
Hash Functions for Near Duplicate Image Retrieval

Adrien Auclair
Paris Descartes University

LIPADE

Nicole Vincent
Paris Descartes University

LIPADE

Laurent D. Cohen
Paris Dauphine University

CEREMADE

Abstract

This paper proposes new hash functions for indexing lo-
cal image descriptors. These functions are first applied and
evaluated as a range neighbor algorithm. We show that
it obtains similar results as several state of the art algo-
rithms. In the context of near duplicate image retrieval,
we integrated the proposed hash functions within a bag of
words approach. Because most of the other methods use a
kmeans-based vocabulary, they require an off-line learning
stage and highest performance is obtained when the vocab-
ulary is learned on the searched database. For application
where images are often added or removed from the searched
dataset, the learning stage must be repeated regularly in or-
der to keep high recalls. We show that our hash functions in
a bag of words approach has similar recalls as bag of words
with kmeans vocabulary learned on the searched dataset,
but our method does not require any learning stage. It is
thus very well adapted to near duplicate image retrieval ap-
plications where the dataset evolves regularly as there is no
need to update the vocabulary to guarantee the best perfor-
mance.

1. Introduction
In this paper, we are concerned by the problem of near-

duplicate images retrieval in large database. Near-duplicate
images are images that are deformations of a single original
image. Common deformations are cropping, global modi-
fication of intensity, adding noise... One major application
is to detect image copyright violation. This is not the same
problem as detecting images of the same 3D scene or cat-
egorizing images. Similar solutions exist in the literature
for these three applications but in this article, we are only
studying the near-duplicate detection.

In the past few years, several bag-of-words methods have
led to good results for this task. These methods imitate the
principle of text documents retrieval [13] for images [15].
A core step is to define a visual vocabulary. In [15], the
vocabulary is built using a kmeans algorithm on local im-
age descriptors (typically SIFT descriptors [10]). This is a

costly step and image retrieval effectiveness depends of the
learning database. High recalls are obtained if the vocab-
ulary is learned on the searched dataset. But if vocabulary
is computed on a different set of images, effectiveness is
lower. This is a major problem for applications searching
images in a database where images are regularly added or
removed. To ensure the best retrieval results, one must regu-
larly update the kmeans-based visual vocabulary. This step
adds parameters concerning the frequency of these updates
and it may be required to stop the application while com-
puting the kmeans.

To tackle this issue, we propose a non learned algorithm
for bag-of-words. Our method is based on original hash
functions inspired by several nearest neighbors algorithms.
There is no learning stage and thus results do not depend
on any off-line process applied to a particular dataset. As
a result, a near-duplicate search engine based on our algo-
rithm is particularly adapted to applications having regular
updates of the database.

2. Related work

In a first part of this paper, we review the use of a nearest
neighbors algorithm for image retrieval in a bag-of-words
approach, as explained in [7]. Then, we review several ap-
proximate nearest neighbors algorithms that have inspired
our work.

2.1. Nearest neighbors algorithms and bag-of-
words

In a bag-of-words approach, each database image is de-
scribed by several local descriptors (in our work, we use the
SIFT descriptors of [10]). Each descriptor is assigned to
a word within a visual vocabulary. Computing similarities
between images is then casted to detecting common visual
words between images. In [15], the authors use a kmeans to
define the visual words and similarity scores are computed
with a term-frequency inverse-document-frequency (tf-idf)
model, classically used in the text retrieval domain [13].

A general expression of the bag-of-words similarity

1
978-1-4244-5498-3/09/$25.00 ©2009 IEEE

score is given in [7] :

sq,j =
hq∑
i=1

hj∑
k=1

f(xqi , p
j
k) (1)

where xqi is the ith descriptor of image q, pjk is the kth de-
scriptor of image j and f is a similarity function between
two descriptors. For a classical kmeans-based vocabulary,
the similarity function is :

f(xq, yj) = δc(xq),c(yj) ×
(

1
hqhj

× log(n

nc(yj)
)2
)

where c is a quantizer that associates the index of the closest
class center to a descriptor, δ is the kronecker function. The
second part of the similarity is the tf-idf term where hq and
hj are respectively the number of descriptors in images q
and j, and nc(yj) is the number of descriptors corresponding
to the word c(yj). The log term is squared as it is computed
from both descriptors xq and yj .

