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A Generalized Geodesic Voting Framework for
Interactive Image Segmentation
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Abstract—In this paper, we introduce a novel interactive image
segmentation method based on the geodesic voting formulation.
In contrast to the classical geodesic voting model which utilizes
the geodesics only depending on the path position, the proposed
model also takes into account the image edge anisotropic and
asymmetric features by adapting the minimal paths relying on the
asymmetric quadratic metric for geodesic voting. Furthermore,
an adaptive cut-based closed contour computation scheme is
invoked to depict the target boundary, by tracing two asymmetric
minimal paths from a source point located at the adaptive cut to
an end point along two opposite sides of the cut. The proposed
asymmetric geodesic voting model is then applied to get the
complex structure segmentation, benefiting from the asymmetric
features and cut-convexity constraint. Experimental results show
that the proposed model indeed outperforms state-of-the-art
minimal paths-based image segmentation approaches.

Index Terms—geodesic voting, image segmentation, feature
extraction, geodesic models, Hamilton-Jacobi-Bellman equation.

I. INTRODUCTION

Image segmentation is a fundamental task in the fields of
computer vision, medical imaging and engineering, yielding a
broad variety of efficient and practical solutions. In particular
in the field of instrument and measurement, the segmentation
procedure, whose basic goal is to divide the image domain
into a series of subregions, is known as an important post-
processing step to achieve the measurement task. In this
paper, we focus on the variational models, among which the
benefits from image features and geometric regularization can
be naturally integrated for extracting image boundaries of
interests.

Among the existing variational segmentation models, the
active contour approaches have been widely studied since the
original work [1] and have been inspired a great number of
successful applications [2]–[5] in image analysis and computer
vision. The geodesic active contour model [6], [7] is a reliable
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model for image segmentation, which can blend the benefits
from both geometry of the contours and the local image gradi-
ent features, relying on a level set scheme [8]. Image gradients
are simple and efficient features in defining object boundaries,
but sensitive to image noise and spurious edges. Region-based
active contour models are regarded as a powerful solution to
the problems encountered by the edge-based models. In the
region-based models, image features such as colors and gray
levels can be modeled using statistical models, where typical
examples of relevant approaches include [9]–[11].

However, the level set-based active contour models are
prone to trap into local minima, whose numerical solutions
are sensitive to parameters, thus preventing their practical
applications in image analysis and artificial intelligence. In
order to tackle the issue, Cohen and Kimmel proposed a min-
imal geodesic model that globally minimizing weighted curve
length [12] associated to an direction-independent Riemannian
metric, by simply specifying two endpoints at the target
curve. Using the eikonal equation framework, the problem
of finding minimal geodesic paths is naturally transferred
to the computation of a geodesic action map, which carries
the minimization of the weighted length. The efficiency is
guaranteed by the fast marching method [13], [14], known
as a very numerical solution to the Hamilton–Jacobi–Bellman
(HJB) equation.
Geodesic Paths-based Image Segmentation Models. The
geodesic models have been extensively used in image seg-
mentation task, due to their computation efficiency and global
optimality. A crucial point for geodesic-based segmentation
approaches is to model the object boundaries as a simple
closed curves consisting of geodesic paths. In [12], a saddle
point detection method is introduced for finding two minimal
paths from a single source point, whose combination is a
simple closed curve, thus solving the image segmentation
problem. In [17], Mille et al. extended this idea to the case of
extracting multiple minimal paths from a set of saddle points,
allowing to incorporate a set of user-provided landmark points
for interactive segmentation. In contrast to the models which
delineate a complete object boundary using a set of open
geodesic paths, the circular geodesic model [18] proposed to
find a simple and closed planar geodesic, implemented by
introducing a cut as a straight segment whose two sides are
supposed to be disconnected. However, this model requires
external procedure to ensure the simplicity of the circular
geodesic, especially when the target region has a compli-
cated shape. Chen et al. introduce a dual-cut scheme [16]
to construct a simple closed curve consisting of two disjoint
minimal paths. Recent works on geodesic models allow to
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Fig. 1. An example for visualizing the advantages of the proposed generalized geodesic voting model. a An original image, where the blue line indicates
the ground truth. b Segmentation results denoted by yellow lines from the classic geodesic voting segmentation model [15], the dual-cut model [16] and the
proposed geodesic voting model featuring asymmetry enhancement, respectively. The cyan points in (c) and (d) depict the landmark points.

take into account the region-based statistical features [19]
and curvature regularization [20]–[23] for image segmentation,
yielding promising segmentation results.

Minimal paths are very often used as a fundamental tool
for extracting image features through a voting manner [24].
A key ingredient of the geodesic voting method lies at the
use of a set of sampled points, each of which leads to a
minimal path linking to the fixed source point, thus regarded
as an endpoint of the path. These sampled points are produced
being such that they are distributed densely around the features
of interest, thus encouraging the voting method to detect
as much image features relevant to the user intervention as
possible. In contrast to the circular path models or saddle
points-based models which take only a single closed curve
as the segmentation contour, the geodesic voting method can
benefit from the statistical information of a large amount of
minimal paths. Such an advantage allows the geodesic voting
model to correctly find the expected segmentation contours,
even through the images have complex intensity distributions.
Furthermore, the geodesic voting method is originally applied
for tubular structure tracking [24], [25], where the target fea-
tures (i.e. tubular tree structure) can be modeled as a series of
open minimal paths associated to Riemannian type of metrics.
In [15], the authors investigated the geodesic voting method
for edge detection and image segmentation. Unfortunately,
these geodesic voting models fail to take advantages of the
directional property of closed curves to create the set of
voting paths. Moreover, these models utilize all the voting
paths to compute a voting score map, which may increase
the probability of generating spurious edges. Considering the
above two issues suffered by the classical geodesic voting
method, we propose a new geodesic voting method consisting
of asymmetric quadratic metrics and two voting paths selec-
tion criteria. As a consequence, the directional property of
segmentation contours can be fully used.

