
Learning Anisotropic Metrics for Geodesic
Distances via the Heat Equation for Image

Segmentation

Nicolas Makaroff1, Théo Bertrand1, and Laurent D. Cohen1

CEREMADE, UMR CNRS 7534, University Paris Dauphine, PSL Research
University, 75775 Paris, France {bertrand, makaroff,

cohen}@ceremade.dauphine.fr

Abstract. In this paper, we investigate the computation of anisotropic
metrics for geodesic distances using the heat equation and its application
to image segmentation, particularly for tubular structures. Building upon
the work of Bertrand et al. [2], we extend this approach to anisotropic
media by incorporating spatially varying and direction-dependent diffu-
sion tensors derived from the image’s structure tensor field. Our con-
tributions are twofold: first, we formulate anisotropic geodesic distance
computation using the heat equation and integrate it within deep learn-
ing models for image segmentation; second, we propose two methods that
learn the anisotropic metric directly from image data — one requiring
explicit seed point selection and another eliminating the need for seed
points by predicting a probability map that serves as the initial condition
for heat diffusion. Experiments on synthetic and medical image datasets
demonstrate the effectiveness of our methods in accurately segmenting
vascular tree structures by leveraging the anisotropic properties inherent
in the images without relying on manual seed point selection.

Keywords: Image Segmentation · Deep Learning · Geodesic Distance ·
Fast Marching · Heat Equation · Medical Image Analysis.

1 Introduction
Segmenting regions in images based on geodesic distances is a fundamental prob-
lem in computer vision and image analysis, with applications ranging from med-
ical imaging to robotics and geophysics. Traditionally, geodesic distances and
curves are computed by explicitly constructing a Riemannian metric g from
data, leveraging prior knowledge of the task. This metric is then used to compute
geodesic distances, which are integral to understanding the underlying geometry
of the data. However, this approach introduces bias through manual parame-
ter tuning and subjective decisions in metric selection, potentially limiting the
adaptability and generalisation of the method to diverse datasets.

To address these limitations, we propose a novel framework that learns the
metric tensor directly from data using deep learning techniques. Specifically, we
design convolutional neural networks (CNNs) that predict the anisotropic metric
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and potential fields required for geodesic distance computation. By optimising
the network parameters through supervised learning on training data, we elimi-
nate the need for manual metric selection and parameter tuning. This approach
allows the network to learn the intrinsic geometry of the data adaptively, en-
hancing segmentation accuracy and robustness.

Traditional methods, like the Fast Marching Method (FMM) introduced by
Sethian [8], compute geodesic distances by solving the Eikonal equation. Several
prior works have leveraged geodesic distances for segmentation tasks. Malladi
and Sethian [6] used minimal path distances and fast marching methods for 3D
brain image segmentation. Cohen and Deschamps [3], segmented 3D vascular
trees by propagating fronts based on minimal path distances, while Benmansour
[1] introduced anisotropic metrics determined dynamically during fast marching
computations to segment vascular structures. These methods rely on predefined
metrics and do not directly integrate metric learning from data.

Recent efforts have explored learning metrics from data. Scarvelis et al. [7]
and Heitz et al. [5] investigated fitting metric tensors to spatio-temporal data
to capture velocity fields and underlying geometry. However, these approaches
are not tailored for end-to-end segmentation tasks and often involve complex
computations unsuitable for integration within deep learning frameworks.

Our work builds upon the work of Bertrand et al. [2]. In order to extend that
approach to anisotropic metric, we use the heat method introduced by Crane et
al. [4], and extended to anisotropic heat equation by Yang and Cohen [11], both
based on Varadhan’s asymptotic formula [10], which relate the behaviour of the
heat equation to geodesic distances on a Riemannian manifold. By incorporat-
ing anisotropic diffusion tensors derived from the image’s structure tensor field,
we extend these methods to handle anisotropic media, capturing directional de-
pendencies essential for accurately modelling complex pathways within tubular
structures.

