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We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a
variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis
of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g.,
inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to
find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours.
We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm.

1. Introduction

Contour detection is a major issue in image processing. For
instance, in classification and segmentation, the goal is to
split the image into several parts. This problem is strongly re-
lated to the detection of the connected contours separating
these parts. It is quite easy to detect edges using local image
analysis techniques, but the detection of continuous contours
is more complicated and needs a global analysis of the image.

Several image processing problems like image inpaint-
ing and denoising (or enhancement) are classically solved
without detecting edges and contours. The goal of image
enhancement is to denoise the image without blurring it. A
classical idea is to identify the edges in order to preserve them
and to smooth the image outside them. In this particular
case, contour completion is not prerequisite, as the quality
of the result is not too much related to the completeness of
the identified edges, but missing edges may lead to blurred
boundaries. For most of the other image processing problems
(segmentation, inpainting, classification), the detection of
connected contours can drastically simplify the resolution
and improve the quality of the results. For instance, the image
segmentation problem is a very good example, as the goal is

to split the image into its characteristic parts. In other words,
one has to find connected contours, which define different
subsets of the image.

For solving all these problems, various approaches have
been considered in the literature. We can cite here the most
commonly used models: the structural approach by region
growing [1], the stochastic approaches [2–4], and the vari-
ational approaches, which are based on various strategies like
level set formulations, minimizing the total variation of a
quantity or the Mumford-Shah functional, active contours
and geodesic active contours methods, snakes, wavelet trans-
forms, or shape gradient [5–19, 19–24].

Another approach is based on the topological asymptotic
analysis and consists of defining edges as cracks [25, 26].
The goal of topological optimization is to look for an opti-
mal design (i.e., a subset) and its complementary. Finding
the optimal subdomain is equivalent to identifying its char-
acteristic function. At first sight, this problem is not differ-
entiable. But the topological asymptotic expansion gives the
variation of a cost function j(Ω) (see Section 2 for examples)
when one switches the characteristic function from one to
zero (or from zero to one) in a small region [27].
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More precisely, we consider the perturbation of the
main domain Ω by the insertion of a small crack (or hole)
σρ : Ωρ = Ω \ σρ, ρ being the size of the crack. The
topological sensitivity theory provides then an asymptotic
expansion of the considered cost function when the size of
the crack tends to zero. It takes the general form: j(Ωρ) −
j(Ω) = f (ρ)g(x) + o( f (ρ)), where f (ρ) is an explicit positive
function going to zero with ρ, and g(x) is the topological
gradient at point x. Then, in order to minimize the criterion
(or at least its first order expansion), one has to insert
small cracks at points where the topological gradient is the
most negative. Using this gradient type information, it is
possible to build fast algorithms. In most applications, a
satisfying approximation of the optimal solution is reached at
the first iteration of the optimization process. A topological
sensitivity framework allowing to obtain such an expansion
for general cost functions has been proposed in [27].

An efficient edge detection technique, based on the topo-
logical gradient, has been introduced in [28, 29]. It is also
shown that edge detection can make all these image proc-
essing problems straightforward to solve [25, 26, 30, 31].
But the identified edges are usually not connected, and the
results can be degraded. Our goal is to improve these results
by replacing dashed discontinuous edges by connected
contours.

In the inpainting problem, we assume that there is a
hidden part of the image, and our goal is to recover this
part from the known part of the image. We assume that
the missing part is a quite large part of the image, we do
not consider the case of random sets or narrow lines. This
problem has been widely studied and the most common
approaches are: learning approches (neural networks, radial
basis functions, . . .) [32, 33], minimization of an energy cost
function based on a total variation norm [34, 35], morpho-
logical component analysis methods separating texture and
cartoon [36]. We also refer to [6, 8] for the description of
several inpainting algorithms.

We now consider the crack detection technique, within
the framework of the identification of the image edges, either
in the hidden part of the image for the inpainting application,
or in the whole image for the segmentation application [26].
The topological asymptotic analysis provides very quickly the
location of the edges, as they are precisely defined by the
most negative points of the topological gradient. The great
advantage of the topological gradient in comparison with
level line completion and TV-based inpainting methods (see
e.g., [6, 8, 12, 13]) is that the identified edges in the unknown
part of the image correspond to a regular extrapolation of
the known edges, and as we will see on a numerical example,
the topological gradient preserves the continuity of the edge
curvature. Thus, the proposed approach is much more than
simple edge detection.

The main issue of the approach based on the topological
gradient is the need for connected complete contours. This
can be easily understood since the hidden part of the image
is filled in using the Laplace operator in each subdomain
of the missing zone, and a discontinuous contour would
lead to some blurred reconstruction. Up to now, one had to
threshold the topological gradient with a not too small value,

in order to identify connected contours, but this leads to
thick identified edges, and also to consider more noisy points
as potential edges. In order to overcome this limitation, we
consider a minimal path technique in order to connect the
edges identified by the topological gradient.