Existing geodesic voting models fall into the limitation
that only the Riemannian metrics are invoked to compute the
voting paths. In particular, the image gradients are known
as an important cue that reflects the directions of the target
edges. However, minimal paths associated with the type of
Riemannian metrics fails to make use of the full information
of the image gradient features, due to its symmetric nature
with respect to the path tangents. We show an example of
comparison of different minimal paths-based segmentation
models on a real image, as shown in Fig. 2a where the blue line

indicates the expected segmentation contour. Fig. 2b illustrates
the results from the classical geodesic voting method, which
appears as a set of open curves, thus failing to find the correct
segmentation contour. Fig. 2c gives the segmentation contour
of the dual-cut model that is a variant of the circular geodesic
model. One can point out that a part of the target boundary
is missed due to its weak edge appearance. Fig. 2d illustrates
the segmentation contour derived from the proposed geodesic
voting method, which is able to correctly capture the target
boundary.

In addition, deep learning technique has obtained great
success in various image segmentation tasks as reviewed in
the literature [26], [27], thanks to the powerful ability of
data fitting carried out via the neural network. Significant
deep learning-driven segmentation approaches include [28]–
[35], which have inspired a variety of research lines to address
various image segmentation problems. As a great advantage,
the benefits from both of the high level image features (e.g.
the semantic information) and the low level features can
be blended into the these models. However, despite their
great advances, the deep learning-based segmentation models
commonly lack the regularization derived from the weighted
curve length associated to Finslerian metrics. In practical ap-
plications, this often yields unexpected segmentation contours
which are not smooth, especially for medical images where the
target boundaries often suffer from unexpected interruption.
In contrast, the proposed method that integrates geometric
regularization (e.g. the weighted curve length invoked in this
paper) is able to alleviate this problem.

In this work, we introduce a new geodesic voting method
in conjunction with an adaptive cut for interactive image
segmentation. Our contributions are twofold.

• Firstly, we consider an asymmetric quadratic metric to
compute the voting paths. This allows to benefit from the
directional features which are asymmetric with to path
tangents. As a result, the full image gradient features are
taken into account.

• Secondly, a new geodesic voting method including the
incorporation of an adaptive cut and two voting path
selection criteria is introduced. This allows the model
to choose more relevant voting paths to build the final
voting score map, thus encouraging to find more accurate
segmentation results when comparing to the traditional
minimal paths-based models.
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This paper is organized as follows. The basic formulation of
the adaptive geodesic voting scheme and general minimal path
model can be reviewed in Section II. The main contribution
of this paper, i.e. a generalization of the asymmetric geodesic
voting scheme for image segmentation applications, is detailed
in Section III. The experimental results and the conclusion are
formulated in Sections IV and V, respectively.

II. BACKGROUND

A. Background on the General Minimal Path Model

We start by introducing some basic mathematical notations
of the geodesic model. Let M ⊂ R2 be an open and bounded
domain. We further denote by Lip([0, 1],M) the set of all
Lipschitz continuous curves γ : [0, 1] → M which is regarded
as the search space of minimal paths.

Different from the isotropic manner, the general minimal
path model measures the weighted length of regular curves
not only depending on the local curve position but also its
orientation, by utilizing an anisotropic and asymmetric Finsler
metric [7]. The weighted length of a curve γ ∈ Lip([0, 1],M)
associated to a general Finsler metric F : M×R2 → [0,+∞]
can be computed by

LF (γ) =

∫ 1

0

F(γ(t), γ′(t))dt. (1)

Similar to the original case, the distance ℓF (x,y) for two
points x,y ∈ M can be obtained by globally minimizing the
weighted curve length associated to the Finsler metric F as

ℓF (x,y) = inf
γ∈Lip([0,1],M)

{LF (γ); γ(0) = x, γ(1) = y} . (2)

Given a source point s ∈ M and a target point x ∈ M, the
value of Us(x) corresponding to the geodesic distance map
Us : M → [0,∞) can be computed as

Us(x) = ℓF (s,x),∀x ∈ M\{s}. (3)

Then, a minimal path Gs,x ∈ Lip([0, 1],M) with Gs,x(0) = s
and Gs,x(1) = x can be tracked on the distance map as

Gs,x = argmin
γ∈Lip([0,1],M)

{LF (γ); γ(0) = s, γ(1) = x} . (4)

The geodesic distance map Us : M → [0,∞) can be estimated
by solving the first-order static HJB equation [14], [36]{

Hx(∇Us(x)) = 1/2, ∀x ∈ M\{s},
Us(s) = 0,

(5)

where H is the Hamiltonian of the metric F .
Then the target minimal path Gs,x ∈ Lip([0, 1],M) can be

computed in terms of the geodesic flows

V(x) = dHx(∇Us(x)), (6)

leading to the following original differential equation
(ODE) [36], [37] for tracking a minimal path G̃x,s as

G̃′
x,s(t) = −V(G̃x,s(t)), (7)

with G̃x,s(0) = x and G̃x,s(1) = s. Finally, we can
re-parameterize G̃x,s to generate a geodesic curve Gs,x ∈
Lip([0, 1],M) obeying Gs,x(0) = s and Gs,x(1) = x.

Fig. 2. An example for visualizing the difference between the axis cut and the
adaptive cut. The axis cut [18] and adaptive cut [38] are represented by the
cyan and red lines. The blue points are the landmark points inside the target
region. The magenta (resp. greed) dots are the interaction points between the
target contour and the axis cuts (resp. adaptive cuts).