In contrast, our approach integrates metric learning and geodesic distance
computation within a deep learning framework, enabling end-to-end training
and inference. We propose two distinct methods: 1. Seed Point-Based Anisotropic
Geodesic Distance Computation: Extending prior isotropic models, we predict
both the anisotropic metric tensor and a Gaussian potential that initiates heat
propagation from predefined seed points. This method leverages the strengths
of deep learning for feature extraction and analytical computations of geodesic
distances, enhancing precision in heterogeneous media. 2. Seedless Anisotropic
Geodesic Distance Computation: To address challenges associated with seed
point selection in non-convex regions, we introduce a seedless approach. Our
neural network comprises two branches: one predicts the anisotropic diffusion
tensor, and the other predicts a probability map serving as an initial condition
for the heat equation. This design eliminates the need for explicit seed points,
using an attention mechanism to guide heat propagation and refine segmenta-
tion.
Our contributions are as follows:
– We formulate anisotropic geodesic distance computation using the heat equa-

tion, integrating it within deep learning models for image segmentation.
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– We propose two methods that learn the anisotropic metric directly from
data, with and without the need for explicit seed point selection.

– We demonstrate the effectiveness of our methods on synthetic and real-world
datasets, particularly in segmenting tubular structures in medical images.

The remainder of the paper is organised as follows. Section 2 provides background
on geodesic distance computation, anisotropic heat diffusion, and the structure
tensor field. Section 3 details our two proposed methodologies, distinguishing
between the seed point-based and seedless approaches. Section 4 presents exper-
imental results for both methods, including data descriptions, training proce-
dures, and performance evaluations.

2 Background

2.1 Fast Marching Energy CNN for Image Segmentation

Bertrand et al. introduced the Fast Marching Energy CNN (FMECNN), integrat-
ing geodesic distance computations with convolutional neural networks for image
segmentation, particularly in medical imaging. This framework learns isotropic
metrics via a CNN to impose geometric and topological constraints on the seg-
mentation process. By predicting both the potential function and the barycenter
(seed point) of target regions, it generates segmentation masks corresponding to
geodesic balls, ensuring path-connected and coherent outputs.

FMECNN extends traditional segmentation methods by incorporating a fast
marching module within the network architecture, enabling end-to-end learn-
ing of geometrically meaningful segmentations. This addresses the limitations
of conventional CNN-based methods, which often lack explicit structural pri-
ors and may produce irregular or disconnected segmentations. Applied to brain
tumour segmentation using MRI data, FMECNN demonstrated competitive per-
formance compared to architectures like U-Net and ResNet-U-Net, while enforc-
ing geometric consistency.

However, FMECNN faces challenges that limit its applicability:

– Seed Point Prediction: The method relies on accurately predicting seed
points from which geodesic distances are computed. Identifying optimal seed
points in complex or non-convex regions is difficult, and inaccuracies can de-
grade segmentation performance.

– Isotropic Metric Assumption: Assuming isotropic diffusion restricts effective-
ness in images with anisotropic properties, such as tubular structures (e.g.,
blood vessels), where diffusion varies with direction.

– Computational Overhead: Incorporating the fast marching algorithm intro-
duces computational overhead, especially when dealing with multiple seed
points or high-resolution images, hindering scalability and efficiency.

These challenges highlight the need for methods that handle anisotropic me-
dia, eliminate dependency on explicit seed point selection, and maintain compu-
tational efficiency.

Figure 1 illustrates FMECNN applied to vascular tree segmentation using
predefined seed points. The ground truth shows an intricate network of vessels,
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including small branches. While the model successfully segments larger vessels,
it misses many small vessels and fine branches. The learned potential captures
primary vascular pathways but struggles with detailed branching patterns. This
indicates that FMECNN, in its current form, is not well-suited for tasks requiring
the segmentation of small and intricate vascular structures.

Relying on predefined seed points and isotropic metrics poses significant chal-
lenges in complex, anisotropic vascular networks. The isotropic assumption fails
to account for the directional diffusion inherent in blood vessels, leading to inad-
equate segmentation of smaller vessels. Manually selecting seed points is imprac-
tical and may not cover all regions of interest. These limitations underscore the
need for advanced methods that can learn anisotropic metrics directly from data
and eliminate the need for explicit seed point selection. Our proposed methods
aim to address these challenges by incorporating anisotropic diffusion tensors
and seedless segmentation approaches.