In [7], authors proposed that any nearest neighbors algo-
rithm can be used as a similarity function f . For example,
one can use (tf-idf weight is omitted here for simplicity) a
range-neigbors algorithm :

fε(x, y) =
{

1 if d(x, y) < ε
0 otherwise

The problem of this type of functions is that exact near-
est neighbors algorithms are very slow in practice for high
dimensional spaces. To get fast queries, one has to replace
the underlying exact nearest neighbors algorithm by an ap-
proximate one.

2.2. Approximate Nearest neighbors

There exists a large amount of algorithms for the nearest
neighbors problem. As shown previously, kmeans cluster-
ing can be used as an approximate nearest algorithm. At
query, only points belonging to the class of the query point
will be tested as neighbors (or directly declared as neigh-
bors). As said above, the main drawback of kmeans-based
algorithm is that it is not adapted for regularly updated
databases.

In [9], points are indexed by their projection on several
random lines. While it obtains good performance, this ap-
proach requires much memory and for large point clouds,
the indexing must be saved on disk, slowing down the
querying process. An original class of solution is based
on space filling curves (see [16] for example) but these ap-
proaches are rigid and offer very few tuning possibilities.

A tree-based solution is to use a non exhaustive visit-
ing algorithm on a kd-tree (algorithm called Best-Bin-First
in [10]). To be more effective, randomized kd-tree forests
have been used in [12]. One problem is that there is no

guarantee that parameters (number and depth of trees) will
guarantee good performance if the number of images within
the database evolves.

Another popular solution is Locality Sensitive Hashing
[5, 3, 14]. In this approach (we note it LSH), points are
projected on random lines. The obtained projections are
used to compute hash keys. In order to retrieve a correct
amount of a query point’s neighbors, many hash tables have
to be used. Thus, the major problem of this approach is
the quantity of memory needed. This is a real bottleneck
when required memory is larger than available main mem-
ory, leading to disk swap and large falloff in performance.
Several modification of the algorithm have also been pro-
posed in literature [6, 2], but it still requires more memory
than a kmeans based approach.

In our work, we have chosen to work with hash functions
for several reasons. First, it is not related to any learning
dataset. It may be very fast. And retrieval performance
does not evolve when modifying the database while this is
not true for tree-based methods.

3. New hash functions
The main problem of current hashing (LSH or PvS

framework) is that they require much memory. To reduce
the memory overhead per indexed point, we want a point to
be associated with a single hash key.

The underlying idea of hashing for nearest neighbors al-
gorithm is that close points must be hashed with a similar
key with high probability and far away points must be given
different keys. Classically, the closeness notion is seen as
the L2 distance function.

In our approach, we consider that two points are similar
if they are distinctive along the same dimensions. The ini-
tial idea of our work is that if two points are far from the
average value along the same dimensions, there is a good
probability that they come from two similar image descrip-
tors. Still, this requires to define what we call a distinctive
dimension. We note β such a function that computes the
distinctiveness of a point, for a given dimension. We tested
several such functions and found that the one which obtains
the best image retrieval results is :

β(xi, j) =
∣∣xj − xij∣∣σαj

where xi is the ith point of the database, j a dimension
(j ∈ [1, 128] for the 128-D SIFT descriptor we use), xij is
the coordinate of xi on dimension j, xj is the average value
of descriptors on dimension j (xj = 1

n

∑n
p=1 x

p
j where n

is the number of points in database), σj is the standard de-
viation of points along dimension j and α is a parameter to
balance the two terms. After tuning, we found that the best
image retrieval results were obtained for α = 0.5. The dis-
tinctiveness function is used to sort the dimensions for each

database point. We note D(xi) the vector of these sorted
dimensions for a point xi :

β(xi, D(xi)1) > β(xi, D(xi)2) > ... > β(xi, D(xi)128)