B. Asymmetric Quadratic Metrics

Typical instances of Finsler metrics involve the Randers
metrics [19], [39] and the asymmetric quadratic metrics [21],
[40]. In this work, we utilize a Finsler metric with an asym-
metric quadratic form, which is asymmetric with its second
argument. The image edge asymmetry features can be taken
into account for estimating the anisotropic and asymmetric
minimal paths. In the remaining of this subsection, we will
briefly review the asymmetric quadratic metric. Let S+2 denote
a set collecting all the positive definite symmetric matrices
with size of 2×2. The asymmetric quadratic metric F := FAQ

is defined as

FAQ(x,u) =
√
⟨u,M(x)u⟩+ ⟨ω(x),u⟩2+ (8)

where M : M → S+2 is a tensor field, ω : M → R2 is a
vector field, ⟨u,v⟩2+ = (max{0, ⟨u,v⟩})2 with u,v ∈ R2.
Note that the asymmetric quadratic metric FAQ gets to be a
Riemannian metric as FSR =

√
⟨u,M(x)u⟩, when the vector

field ω ≡ 0. The construction of the metric FAQ is based on
the image gradient features (See Section B), encoding both
the edge appearance and anisotropy information [16].

The tensor field M is constructed based on the matrix
W in Eq. (25). Let ϑk(x) ∈ R2 with k = 1, 2 denote
the eigenvectors of W(x). Among them, the eigenvector
corresponding to the smaller eigenvalue, referred to as ϑ1(x),
is perpendicular to the edge tangent of an edge point x. Thus,
the eigenvector ϑ2(x) can be utilized to indicate the edge
anisotropic feature. The tensor field M can be formulated as

M(x) =

2∑
k=1

exp(akg(x))ϑk(x)ϑk(x)
T , (9)

where the parameter ak ∈ R dominates the anisotropy of the
tensor field. In this work, we set a1 = 0 and a2 < 0 for the
construction of the anisotropic tensor M(x).

For constructing the second term ω of the metric FAQ,
a vector field ϖ : M → R2, denoting the edge asymmetry
features, is carried out by the gradients of the Gaussian
smoothed images, reading as

ϖ(x) =
1

3

3∑
m=1

(∇Gσ ∗ Im)(x). (10)
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Fig. 3. Overview of the proposed generalized geodesic voting framework. a An original image, where the cyan dots represent the sampled farthest points,
the yellow dot depicts the user-provided landmark point z, the green line denotes the adaptive cut and the yellow star indicates the source point s. b and c
Minimal paths which are tracked using the two asymmetric metrics. e The visualization of the voting score map. (f) The yellow line is the final segmentation
contour.

(a) (b) (c) (d) (e)

Fig. 4. Examples of minimal paths associated to asymmetric quadratic metric for boundary detection. The yellow and magenta dots are respectively the
source points and endpoints of the minimal paths. a Two minimal paths form a simple closed contour, since their source points and endpoints are distributed
evenly at the target boundary. b and d Minimal paths associated to source points and endpoints which are close to each other, where the blue lines suffer
from a shortcut problem. c and e Minimal Paths in conjunction with adaptive cuts (green dash lines), where the yellow dots are the source points s lying in
the adaptive cuts.

The vector ϖ(x) is perpendicular to the edge direction for an
edge point x. With this definition, the vector field ω := ωi

can be generated by

ωi(x) =

{
λMiϖ(x)/ ∥ ϖ(x) ∥, if ∥ ϖ(x) ∥≠ 0

0, otherwise,
(11)

where λ ∈ R is a scalar parameter, Mi denotes the rotation
matrix and the corresponding index i ∈ {0, 1} represents
the rotation direction of the matrix. In details, M0 and M1

mean the counter-clockwise and clockwise rotation matrix
with rotation angle π/2, respectively.

C. Geodesic Voting Method

The classical geodesic voting method [24] was firstly in-
troduced for extracting image features. The basic idea is to
establish a voting score map V : M → [0,∞), which is a
scalar-valued function, to model the image features of interest.
More specifically, this voting score map is generated using a
collection of geodesic curves, denoted by Φ = {Gj}1≤j≤J ⊂
Lip([0, 1],M), where J is a positive integer. In general, these
geodesic curves for voting score V are supposed to share the
same source point, i.e. Gi(0) = Gk(0), ∀i ̸= k. In this case,
the voting score map Vs reads as [24]

Vs(x) =
∑
G∈Φ

χx(G),

where χx : Lip([0, 1],Ω) → {0, 1} is a detector defined being
such that

χx(γ) =

{
1, ∃t ∈ [0, 1], γ(t) = x,

0, otherwise.
(12)

The value χx(γ) equals to 1 if the curve γ passes through the
point x, and 0 otherwise.

One can point that the voting score map V are derived from
those geodesic curves Gj for 1 ≤ j ≤ J , whose computation
heavily relies on the set of end points and the geodesic metric
used. Firstly, in the classical geodesic voting model, the set of
the end points can be chosen either from the boundary of the
image domain, by the prescribed edge points [41], or by an
adaptive farthest point sampling scheme [42]. Secondly, the
geodesic metric used in the existing geodesic voting models
can be categorized as a Riemannian case which is dominated
by the image gradient features [41].

III. A NEW GENERALIZED GEODESIC VOTING METHOD

In this paper, we consider a new geodesic voting method
which takes into account the anisotropic and asymmetric edge
features for building the voting score map V . For this purpose,
we apply the Finsler geodesic model with the symmetric
quadratic metric, see Section II-A, to construct the set Φ of
geodesic curves Gj . Furthermore, an adaptive cut is taken into
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Algorithm 1: Geodesic Voting with Adaptive Cut
Input : A landmark point z inside the target region
Output: Segmentation contour.