2.2 Isotropic Heat Diffusion

The heat equation is a partial differential equation (PDE) that describes heat
propagation in a medium over time. In the isotropic case, where the thermal
diffusivity is constant and the same in all directions, the heat equation in R2 is
given by:

∂u

∂t
= α∆u, (1)

where u(x, t) represents the temperature at position x ∈ R2 and time t ≥ 0, α > 0
is the thermal diffusivity coefficient, and ∆ is the Laplace operator.

The Laplace operator in two dimensions is:

∆u =
∂2u

∂x2
+

∂2u

∂y2
. (2)

In homogeneous media, the thermal diffusivity α is constant, implying uniform
heat propagation in all directions.

2.3 Spatially Varying Thermal Diffusivity

In heterogeneous media, the thermal diffusivity α can vary spatially. Following
Yang et al. [11], we define α as:

α(x) = |1− |p(x0)− p(x)||d + ε, (3)

where p(x) represents a potential function (e.g., image intensity), x0 is the heat
source location, d > 0 controls the contrast between features, and ε ensures
positivity.

Varying α implies that the rate of heat diffusion varies spatially within the
domain, allowing for modelling complex propagation scenarios, such as barriers
or preferred diffusion paths.



Learning Anisotropic Metrics 5

2.4 Anisotropic Heat Diffusion

To model anisotropic diffusion, we introduce the diffusion tensor D(x), leading
to the anisotropic heat equation:

∂u

∂t
= ∇ · (D(x)∇u), (4)

where D(x) is a symmetric positive-definite matrix at each point x. This allows
us to control the diffusion rate in different directions.

By constructing D(x) using features derived from the image, we can guide the
heat propagation along preferred directions, such as the principal orientations of
tubular structures.

2.5 Structure Tensor Field

The structure tensor field T (x) captures local image orientations and anisotropies.
It is defined as:

T (x) =

 (
∂I
∂x

)2 − ∂I
∂x

∂I
∂y

− ∂I
∂y

∂I
∂x

(
∂I
∂y

)2

 ∗Gσ, (5)

where I(x) is the image intensity function, Gσ is a Gaussian kernel with standard
deviation σ, and ∗ denotes convolution.

The structure tensor is diagonalised to obtain its eigenvalues µ1(x) ≥ µ2(x)
and corresponding eigenvectors e1(x) and e2(x), representing the principal ori-
entations and magnitudes of local variations:

T (x) = µ1(x)e1(x)e1(x)
⊤ + µ2(x)e2(x)e2(x)

⊤. (6)

This decomposition allows us to construct the tensor T (x) to model anisotropic
diffusion aligned with the image features.

2.6 Varadhan’s Asymptotic Formula

Varadhan [10] established a relationship between the behaviour of the heat kernel
and the geodesic distance on a Riemannian manifold. Specifically, as t → 0, the
heat kernel satisfies:

lim
t→0

(−4t log u(x, y, t)) = d2ϕ(x, y), (7)

where u(x, y, t) is the heat kernel, and dϕ(x, y) is the geodesic distance between
points x and y with respect to the metric defined by ϕ.

This formulation allows us to compute anisotropic geodesic distances by solv-
ing the heat equation and analysing the behaviour of the solution as t → 0.

3 Methodology
This section presents two methods for computing anisotropic geodesic distances
using the heat equation integrated within deep learning frameworks for image
segmentation. The first method extends prior work by incorporating seed points
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and predicting the anisotropic metric and the initial potential field. The second
method addresses the challenges of seed point selection by introducing a seedless
approach that leverages an attention mechanism within the neural network.

3.1 First Method: Seed Point-Based Anisotropic Geodesic Distance
Computation

Overview Our first method builds upon the framework introduced in the isotropic
case, merging deep learning with geodesic distance computation for segmenta-
tion tasks. We extend this approach to handle anisotropic geodesic distances by
incorporating the heat method based on Varadhan’s formulation [10, 11]. The
key idea is to predict the anisotropic metric tensor and a Gaussian potential
that initiates heat propagation from predefined seed points.

Deep Learning Model We employ a convolutional neural network (CNN)
based on the U-Net architecture, renowned for its effectiveness in medical image
segmentation. The network is designed to predict:

– Anisotropic Metric ϕ(x): Ensuring positivity and non-zero values by defining
ϕ(x) = fθ(u)

2 + ε, where fθ(u) is the network output for input image u, θ
represents the network parameters, and ε is a small constant to maintain
numerical stability.