Then, for a point xi, the k first values of D(xi) are used
to compute a hash key :

key(xi) = h(D(xi)1, ..., D(xi)k)

where h can be any classical hash function using a set of k
integers as input. We chose to use a function similar to the
one used in LSH [14] :

h(v1, ..., vk) =

 k∑
j=1

rj × vj

mod P mod H

where the rj are random integers, P is a prime number and
H is the size of the hash table. In practice, there will be
collisions (different integer sets may be assigned the same
key). To reduce the impact of such collisions, a second
hash key g(v1, ..., vk) is computed and used as a check-
sum. In the hash table, for a database point xi, an identifier
(containing the id of its image and the id of the descrip-
tor within this image) and a checksum are saved in bucket
h(D(xi)1, ..., D(xi)k). Thus, in the hash table, a point xi

is saved on 64 bits (32 bits for its identifier and 32 for the
checksum). The checksum size can certainly be reduced but
we have not investigated this option.

3.1. Querying algorithm

The initial querying algorithm using these hash functions
is very simple. All database points are fist indexed in the
hash table. For a query point, its hash key and checksum
are computed. The points of the bucket of its hash key are
visited. For the points having the same checksum as the
query, the euclidean distance is computed to decide whether
or not they are neighbors.

Figure 1 shows an example of computing the hash keys.
On this figure, two points are highly similar but hashed with
different keys. Using the given hash function is too much
distinctive. Even very similar points are very rarely hashed
to identical keys. As a first correction, we propose to sort
the k first values of vector D(xi) before using it in hash
function h. Thus the key of a point xi is obtained as :

key(xi) = h(sort(D(xi)1, ..., D(xi)k))

With this little modification, the two points of figure 1
will be hashed with the same key (both will get the key
h(4, 5)). When testing this option, points are still too much
spread in buckets and the algorithm fails to retrieve most
of the true neighbors. The solution we propose is to hash
a database point with a single key and to compute several

Figure 1. Example of the proposed hashing. The histograms show
values of two points in a 8-dimensional space. For sake of sim-
plicity, we consider here that β(xi

j , j) = xi
j . In this example, we

use k = 2. It shows that even if x1 and x2 are very similar, they
will be hashed with different keys.

Figure 2. Hash keys computed for a query point. In this example,
k = 2 and n = 3. The query point will generates three hash
keys and thus three buckets of the table will be browsed to find its
neighbors.

keys for a query point. Thus, it is memory effective as a
database point is indexed only once. And when querying
for neighbors of a point, several buckets are browsed.

There is still to define how to generate several keys for
a query point that should increase the probability to find its
neighbors. For a database point xi, only the k first dimen-
sions of D(xi) are used to compute a key. For a query point
q, we propose to use all the combinations of k dimensions
among the n first values of D(q). This generates

(
n
k

)
hash

keys for a query point. Figure 2 illustrates this principle.
With this option, a query point and a database point can
share a similar hash key even if their distinctive dimensions
are not exactly the same. In our tests, we typically use n
close to 10 and a varying k.

4. Evaluation as a nearest neighbors algorithm

Our algorithm is first tested as a range-neighbors algo-
rithm : for a query point q, one wants to retrieve all the
database points xi such that d(q, xi) < R. The points we
used for our tests are 128-D SIFT (using both regions of in-
terest detector and descriptor of [10]). Point clouds used in
our experiments are publicly available on our website [1].

To evaluate approximate range-neighbors algorithms,
one can consider them as filtering algorithms. For a given
query point, the database point cloud is filtered in a way that
only a small subset of points are tested as potential neigh-
bors (i.e. L2 distance with the query is computed for these
points). Thus, an algorithm will be evaluated with two cri-
teria : the size of the returned subset and the number of true
neighbors found in this subset. The first criterion is evalu-
ated by the ratio of the returned subset size on the number
of points in database (noted RatioFilter in figures). A Ra-
tioFilter of 0.01 means that only 1% of the full point cloud
is returned, and thus the corresponding algorithm can be at
best 100 times faster than a linear search. The second crite-
rion is measured as a classical recall. These two measures
are equivalent to the more traditional recall-precision evalu-
ation (precision can be expressed as a function of recall and
RatioFilter) but as speed is a requirement, we found that
RatioFilter is a better indication than precision.