1 Compute the adaptive cut Cz as in Section III-A.
2 Construct the set A of farthest points as in

Section III-C1.
3 Construct the set ΦAQ of voting paths.
4 Compute the voting score map V via Eq. (20).

account for constructing simple closed contours by concate-
nation of two minimal paths corresponding to each endpoint.
Both paths, linking an endpoint and a source point located at
the adaptive cut, are derived from the asymmetric quadratic
metrics in opposite directions. In addition, a landmark point
z ∈ M inside the target region is required to set up the
generalized geodesic voting framework for efficient interactive
segmentation. In Fig. 3 and Algorithm 1, we illustrate the
overview of the generalized geodesic voting method. In the
following, we introduce the details for each step.

A. Computation of the Adaptive Cut

The adaptive cut is generated by computing a minimal path
connecting a landmark point z inside the target region to a
point x belonging to the image boundary ∂M [38]. It is built
based on the Cohen-Kimmel minimal path model where the
metric in Eq. (1) is simplified as FIso(x,u) = ψ(x)∥u∥.
The potential function ψ is designed so that the obtained
minimal path comes cross the target boundary only once. For
that purpose, we suppose that ψ has high values around the
image edges to force the minimal path to evolve along the
homogeneous region. Thus one has

ψ(x) = exp
(
τg(x)

)
+ ϵ1, (13)

where τ and ϵ1 are two positive constants, and g is the
magnitude of the image gradient, see Eq. (24). The geodesic
distance map Uz : M → R+

0 can be computed by solving the
HJB equation (5) associated with metric FIso.

The endpoint b ∈ ∂M of the target adaptive cut Cz can be
detected by finding a point of minimum distance value, i.e.

b := argmin
x∈∂M

Uz(x). (14)

Finally, the adaptive cut Cz is then can be generated using
the solution to the gradient descent ODE (7) on Uz such that
Cz(0) = p and Cz(1) = b. Since the adaptive cut is intersected
with the target boundary only once, it is possible to track the
minimal path from one side of the cut to the other side.

B. Asymmetry-enhanced Minimal Paths with Adaptive Cut

In this section, the asymmetric minimal paths are computed
to depict the target boundary, benefiting from the edge asym-
metry features and cut-convexity constraint introduced by the
asymmetric quadratic metric and the adaptive cut, respectively.

From a source point to an endpoint located at the target
edge, two anisotropic and asymmetric minimal paths can be
traced along two opposite edge tangent directions based on the

asymmetric quadratic metric, due to its edge asymmetry fea-
tures carried out by the gradient vector ϖ (See Eq. (10)). Then
a closed contour is attempt to be established by combination
of these two minimal paths sharing the same source and target
points in order to delineating the target boundary. For that pur-
pose, the asymmetric quadratic metrics, constructed depending
on different rotation matrix Mi (i ∈ {0, 1}) involved by the
vector field ωi (See Eq. (11)) in the second part of the metric,
are utilized to track minimal paths in counter-clockwise and
clockwise directions. The corresponding asymmetric quadratic
metrics read as

F0
AQ(x,u) =

√
⟨u,M(x)u⟩+ ⟨ω0(x),u⟩2+, (15)

F1
AQ(x,u) =

√
⟨u,M(x)u⟩+ ⟨ω1(x),u⟩2+. (16)

In contrast to the isotropic metric which is independent to
the path tangents, it is possible for the asymmetric quadratic
metrics to generate different minimal paths with the identical
source point and endpoint, done by reversing the vector field
component. We show such an example in Fig. 4a, where the
two minimal paths are respectively tracked by the metrics
defined in Eqs. (15) and (16). However, it may fail to generate
effective closed contours, especially when the source and
target points are close to each other, since such situation
improves the risk of shortcuts problem usually suffered by
the minimal path model. It requires appropriate user-provided
endpoints to describe the target correctly, limiting its applica-
tions in practice, see Figs. 4b and 4d for examples. In order
to solve the issue, the adaptive cut [38] is introduced into
the segmentation framework in connection with the minimal
path model associated to the asymmetric quadratic metric. The
use of the adaptive cut can avoid the shortcut problem by
preventing the minimal paths from crossing the adaptive cut.
Moreover, by the adaptive cut one can track two minimal paths
linking the two sides of the cut and an endpoint, as shown in
Figs. 4c and 4e where the two minimal paths can well delineate
the target boundary.

The source point s, which is at the adaptive cut and
used for defining minimal paths, can be derived from the
intersection point between the target boundary and the adaptive
cut. In practice, the point s has the maximal magnitude of
image gradients among all points in the adaptive cut. Then
two minimal paths G0 and G1, associated with asymmetric
quadratic metrics F0

AQ and F1
AQ, can be tracked along two

sides of the adaptive cut from the source point to the endpoint,
respectively.

In the remaining part of this section, we present the com-
putation of the minimal path G1 from s (at the left side of
the adaptive cut) to e as an example. The geodesic distance
map U1 can be estimated by HFM [36]. In the course of
the geodesic distance computation, the fast marching fronts
propagation advances from the source point s and will not
cross the cut, see Appendix A, and the procedure terminates
when the end point e is reached. After the geodesic distance
map is attained, the minimal path can be tracked by solving
the ODE (7). The path G0 that travels from the left side of the
adaptive cut and links from s to the endpoint e is tracked by
the same way with G1.
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C. Principle for the Introduced Geodesic Voting Model

In order to achieve reliable and robust segmentation in
various situations. We extend the Riemannian metric based
voting model to a Finsler case, which takes into account
both the edge anisotropy and asymmetry features for image
segmentation, depending on a collection of anisotropic and
asymmetric minimal paths.

1) Building the Set of Endpoints: In this work, we make use
of the farthest point sampling (FPS) scheme [42] to generate
a set of points A = {pk ∈ M; 1 ≤ k ≤ N} with N ≥ 3,
by which we build the set of endpoints for computing the
anisotropic and asymmetric minimal paths.