– Gaussian Potential Field: Serving as the source for heat propagation, the
network predicts a Gaussian potential field that determines the initial con-
ditions for the diffusion process.

The model comprises convolutional layers with decreasing filter sizes, fol-
lowed by batch normalisation and ReLU activation functions. The final layer
uses a softmax activation to produce a probability distribution, ensuring that
the output values sum to one and can be interpreted as a potential field for
initiating heat propagation.

Anisotropic Geodesic Distance Computation Using the predicted anisotropic
metric ϕ(x) and the Gaussian potential field, we construct a structure tensor
D(x) that models the directional heat flow properties of the medium. The struc-
ture tensor is crucial for accurately simulating heat diffusion in media where
thermal properties, such as tubular structures, vary with direction. We use the
formulation of (6) to construct the structure tensor. We solve the anisotropic
heat equation:

∂u

∂t
= ∇ · (D(x)∇u), (8)

With the initial condition provided by the Gaussian potential field. As t → 0,
Varadhan’s formulation allows us (see [11]) to compute the geodesic distance
map:

dϕ(x0, x) = lim
t→0

√
−4t log u(x, t), (9)

where x0 are the seed points from which heat propagation begins.
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Segmentation with Multiple Seed Points We accommodate multiple seed
points S = {xi

0}1≤i≤q, q the number of seed points, for complex tubular networks
with branching paths or intersections. The geodesic distance to the closest seed
point is computed as:

dϕ(S, x) = min
xi
0∈S

dϕ(x
i
0, x),∀i ∈ {1, · · · , q}. (10)

This computation efficiently extends the model’s applicability to tubular net-
works of varied complexity without imposing additional computational burdens
on the heat method.

Mask Generation To generate the segmentation mask, we use a differentiable
approximation of the characteristic function of a geodesic ball:

χδ(dϕ(S, x)) = 1− 1

1 + exp
(
−dϕ(S,x)−1

δ

) , (11)

where δ is a small positive parameter related to the image resolution, control-
ling the smoothness of the transition. This approach allows for gradient-based
optimisation during training, facilitating the integration of the geodesic distance
computation within the neural network framework.

Advantages and Limitations This method effectively leverages seed points
to guide the segmentation process, capturing the complex pathways within tubu-
lar structures by accurately modelling the anisotropic properties of the medium.
However, selecting appropriate seed points can be challenging in practice, espe-
cially in non-convex regions, and may introduce computational overhead when
dealing with multiple seeds.

3.2 Second Method: Seedless Anisotropic Geodesic Distance
Computation

Motivation While the first method relies on predefined seed points, this re-
quirement poses challenges in non-convex regions like vascular networks, where
identifying a unique optimal seed point is difficult. Additionally, computing
geodesic distances from multiple seed points can be computationally expensive.
To address these issues, we propose a second method that avoids explicit seed
point selection by modifying the initialisation of the heat flow.

Deep Learning Model Our alternative approach employs a neural network
composed of two branches, as illustrated in Figure 1:

1. Metric Prediction Branch: Predicts the anisotropic diffusion tensor D(x),
which defines the heat flow and is related to the inverse of the classic metric
tensor.

2. Probability Map Prediction Branch: Predicts a 2D probability map µ(x),
indicating likely vascular landmarks or regions of interest that guide the
heat flow and refine the segmentation.
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Encoder

Metric
Decoder

Decoder
Seed Map

Heat Equation

Fig. 1: Architecture of the alternative approach for anisotropic tubular structure
segmentation. The network comprises two branches: predicting the diffusion ten-
sor D(x) and predicting the probability map µ(x).

This design allows the network to learn the medium’s anisotropic properties
and the areas from which heat should propagate without specifying exact seed
points.

Anisotropic Heat Flow without Seed Points We initialise the heat equa-
tion with the predicted probability map µ(x) instead of a Dirac delta function
at seed points:

∂u

∂t
= ∇ · (D(x)∇u), u(x, 0) = µ(x). (12)

This formulation enables the heat to propagate from high-probability regions,
effectively serving as an attention mechanism focusing on areas of interest within
the image. The heat flow u(x, t) captures the influence of the anisotropic diffusion
and the initial probability distribution µ(x).