Some results are given on figure 3. On this test, our al-
gorithm is only slightly inferior to the best algorithm which
is the modified version of LSH of [2]. Still, our algorithm is
much more memory effective and will be better if disk swap
is required by LSH. The kmeans-based algorithms (either
flat or hierarchical) which are memory effective are clearly
outperformed by our hashing on this dataset. Our hashing
is also slightly better than LSH of [5] and [3] (noted LSH2).

Another important point to keep in mind is that these ap-
proximate algorithms have to be compared to an exhaustive
linear search. For the sake of comparison, we implemented
an exact linear search using the computational power of
GPU (we used a Nvidia 8800 GT GPU). On the same point
cloud, we obtain an algorithm 20 times faster than a lin-
ear search executed on a 2.66GHz processor. In order to
be 20 times faster than linear search on CPU, an approxi-
mate algorithm requires a RatioFilter below 0.05. This is
only an indication as one can use multi-cores processors or
also more recent GPU, one can also use several GPU... But
this test shows that an approximate algorithm having a Ra-
tioFilter above 0.05 is not interesting compared to a GPU
implementation.

In the previous paragraphs, our algorithm has proven to
compare very well to several state of the art approximate
range-neighbors algorithms. In the next section, we use it
in a bag-of-words image retrieval framework.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.01

0.02

0.03

0.04

0.05

Recall

R
at

io
Fi

lte
r

Hash n = 10
Kmeans
HKmeans, k=5
LSH opti m = 20
LSH m = 20
LSH2 m = 40

Figure 3. Comparison of several algorithms for a range-neighbors
search on a 265.000 points dataset extracted as 128-D SIFT de-
scriptors of various images. We used a range of 200 as it is the
value we used to associate SIFT descriptors for similar details
on our images. Hash is our algorithm, KMeans use a kmeans
clustering of the point cloud, HKmeans is a hierarchical kmeans,
LSH is the Locality Sentitive Hashing of [5], LSH-Opti is the
slightly modified LSH of [2] and LSH2 is our implementation of
[3] (we also tested results obtained using the E2LSH package im-
plemented by authors of [3], results were very similar to those of
our implementation). For our algorithm, each point is obtained by
varying k. On the KMeans curve, each point corresponds to a dif-
ferent number of classes. For HKmeans, the branch factor is set to
5 and the number of levels varies. For LSH algorithms, the num-
ber of hash tables is fixed (notedm) and the number of hyperplans
varies.

5. Image retrieval with our functions
Integrating our range-neighbors algorithm within a bag-

of-words is straightforward. In the score expression given
in equation 1, we use the following similarity function :

f(xq, yj) = δ′
keys(xq),key(yj)×

(
1

hqhj
× log(n

nkey(yj)
)2
)

where xq is a descriptor from the query image, yj a database
descriptor, keys(xq) is the list of keys computed from xq ,
key(yj) is the single key of yj , nkey(yj) is the number of
database points in the bucket of key(yj), and δ′ is a modi-
fied kronecker operator :

δ′
keys(x),key(y) =

{
1 if key(y) ∈ keys(x)
0 otherwise

With this formulation, it is important to notice that for
a database point, the 128 dimensional descriptors are not
required as no euclidean distance is computed. These de-
scriptors are only used initially to compute hash keys and
thus the approach does not require much memory.

The approach we use here to evaluate our algorithm is
to retrieve images that are synthetic deformations of a set
of images. This is well adapted to the application of de-
tecting copyright violation where one wants to detect if a
given image is a modification of a database image. We es-
tablished a list of transformations that our image retrieval

Original image Cropped image

Intensity changed Emboss filter
Figure 4. Some transformations of our benchmark.

engine should handle. This list was obtained by merging
the lists of transformations used in [4, 8, 9]. The 53 trans-
formations we use are (numbers in brackets are the number
of transformations per category) : Colorizing (3), Changing
contrast (4), Cropping (7), Despeckling (1), Applying em-
boss filter (1), Converting to GIF (1), Rotating (3), Scaling
(6), Changing saturation (5), Changing intensity (6), Apply-
ing sharpness filter (2), Converting to JPEG (2), Applying
median filter (1), Rotating and Cropping (2), Rotating and
Scaling (2), Shearing (4), Applying a Gaussian Blur (3),
Adding Gaussian Noise (2). Our test framework is to pick
50 random images from Internet and to apply the 53 de-
formations to these images. The obtained 2650 (50 × 53)
images are a first dataset. For space limits reasons, we do
not give here all the details about the transformations we
used but the full set of images is publicly available at [1].