All points in the adaptive cut Cz are utilized as model
initialization to search for the farthest points [42]. Note that
these points in Cz will not be taken as the sampled farthest
points. We denote by P as the set of the sampled farthest
points. At the first iteration step, we set P : P(0) = Cz, where
we denote by Pk the updated set P at the k-th iteration. The
first farthest point p1 can be detected via the corresponding
geodesic distance map UCz with P = P(0) as

p1 = argmax
x∈M

UP(x).

Note that the map UP is the solution to a HJB equation with
isotropic metric of potential exp (λg(x)), where λ ∈ R+ is a
weighting parameter and g is defined in Eq. (24). Then one
updates P as P(1) = P(0 ∪ {p1}. In the k-th (1 < k ≤ N )
iteration procedure, the k-th farthest point pk is detected by

pk = argmax
x∈M

UP(x).

This yields the updated set P(k) = P(k−1) ∪ {pk}. Finally,
the farthest point set A can be generated as

A = P\C.

In Fig. 3a, we illustrate examples for such endpoints on
the images with the desired objects surrounded by complex
background.

2) Geodesic Voting Method with Path Selection Criteria:
By these endpoints, the set of minimal paths for constructing
the voting score map can be established using asymmetric
minimal paths connected to each endpoint involved in the
farthest point set A, depending on the asymmetric quadratic
metric defined in Section III-B. Figs. 3b and 3c illustrate the
minimal paths associated with the asymmetric quadratic met-
rics. Note that all minimal paths are emanated from the source
point as the interaction point between the target boundary and
the adaptive cut. Let ΦAQ = {Gi,j}j∈{0,1}

1≤i≤N ⊂ Lip([0, 1],M)
denote the set of voting paths, where N is the total number of
endpoints. For each endpoint pi ∈ A, two minimal paths Gi,0

and Gi,1 associated to the metrics F0
AQ in Eq. (15) and F1

AQ
in Eq. (16) are computed from the initial point s along two
sides of the adaptive cut, respectively. The geodesic distance
maps denoted as Ui,0 and Ui,1 are estimated by the adapted
Hamiltonian fast marching (HFM) method in conjunction with
the adaptive tut, as described in Appendix A, meanwhile
the geodesic flows Vi,0 and Vi,1 can be derived from the
corresponding distance maps as defined in Eq. (6).

(a) (b)

Fig. 5. Examples of the selected paths used for computing the voting score
map. a The solid line is the chosen voting path with lower weighted curve
length. b The cyan dot is the endpoint which leads to two minimal paths
whose tangents (arrows) at the endpoint satisfy Eq. (18).

Path competition procedure for the voting score map. For each
endpoint pi ∈ A, only the minimal path Gi,j with lower
weighted curve length is chosen for voting score construction,
which has a high possibility to depict the target boundary in
practice. For an endpoint pi, one can obtain two minimal
paths Gi,0 and Gi,1 with respect to two geodesic distance
maps Ui,0 and Ui,1. In this case, the weighted lengths of
Gi,0 and Gi,1 are Ui,0(pi) and Ui,1(pi). Then we denote by
Ĝi the path with lower length between Gi,0 and Gi,1, i.e.
Ĝi = Gi,0 if Ui,0(pi) < Ui,1(pi), and Ĝi = Gi,1, otherwise.
For convenience, we define

ΦD =
{
Ĝi

}
1≤i≤N

.

The voting score map VD : M → [0,∞) associated to the
initial point s is defined as

VD(x) =
∑

G∈ΦD

χx(G), (17)

where χx is a path detector defined in Eq. (12). However, the
obtained voting score map VD may miss some part of the
target boundary in complex scenarios, especially where the
boundary is blurred. In Fig. 5a, we show an example for the
path competition procedure, where the solid line is the chosen
voting path.
Closed paths procedure for the voting score map. In this
section, we are devoted to constructing the voting score map
based on the closed minimal paths those delineate the target
boundary. Recall that the closed path for each endpoint pi is
generated by tracing two anisotropic and asymmetric minimal
paths from the adaptive cut as described in Section III-B.
However, the shortcuts problem may occur when the endpoint
is far away from the target boundary or close to the source
point, leading to the minimal path does not evolve along the
target boundary.

For each pair of minimal paths Gi,0 and Gi,1 to pi ∈ A,
they are considered to form a closed contour that depicts the
complete target, if the geodesic flows at the endpoint are
inverse to each other. The Euclidean scalar product of the
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Original Images AnisoVS ComPaths Asy-adapt AsyVS AsyVS-adapt

Fig. 6. Segmentation results on synthetic images interrupted by additive Gaussian noise with normalized standard derivation σn = 0.15. The red lines
represent the segmentation contours and the landmark points are denoted by blue dots. The blue dash lines stand for the ground truth. The green dotted
lines denote the cuts. Column 1: The original synthetic images. Columns 2-6: The segmented results detected by the AnisoVS model [15], the ComPaths
model [17], the Asy-adapt model [16], the AsyVS model, the AsyVS-adapt model, respectively.

vector fields at point pi, derived from the geodesic flow maps
Vi,0 and Vi,1, is expressed as

T (pi) =
⟨Vi,0(pi),Vi,1(pi)⟩
∥Vi,0(pi)∥∥Vi,1(pi)∥

, (18)

with Gi,0(1) = Gi,1(1) = pi. Given a threshold ζ ∈ [−1, 0),
the minimal paths Gi,0 and Gi,1 linked to pi is regarded as the
selected closed path if T (pi) < ζ. An instance of a pair of
minimal paths satisfying the condition is illustrated in Fig. 5b.
The corresponding geodesic flows at the endpoint, denoted by
magenta and green arrows, are inverse to each other. In this
work, we set ζ = −0.9 for the experiments.

