(λ1(x, r),λ2(x, r)) where the function g is defined as [5]

g(a, b) =

󰀫
0, if b < 0

exp(−A(a, b))(1− exp(−B(a, b))), otherwise.

where A(a, b) = a2/(2u2b2) and B(a, b) = (a2 + b2)/(2v2) with u, v being two con-
stants. Let τ(x) = argmaxr f(x, r) be an optimal scale map. In this case, v1(x, τ(x))
indicates direction that a curvilinear structure should have at x. Then an orientation
scores used in this work is defined as P(x, θ) = f(x, τ(x))|〈ṅ(v1(x, τ(x))), ṅ(θ)〉|. As
a result, the cost function α is expressed as

α(x, θ) = exp(−ζP(x, θ)),

where ζ > 0 is a constant.

4. Numerical Experiments. In this section, we conducted experiments using
the adaptive geodesic voting method with multiple source points on both synthetic
images and fundus images so as to verify the availability of the introduced method.

4.1. Application to Retinal Vessel Network Extraction. The retinal ves-
sels appear as a network structure consisting of complex vessel branches such as
bifurcations and crossings. In order to generate accurate extraction results, we first
exploit a procedure to detect the junction points which connect more than one vessel
segments. These junction points are then taken as the planar points to identify the
set S of source points.
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(a) (b)

Fig. 4.1. a The red arrows indicate the directions associated to the planar position (green dot).
b: The red dots are the sampled points by the farthest point sampling scheme.

In the past years, significant advances have been made in junction detection
tasks [23, 27] based on the deep learning techniques. Among them, we choose the
Attention O-Net model [27] as the detector for junction points of retinal vessels, since
this model is free to image segmentation. Basically, it involves two branches, where the
first one is called junction detection branch (JDB) that utilizes heatmaps as labels,
and the second one is a local enhancement branch (LEB) that considers adaptive
radius labels. For the JDB, the corresponding heatmap is created using a Gaussian
kernel. The LEB applies a distance transform [11] to the ground truth vessel maps
to ascertain the approximate radius of each junction point. Subsequently, the label is
formulated based on the positions of the junctions and their respective radii. In this
section, we train the junction detection model using the training set of the DRIVE
dataset [27]. We process the images to be analyzed through the network, obtaining a
set of planar positions {si}i that locate the junctions. This set is then taken as the
planar points to generate the set S.

4.2. Results on Curvilinear Structure Extraction. In Fig. 4.1a, the green
dot is the planar position of the orientation-lifted source point. The red arrows char-
acterize the angles associated to the planar position, using the method presented in
Section 3.1. Fig. 4.1b illustrates the points by red dots sampled using the farthest
point sampling scheme. They are then used for constructing the target point set ℘.

Fig. 4.2 illustrates the extraction results on two retinal image patches as in column
1. In column 2, the green dots indicate the planar positions of the orientation-lifted
source points. Column 3 visualizes the voting score maps Ψ and column 4 illustrates
the extraction results after a thresholding procedure to Ψ. Indeed, one can observe
that the adaptive geodesic voting method indeed obtain promising results.

5. Conclusion. In this work, we introduce an adaptive geodesic voting model,
encoding a geometric voting constraint, and allowing to incorporate multiple source
points into the computation of voting score map that indicates the possibility of each
point belonging to a curvilinear structure. In addition, we show that the integration of
the adaptive geodesic voting method and a junction points detector indeed can extract
promising results from images with complex curvilinear structures. Future work will
be devoted to designing more types of geometric voting constraints in conjunction
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Fig. 4.2. Vessel tree structure extraction from retinal image patches. Column 1: Retinal vessel
image patches. Column 2: The green dots indicates the detected vessel junction points. Column
3: The voting score maps Ψ associated to multiple source points whose planar positions are shown
as green dots in column 2. Column 4: The vessel tree segmentation results using a thresholding
procedure on the respective voting score maps Ψ.

with deep learning techniques.
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