The 50 original images will be used as queries. For each
one, the algorithm should only return the 53 deformations of
the image. We also add other images as perturbators in the
database : a first set of 30k images or a set of 510k images.
Figure 4 shows some examples of difficult transformations
we used. The database of 32650 images is notedDB32k and
the database of 512650 images is noted DB512k. For each
image, 256 descriptors (of type 128-D SIFT) are extracted.
We limit the number of descriptors as it has been noticed
in [4] that the recall almost does not decrease when passing
from 1000 features per image to 256. We also confirmed
these results in our tests. DB32k contains 8.1M descriptors
while DB512k has more than 128M points.

5.1. Results on comparing vocabularies

We first applied the algorithm on the DB32k dataset. Ta-
ble 1 shows the performance of our algorithm and those of
kmeans-based approaches. A first conclusion is that our al-
gorithm has a higher recall than the kmeans-based vocabu-
laries. When using a flat kmeans, even with a 64k vocab-
ulary, recall is lower and it is slower than our hashing. In
order to achieve similar query times or to use larger vocab-

algo Recall Time (ms)
Our hashing, n,k=10,8 0.974 18

KMeans,k=4000 0.900 275
KMeans,k=16000 0.927 310
KMeans,k=32000 0.935 385
KMeans,k=64000 0.943 593

HKMeans, k,L=10,4 0.844 567
HKMeans, k,L=10,5 0.952 107
HKMeans, k,L=10,6 0.972 15
HKMeans, k,L=12,6 0.961 24

HKMeans-other, k,L=10,4 0.840 592
HKMeans-other, k,L=10,5 0.918 92
HKMeans-other, k,L=10,6 0.948 44
HKMeans-other, k,L=12,6 0.952 37

Table 1. Recall using a bag-of-words algorithm (no affine verifi-
cation is applied) using either our range-neighbors algorithm or
kmeans-based vocabularies. Database is DB32k. For each query
image, only the 53 most similar images are returned. KMeans uses
a flat kmeans vocabulary, learned on a different dataset. HKMeans
is the hierarchical kmeans of [11] where vocabulary is learned on
DB32k. HKMeans-other is the same algorithm but vocabulary is
learned on a different dataset. For kmeans based algorithms, assig-
nation of a word to a descriptor of the query image is done using
an exact linear search. For HKMeans, flat scoring is used.

ularies, one should use an approximate nearest neighbors
algorithm to assign words to query descriptors. In [12], au-
thors show that using a randomized kd-tree forest for this
task does not generate any loss in the recall while being
much faster. This solution may bring kmeans vocabulary
and our hashing to similar query time. But on the given
dataset, the recall obtained by our hashing would still be
higher for the tested vocabulary sizes. Another advantage of
our approach is its simplicity. Coupling kmeans clustering
and a randomized forest leads to more parameters and thus
to more tuning. In table 1, we also indicate performance of
hierarchical kmeans. When the vocabulary is learned on the
DB32k dataset, using a 1M vocabulary (k,L=10,5) obtains
performance similar to our hashing. When using a different
dataset for learning, our algorithm performs better.

The main conclusion of these tests is that our algorithm
performs better than kmeans based vocabularies when vi-
sual words are not learned from the searched dataset. In
the case of kmeans vocabularies learned on the searched
dataset, results of our algorithm are similar to those of a
1M words hierarchical kmeans-based vocabulary. Still, the
advantage of our algorithm is that performance does not de-
pend of any learning dataset. Using a kmeans-based vocab-
ulary, if the database is created incrementally (e.g. users
add images from time to time), one has to update the visual
words frequently to guarantee optimal performance. This is
not required by our algorithm.

5.2. Scalability

As each database point is indexed only once in a single
hash table, our algorithm is well adapted to large databases.

For the DB512k dataset, the hash table requires 1GB of
memory. Using a maximum of 256 descriptors per image,
the table of all database descriptors requires 1GB. For each
descriptor, only position, orientation and scale are saved (it
is compacted to require only 64bits per descriptor). Thus,
our implementation does not require any disk access for a
query within a database of 512.000 images.