We denote by ΦF = {Gn,j}1≤n≤M,0≤j≤1 a set involving
all minimal paths satisfying the above condition from ΦAQ,
where M ∈ (0, N ] is a positive integer denoting the number
of the selected minimal paths. Then, the second voting score

map VF : M → [0,∞) can be established as

VF (x) =
∑

G∈ΦF

χx(G). (19)

At last, the final voting score map V : M → [0,∞)
associated to the initial point s is defined as

V(x) = αVF (x) + βVD(x), (20)

where the weight parameters α and β are used to control the
importance of the two voting score maps. Examples of the
voting score maps are shown in Fig. 3d.

3) Final Segmentation: In the voting score map, a strong
value of V(x) indicates a high possibility that x belongs to the
target boundary. A thresholding procedure is then applied to
the voting score map V to obtained the segmentation results.
Furthermore, mathematical morphological operators are used
to refine the segmentation results to get contours whose
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Original Images AnisoVS ComPaths Asy-adapt AsyVS AsyVS-adapt

Fig. 7. Qualitative comparison results on nature images. The red lines represent the segmentation contours and the landmark points are denoted by blue dots.
The blue dash lines stand for the ground truth. The green dotted lines denote the cuts. Column 1: The original CT images. Columns 2-6: The segmented
results detected by the AnisoVS model [15], the ComPaths model [17], the Asy-adapt model [16], the AsyVS model, the AsyVS-adapt model, respectively.

width is single grid point. We illustrate the final segmentation
contour in Fig. 3f.

IV. EXPERIMENTS

We conduct the numerical experiments with both qual-
itative and quantitative comparison to the combination
of piecewise-geodesic paths (ComPaths) model [17], the
anisotropic Riemannian metric based geodesic voting segmen-
tation (AnisoVS) model [15], the dual-cut model [16] with a
spatial asymmetric quadratic metric (AsyMetric), the asym-
metric quadratic metric based geodesic voting segmentation
(AysVS) model and the proposed model (AysVS-adapt).

A. Parameter Setting and Initialization for the Tested Models
In the proposed model, a random landmark point inside

the target region is required to start the segmentation proce-

dure. The adaptive cut is computed from the landmark point
based on the isotropic minimal path model, in the potential
function (13) of which we set the parameters as τ = 1
and ϵ1 = 0.1. Then the set of endpoints is built on farthest
point sampling scheme from the adaptive cut and we set the
number of endpoints as N = 1000. In the next, the minimal
path models are tracked based on the asymmetric quadratic
metric, and we set a2 = −6 in Eq. (9) and λ = 2 in
Eq. (11). In the final voting score map defined in Eq. (20),
both parameters α and β are set as 1. In the last step, the
thresholding value is set as 100 to get the final segmentation
contours. For the ComPaths model [17], a closed contour
is detected by concentrating a set of user-provided points
using piecewise-geodesic paths. We provide three points on
the target boundary as the initial points. In the AsyMetric



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , AUGUST 2024 9

Original Images AnisoVS ComPaths Asy-adapt AsyVS AsyVS-adapt

Fig. 8. Qualitative comparison results on CT images. The red lines represent the segmentation contours and the landmark points are denoted by blue dots.
The blue dash lines stand for the ground truth. The green dotted lines denote the cuts. Column 1: The original CT images. Columns 2-6: The segmented
results detected by the AnisoVS model [15], the ComPaths model [17], the Asy-adapt model [16], the AsyVS model, the AsyVS-adapt model, respectively.

model [16], we make use of the adaptive cut instead of the
dual-cut scheme in [16] and the model is referred as Ays-
adapt. In the AnisoVS model [15], the anisotropic Riemannian
metric is obtained based on the tensor filed in Eq. (9). In the
following experiment, the same set of endpoints are used for
the voting score map based segmentation methods including
the AnisoVS model the AysVS model and the AysVS-adapt
model. Furthermore, the source point for each VS model
to find minimal paths is the intersection point between the
adaptive cut and the target boundary, which can be detected
in the proposed model.

B. Qualitative Comparison Results

Firstly, we illustrate in Fig. 6 the qualitative comparison
results on 5 synthetic images with additive Gaussian noise
of normalized standard deviation σn = 0.15. These synthetic
images, derived from the ground truth data of the dataset [43],
are created by respectively setting the intensity values of the
target structures and the background region as 1 and 0.5.
In this case, the directions of the image gradients estimated
from these images exhibit strong local homogeneity, i.e.
the gradient vectors are uniformly point outside the target
region. Fig. 6a shows the synthetic images where the blue

lines indicate the expected segmentation contours. The user-
provided landmark points are represented by blue dots. The
adaptive cut is denoted as the cyan dotted line. The segmented
results are shown as red lines. Columns 2 to 6 illustrate the
segmentation results of different models. One can see that the
AnisoVS, ComPaths, Asy-adapt and AsyVS models cannot
detect the correct contours, due to the influence from the strong
noise. Specifically, the AsyVS model without considering the
adaptive cut may miss some parts of the target boundary.
Finally, we can get that the proposed model extracts the region
of interest successfully, benefitting from the use of an adaptive
cut scheme and the asymmetric edge features. In contrast,
the proposed model (AsyVS-adapt) indeed is able to find the
satisfactory segmentation results.

In Fig. 7, we show the qualitatively comparison results of
different models on nature images [44]. The target objects
surrounded by complicated background have complex shapes
and intensity inhomogeneity. Besides, some target boundaries
are not clearly. The segmented results from different models
are depicted as red lines in columns 2 to 6 of Fig. 7. The
adaptive cut is shown as cyan dotted lines. We can get that
the classic models fail to track the correct boundary where the
intensity inhomogeneity exists or the edge appearance features
are weak, meanwhile the proposed model is able to detect the
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Fig. 9. Box plots of the average Dice scores J of 10 runs per image over
all synthetic images for different methods.

target boundaries correctly.
Fig. 8 demonstrates the qualitative comparison results on CT

images. The ground truth segmentation contours are indicated
as blue lines as in column 1. The segmentation results are
shown in columns 2 to 6. For the results from the AnisoVS,
ComPaths, Asy-adapt and AsyVS models, either segmentation
leakage or segmentation shortcut problems are observed along
the blurred edges or when the target object has similar in-
tensities with the neighboring regions. One can see that the
proposed model shown in column 6 indeed can accurately
delineate the target boundaries.