Loss Function and Training Given input images x and their corresponding
normalised ground truth masks y, we define the loss function as:

L = Lseg(Φ
Dθ(x)

t (µθ(x)), y)− λ∥µθ(x)∥22, (13)

where:

– Lseg is the segmentation loss (e.g., Dice loss or cross-entropy loss) between
the heat flow output ΦDθ(x)t(µθ(x)) and the ground truth mask y.

– ΦD
t (µ) represents the solution to the heat equation (heat flow) applied to µ

until time t, using the diffusion tensor D.
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– λ is a regularisation parameter promoting sparsity in µ(x), encouraging the
network to focus on the most relevant regions.

The sparsity-promoting penalty ∥µθ(x)∥22 prevents the probability map from
spreading too diffusely across the image, which helps in refining the segmentation
by concentrating the heat propagation in areas of interest.

Advantages and Limitations This seedless approach simplifies the segmen-
tation pipeline by eliminating the need for explicit seed point selection, reducing
computational complexity. Using a probability map as an initial condition allows
the network to learn where to focus the heat propagation, effectively functioning
as an attention mechanism. However, this method relies on the network’s ability
to predict accurate probability maps, and the interpretation of the probability
map may differ from explicit seed point methods.

3.3 Comparison of Methods

The two methods present distinct strategies for integrating anisotropic geodesic
distance computation into Deep Learning models for image segmentation. The
first method, a seed point-based approach, directly incorporates seed points,
granting explicit control over the initiation of heat propagation. It efficiently
handles multiple seed points for complex structures and leverages the predicted
anisotropic metric and initial potential to capture the geometry of tubular for-
mations. However, this method requires selecting or predicting appropriate seed
points, which can be challenging in practice and may introduce computational
overhead when numerous seed points are involved.

In contrast, the second method employs a seedless approach using an atten-
tion mechanism. It eliminates the need for explicit seed point selection, thereby
simplifying the segmentation process. Using a probability map to guide heat
propagation effectively focuses on regions of interest and reduces the computa-
tional complexity associated with handling multiple seed points. Nonetheless,
this method relies on the network’s ability to accurately predict the probability
map µ(x). The initial probability distribution may not precisely represent dis-
crete seed locations, which can potentially affect segmentation accuracy in some
cases.

Both methods effectively integrate anisotropic diffusion within a deep learn-
ing framework to enhance the segmentation of complex structures like vascular
networks. The choice between these approaches depends on the application’s spe-
cific requirements and the data’s nature. The first method offers explicit control
over heat propagation when seed point selection is feasible and advantageous.
Conversely, the second method provides a flexible and computationally efficient
alternative in scenarios where seed point selection is impractical.

4 Experiments

4.1 Data

We conducted experiments on synthetic datasets and real-world medical images.
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– Synthetic Tree Structures: Designed to test the model’s capability in detect-
ing arboreal structures. The dataset includes 20 images for training and 20
for testing, with key points represented by Gaussian heatmaps.

– DRIVE Dataset [9]: This dataset comprises 40 colour retinal images with
corresponding manual vessel annotations provided by experts. We used only
the green channel of the images, as it offers the highest contrast for blood
vessels.

The model was trained using the Adam optimiser with a learning rate 0.01.
Data augmentation techniques were applied, including horizontal and vertical
flipping, random rotations, Geometric transformations (shifting and scaling).

These augmentations expose the model to various structural orientations and
scales, improving generalisation.

4.2 Results

Our methods effectively segmented tubular structures, accurately capturing com-
plex geometries and anisotropic properties.

Isotropic vs. Anisotropic Heat Propagation Figure 2 illustrates the dif-
ference between isotropic and anisotropic heat propagation across a fingerprint
image. The anisotropic diffusion tensors guide the heat along the fingerprint
ridges, adapting to the local geometry.

(a) Isotropic heat propagation. (b) Anisotropic heat propagation.

Fig. 2: Comparison of isotropic and anisotropic heat propagation across a finger-
print image.

Segmentation Results Figure 3 demonstrates the results of anisotropic tree
structure analysis. In the first image (a), the output of the anisotropic model on
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the tree structure is shown, illustrating the heat propagation pattern. In (b), the
potential field generated from the anisotropic diffusion is visualised, highlighting
how the heat flows through the tree branches. Image (c) shows the modulation
of the geodesic distance with the coefficient α, the thermal diffusion, affecting
the diffusion process based on local variations. Finally, in (d), the predicted seg-
mentation or outline of the tree structure is displayed, highlighting the model’s
ability to capture the geometric features of the tree.