We applied our algorithm to the same image retrieval
benchmark as described in the previous paragraph, but on
the DB512k. When only 53 images are returned, recall is
0.743 but this is a very difficult problem as only 53 images
are chosen among 512.000 possibilities. Much better re-
sults are obtained when more images are kept by the bag-
of-words filtering (according to the bag-of-words score) and
then affine verification filters out outliers (using a RANSAC
algorithm as in [10]). Using this second approach, if our al-
gorithm selects the 4000 images most similar to the query
and then applies affine verification, it obtains a recall of
0.965 and a precision of 0.971. With this configuration, the
total time of a query is 360ms.

6. Conclusions

In this article, we were concerned by the problem of near
duplicate detection in image databases. Our main contri-
bution is a new range-neighbors algorithm that is straight-
forward to use in a bag-of-words framework. It is based
on detecting distinctive dimensions to compute hash keys
for each local descriptor. These hash functions are fast to
compute and the indexing does not require as much mem-
ory as LSH approaches do. As a pure approximate range-
neighbors algorithm, our algorithm compares very well to
several others. But the main result is that, for near dupli-
cate retrieval, it performs better than kmeans-based vocab-
ulary if the kmeans is not applied on the searched dataset.
This makes our algorithm a particularly suitable solution
for applications where the image database evolves. Using
a kmeans approach would require to update the visual vo-
cabulary regularly to avoid degraded performance (and to
define when to do these updates). Our algorithm does not
need such updates and provides retrieval results as good as
those of kmeans based vocabulary learned on the searched
dataset.

References
[1] http://www.math-info.univ-paris5.fr/ auclair/dataset.html.
[2] A. Auclair, L. D. Cohen, and N. Vincent. How to use SIFT

vectors to analyze an image with database templates. In Pro-
ceedings of the 5th International Workshop on Adaptive Mul-
timedia Retrieval (AMR), Paris, France, July 2007.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In SCG ’04: Proceedings of the twentieth an-

nual symposium on Computational geometry, pages 253–
262, New York, NY, USA, 2004. ACM.

[4] J. J. Foo and R. Sinha. Pruning sift for scalable near-
duplicate image matching. In J. Bailey and A. Fekete, ed-
itors, Eighteenth Australasian Database Conference (ADC
2007), volume 63 of CRPIT, pages 63–71, Ballarat, Aus-
tralia, 2007. ACS.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In The VLDB Journal, pages
518–529, 1999.

[6] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros. Query-
adaptative locality sensitive hashing. In International Con-
ference on Acoustics, Speech, and Signal Processing. IEEE,
2008.

[7] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), Marseille, France, LNCS. Springer, oct 2008.

[8] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-
based near-duplicate and sub-image retrieval system. In
MULTIMEDIA ’04: Proceedings of the 12th annual ACM in-
ternational conference on Multimedia, pages 869–876, New
York, NY, USA, 2004. ACM Press.

[9] H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Am-
saleg. Efficient and effective image copyright enforcement.
In BDA, 21èmes Journées Bases de Données Avancées, BDA
2005, Saint Malo, 17-20 octobre 2005, Actes (Informal Pro-
ceedings), 2005.

[10] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. In International Journal of Computer Vision
(IJCV), volume 20, pages 91–110, 2004.

[11] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), New
York, USA, pages 2161–2168, 2006.

[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Minneapolis,
USA, 2007.

[13] G. Salton and M. McGill. Introduction to Modern Informa-
tion Retrieval. McGraw-Hill, Inc., New York, NY, USA,
1986.

[14] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-
Neighbor Methods in Learning and Vision: Theory and
Practice (Neural Information Processing). The MIT Press,
2006.

[15] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proceedings of the
International Conference on Computer Vision (ICCV), Nice,
France, volume 2, pages 1470–1477, Oct. 2003.

[16] E. Valle, M. Cord, and S. Philipp-Foliguet. High-
dimensional descriptor indexing for large multimedia
databases. In CIKM ’08: Proceeding of the 17th ACM con-
ference on Information and knowledge management, pages
739–748, New York, NY, USA, 2008. ACM.