C. Quantitative Comparison Results

For evaluating the proposed model in a rigorous and con-
vincing manner, here we run the quantitative comparisons. The
accuracy that measures the performance of the tested models
is carried out by a score J defined as follows:

J =
#|S ∩GT |

#|S|
, (21)

where S is the set of grid points passed through by the
evaluated paths, GT denotes the region of the ground truth,
and #|S| stands for the elements involved in the set S. The
accuracy score J is ranged within the interval [0, 1], where
higher values of J means better performance.

In order to compare the robustness of different models with
respect to different noise levels, we evaluate different models
on the synthetic images shown in Fig. 6. In this experiment,
each test image is generated by adding to the corresponding bi-
nary images different levels of additive Gaussian noise, whose
normalized standard derivation values range from σn = 0.03
to 0.15 of scale 0.05. This yields 25 synthetic images for
this comparison experiments. Note that the used 5 synthetic
images with noise level σn = 0.15 are shown in column 1
of Fig. 6. Furthermore, the experiment is also carried out on
these synthetic images to test the robustness of the models
to different initializations. For the Asy-adapt and proposed
models, 10 landmark points are randomly selected within the
target region of each synthetic image to initialize the models.

Then the adaptive cut can be tracked from each landmark point
to the boundary of image domain. The source point is detected
as the point which has maximal gradient magnitude along the
adaptive cut. For the AnisoVS and AsyVS model, we choose
10 landmark points distributed along the target boundary of
each synthetic image for the initialization. The landmark point
is regarded the source point for minimal paths tracking in the
voting score map construction. For the ComPaths model, 10
groups of sampled points are established on each synthetic
image for initialization. For each group, three points are
detected along the target boundary. Therefore, 10 tests per
synthetic image are performed for all compared models, and
the average of the Dice segmentation accuracy index for each
image is computed from all tested models. The results are
shown in Fig. 9. We can conclude that similar segmentation
results from the proposed model are achieved with respect
to different landmark points, which means that the proposed
model is robust to the position of initialization. The average
and standard deviation values of the Dice index with respect
to different levels of noises are depicted in Table I. It can
be observed that the proposed model is more robust against
different levels of noise.

In order to quantitatively evaluate the segmentation ac-
curacy of the proposed model, we perform the quantitative
comparison for different models on 86 CT images [45].
This is implemented by utilizing a same procedure with the
experiments on synthetic images to generate the initialization
for the comparison models. In this case, 10 runnings per CT
image are carried out with respect to each tested model. The
quantitative comparison results are illustrated in Table II. In
this experiment, we add the evaluation result of a deep learning
based approach [46] which is referred to as the segment
anything (SA) model. In these test CT images as shown in
Fig. 8, the target boundaries often appear as weak edges, or
suffer from strong influence from neighbouring regions. Due to
the use of the asymmetric metrics and the new geodesic voting
scheme, the proposed model the achieves the best accuracy
performance among all the comparable models. Moreover, the
SA model which uses the sampled landmark points as its
prompt indeed obtains lower accuracy performance then the
ComPaths, Asy-adpt AsyVS and the introduced AsyVS-adapt
models, due to the lack of geometric regularization.

D. Computation Complexity

The computational complexity of the proposed geodesic vot-
ing method mainly consists of three parts: (i) the computation
of the adaptive cut, (ii) the construction of the farthest points
and (iii) the computation of the voting paths. Let N be the total
number of grid points in Mh. Specifically, the computation of
the adaptive cut is implemented via the classical fast marching
method, whose complexity is O(N lnN ). As in [42], the
complexity for the construction of the set of farthest points
are lower than O(N ln(N )2). Finally, the computation of the
voting paths is implemented via the HFM method, which
invokes a wide neighborhood system dependent to the metrics.
The computation complexity of the HFM is O(2N (K+lnN )),
where K is the average size of the local neighbourhood of
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TABLE I
THE QUANTITATIVE COMPARISON RESULTS OF THE ANISOVS, COMPATHS, ASY-ADAPT, ASYVS, AND ASYVS-ADAPT MODELS

ON SYNTHETIC IMAGES.

Noise Level
AnisoVS ComPaths Asy-adapt AsyVS AsyVS-adapt

Mean Std Mean Std Mean Std Mean Std Mean Std

0.03 0.9387 0.0487 0.8948 0.1161 0.9037 0.1855 0.9813 0.0201 0.9828 0.0049

0.06 0.9125 0.0786 0.8814 0.1207 0.9025 0.1860 0.9637 0.0527 0.9816 0.0056

0.09 0.7903 0.1364 0.8461 0.1606 0.8970 0.1836 0.9348 0.0949 0.9801 0.0054

0.12 0.7084 0.1897 0.8503 0.1381 0.8927 0.1825 0.8805 0.1139 0.9611 0.1383

0.15 0.6143 0.1942 0.8047 0.1736 0.8869 0.1811 0.8711 0.1199 0.9754 0.0146

TABLE II
THE QUANTITATIVE COMPARISON RESULTS OF THE SA MODEL, THE ANISOVS MODEL, THE COMPATHS MODEL, THE ASY-ADAPT MODEL,

THE ASYVS MODEL, AND THE ASYVS-ADAPT MODEL ON A SET OF CT IMAGES.