(a) Output of the
proposed model.

(b) Predicted poten-
tial field.

(c) Modulated
geodesic distance.

(d) Predicted seg-
mentation.

Fig. 3: Anisotropic segmentation results for a tree structure.

4.3 Second Model Results

In Figure 4, the barycenter predicted by the Seed decoder branch of our model
does not coincide with the barycenter maps produced by the original FMECNN
model. Instead, it predicts segmentations of the vascular network. This diver-
gence occurs because the second branch of our network is not explicitly trained
to predict seed points, and the sparsity-promoting penalty in the loss function
does not collapse the barycenter to a set of discrete points, even for larger values
of λ. This behaviour can be interpreted as an attention mechanism, where the
solution to the heat equation, computed from the two network outputs, refines
the segmentation map.
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Fig. 4: Output of our method on a sample from the IOSTAR dataset. Left: Com-
parison of proposed segmentation versus Ground Truth. Center Left: Barycenter
map output by the network. Center Right: Sum of the metric elements in both
directions. Right : (log of) Anisotropy factor.
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5 Conclusion
We introduced two methods for integrating anisotropic geodesic distance compu-
tation into deep learning models for image segmentation of complex structures
like vascular networks. The first method employs seed points to control heat
propagation, capturing intricate tubular geometries but requiring accurate seed
placement. The second method is seedless, using a probability map to guide
heat propagation, simplifying the segmentation process but relying on the net-
work’s ability to predict this map accurately. Both methods effectively segment
complex, anisotropic structures without manual seed selection. Our experiments
demonstrate that learning anisotropic metrics directly from data and integrat-
ing geodesic computation into deep learning models advance image segmentation
techniques for complex, directionally dependent structures.
Acknowledgments. This work is in part supported by the French government un-
der management of Agence Nationale de la Recherche as part of the "Investissements
d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).
Disclosure of Interests. The authors have no competing interests to declare that
they are relevant to the content of this article.
References
1. Benmansour, F., Cohen, L.D.: Tubular Structure Segmentation Based on Mini-

mal Path Method and Anisotropic Enhancement. International Journal of Com-
puter Vision 92(2), 192–210 (Apr 2011). https://doi.org/10.1007/s11263-010-0331-
0, http://link.springer.com/10.1007/s11263-010-0331-0

2. Bertrand, T., Makaroff, N., Cohen, L.D.: Fast Marching Energy CNN. In: Inter-
national Conference on Scale Space and Variational Methods in Computer Vision
(SSVM’23. pp. 276–287. Springer (2023)

3. Cohen, L.D., Deschamps, T.: Segmentation of 3D Tubular Objects With Adaptive
Front Propagation and Minimal Tree Extraction for 3D Medical Imaging. Com-
puter Methods in Biomechanics and Biomedical Engineering 10(4), 289–305 (2007)

4. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in Heat: A New Approach to
Computing Distance Based on Heat Flow. ACM Transactions on Graphics (TOG)
32(5), 1–11 (2013)

5. Heitz, M., Bonneel, N., Coeurjolly, D., Cuturi, M., Peyré, G.: Ground Metric Learn-
ing on Graphs. Journal of Mathematical Imaging and Vision 63, 89–107 (2021)

6. Malladi, R., Sethian, J.A.: A Real-Time Algorithm for Medical Shape Recovery. In:
Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271).
pp. 304–310. IEEE (1998)

7. Scarvelis, C., Solomon, J.: Riemannian Metric Learning via Optimal Transport.
arXiv Preprint arXiv:2205.09244 (2022)

8. Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing
Fronts. Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

9. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE transactions
on medical imaging 23(4), 501–509 (2004)

10. Varadhan, S.R.S.: On the Behavior of the Fundamental Solution of the Heat Equa-
tion With Variable Coefficients. Communications on Pure and Applied Mathemat-
ics 20(2), 431–455 (1967)

11. Yang, F., Cohen, L.D.: Geodesic Distance and Curves Through Isotropic and
Anisotropic Heat Equations on Images and Surfaces. Journal of Mathematical
Imaging and Vision 55, 210–228 (2016)