SA AnisoVS ComPaths Asy-adapt AsyVS AsyVS-adapt

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.86134 0.15447 0.7368 0.1458 0.8741 0.0948 0.8960 0.1207 0.9296 0.0889 0.9555 0.0220

all grid points. Finally, we point out that the computation
time on the CPU-implemented HFM method can be greatly
reduced via a GUP-implemented parallel computing method
as proposed in [47].

We report the computation time of the proposed model
evaluated on the set of CT images. The average computation
time is around 5.93s per image, where the farthest point
sampling costs 4.97s per image with 1000 sampled points. The
experiments are performed on a standard 8-core Intel Core i7
of 3.8GHz architecture with 64Gb RAM.

E. Limitations and Future Work

In this section, we discuss the limitations of the introduced
geodesic voting method. Firstly, the computation of voting
paths only relies on the image gradient features, but inde-
pendent to the image region-based homogeneity features and
curvature regularization. Secondly, it requires a user-provided
point to initialize the proposed geodesic voting model. The
future work will be devoted to addressing the issues above:
(i) combining with the region-based Randers minimal path
model [19] to the generate a new method for computing voting
paths, and (ii) using the deep learning-based segmentation
approaches to predict the initialization of the proposed model.

V. CONCLUSION

In this paper, we show the possibility of implementing
the geodesic voting method for image segmentation task. A
crucial step is to generate simple closed contour by combining
the adaptive cut and the minimal path model with asymmet-
ric quadratic metrics. Accordingly, the proposed interactive
segmentation model enables to blend the benefits from the
disconnection constraint on the image domain and the image
edge anisotropic and asymmetric features. This approach is

adapted to automatically segment complex objects by only
providing a landmark point randomly inside the target region.
The experimental results prove that the proposed models
indeed outperform other methods described in the literature.
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APPENDIX A
NUMERICAL SOLUTIONS

The HJB equation (5) associated to an asymmetric quadratic
metric can be efficiently solved using the fast marching
methods [13], [36], [37], [48], [49] in a single-pass wavefronts
propagation manner. The numerical solution to (5), denoted
by U : Mh → [0,∞), is defined in a discretization orthogonal
grid Mh := M∩Zd, where h is the grid scale. In the course of
the geodesic distance computation U , the fast marching front
is expanded from the source point s and visits each point
x ∈ Mh monotonically, with initialization U(s) = 0.

As in [38], we adapt the Hamiltonian fast marching (HFM)
method [36] to estimate the geodesic distance map U on
the grid Mh in conjunction with an adaptive cut. The core
of the HFM lies at the approximation of the Hamiltonian
Hx using positively-valued weights {ρj(x)}1≤j≤J and offsets
{ėj(x)}1≤j≤J whose coordinates are integers

Hx(v) ≈
∑

1≤i≤I

ρi(x)⟨v, ėi(x)⟩2+ (22)
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where ⟨v, ėi(x)⟩2+ = max{0, ⟨v, ėi(x)⟩}2. By the approxima-
tion (22), then the HJB equation (5) can be discretized to the
form ∑

1≤j≤J

ρj(x)max{0, U(x)− U(x− hėj(x))}2 = h2.

Note that all the offsets ėj(x) at each grid point x determine
the neighbourhood system, i.e. the points (x−hėj) ∈ Mh for
1 ≤ j ≤ J are the neighbor points of x. When an adaptive cut
C is taken into account, we need to refine the neighbourhood
system by removing some offsets or equivalently setting the
corresponding weight to 0, i.e. for any index 1 ≤ j ≤ J

ρj(x) = 0, C ∩ [x,x− hėj(x)] ̸= ∅,

where [x,x − hėj ] denotes the straight segment between
x and x − hėj(x) We refer to [38] for more details on
the computation of geodesic distances in the presence of an
adaptive cut.

APPENDIX B
IMAGE GRADIENT FEATURES

The edge-based features of images are usually extracted
based on the image gradients. The gradients can be computed
by building a Jacobian matrix [50]. For a gray level image
I : M → R, the image gradient can be expressed as

Jσ(x) = (∂xGσ ∗ I, ∂yGσ ∗ I)T (x),

where ∂x and ∂y denote the first-order partial derivative along
x- and y-axis directions of the Gaussian kernel Gσ with
variance σ, and “ ∗ ” represents the convolution operator. In
addition, the gradients of a color image I = (I1, I2, I3) in a
RGB color space can be described as

Jσ(x) =

∂xGσ ∗ I1, ∂xGσ ∗ I2, ∂xGσ ∗ I3
∂yGσ ∗ I1, ∂yGσ ∗ I2, ∂yGσ ∗ I3

 (x).

Then the edge appearance features can be estimated by
computing the gradient magnitude as the Frobenius norms of
the matrix J(x), reading as

g̃(x) =

√√√√ n∑
k=1

(
∥(∂xGσ ∗ Ik)(x)∥2 + ∥(∂yGσ ∗ Ik)(x)∥2

)
,

(23)
where the parameter n is belonging to [1, 3], n = 1 for the
gray level image and n = 3 for the color image, and ∥ · ∥
denotes the Euclidean norm. In practice, the magnitudes g̃ is
normalized to the appearance feature by

g(x) =
g̃(x)

∥g̃∥∞
, ∀x ∈ Ω. (24)

With the definition, a strong value of g(x) indicates that a
high possibility that the point x locates at edge region.

Let S+2 denote a set collecting all the positive definite
symmetric matrices with size of 2 × 2. The edge anisotropic
features for gray level and color images can be estimated by

building a tensor filed W ∈ S+2 encoding anisotropic features,
as following

W(x) = Jσ(x)Jσ(x)
T + ϵId (25)

where Id denotes the identity with size of 2 × 2 and the
parameter ϵ is a sufficiently small positive constant to avoid
singularity.
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