Minimal paths have been first introduced for finding
the global minimum of active contour models, using the
fast marching technique [37, 38]. They have then been
used to find contours or tubular structures and also for
perceptual grouping using a path or a set of paths minimizing
a functional [38–43]. In our case, the energy to be minimized
will be an increasing function of the topological gradient. As
the topological gradient takes its minimal (negative) values
on the edges of the image, the idea is indeed to find contours
for contour completion from the various minima and small
values of the topological gradient.

The energy to be minimized can be seen as a distance
function. The idea is then to compute this distance function
between a given starting point and all other points. For this
purpose, a front propagation equation is considered. Using
the fast marching propagation, the definition of the distance
function is straightforward: the distance between a point x
and the starting point is exactly the time at which the front
reached x. Then, minimal paths between these points can be
identified using a gradient descent. For perceptual grouping,
a set of keypoints is considered as starting points and a set
of minimal paths connecting some pairs of these keypoints
is considered as a contour completion. This approach is
extremely satisfactory in 2D problems, with quite few key
points. It is also extremely fast. In 3D images, minimal paths
find tubular structures, but in order to identify minimal
surfaces, this approach is much more difficult to consider.
It was dealt in the case of a surface connecting two curves in
[44]. We only consider here the 2D case.

The application of the minimal path technique to the
topological gradient allows us to obtain an automatic
identification of the main (missing or not) edges of the
image. These edges will be continuous, by construction, and
will allow us to simply apply the Laplace operator to fill in the
image for inpainting applications, or will directly provide the
segmented image, with very good results. Another advantage
of this technique is to be very fast, as it does not degrade
the O(n · log(n)) complexity of the topological gradient
based algorithm introduced in [26]. We refer to [26, 45] for
the inpainting and segmentation algorithms by topological
asymptotic expansion, and for a detailed presentation of the
topological gradient.

The paper is organized as follows. In Section 2, we
present the edge detection method using the topological gra-
dient, and the corresponding segmentation and inpainting
algorithms. In Section 3, we propose an algorithm based on
the minimal path and fast marching techniques in order to
identify the valley lines of the topological gradient, which
correspond to the main edges of the image. Then, we report
the results of several numerical experiments in Section 4. We
also compare this hybrid scheme with the fast marching algo-
rithm applied to the standard gradient. Two particular image
processing problems are considered: segmentation and
inpainting. Finally, some conclusions are given in Section 5.
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Figure 1: Example of domain and inserted crack (with its orienta-
tion).

2. Edge Detection by Topological
Asymptotic Analysis and Its Application to
Inpainting and Segmentation

2.1. Topological Asymptotic Analysis. Let Ω be an open
bounded domain ofR2 (note that it can easily be extended to
Rn). We consider a partial differential equation (PDE) prob-
lem defined in Ω, and we denote by uΩ its solution (we will
further see under which assumptions it can be considered).
We finally consider a cost function J(Ω,uΩ) to be minimized,
where uΩ is the solution to the PDE in Ω. The idea of
topological asymptotic analysis is to measure the impact of
a perturbation of the domain Ω on the cost function.

For a small ρ ≥ 0, let Ωρ = Ω \ σρ be the perturbed
domain by the insertion of a crack σρ = x0 + ρσ(n), where
x0 ∈ Ω. We denote by σ a fixed bounded straight crack
containing the origin, n is a unit vector, and σ(n) is the result
of the rotation of σ so that n is the normal to σ(n). The
fixed crack σ is rotated (normal n), stretched (size ρ), and
translated (center x0) in order to get σρ (see Figure 1). The
topological gradient theory can also be applied in the case of
arbitrary shaped holes [46–49], but we will only consider the
case of crack perturbations in our applications. The small pa-
rameter ρ will represent the size of the inserted crack. Finally,
we denote by V a Hilbert space on Ω, usually H1(Ω) in our
applications.

We now consider the variational formulation of the PDE
problem on Ω

Find u ∈ V such that

a(u,w) = l(w), ∀w ∈ V,
(1)

and the corresponding variational formulation of the PDE
problem on the perturbed domain

Find uρ ∈ Vρ such that

aρ
(
uρ,w

)
= lρ(w), ∀w ∈ Vρ.

(2)

One should notice that for ρ = 0, the perturbed PDE
problem becomes the original PDE problem.

We assume in the following that aρ is a bilinear continu-
ous and coercive form defined on Vρ, a Hilbert space on Ωρ,
and that lρ is a linear continuous form on Vρ.

We can rewrite the cost function J as a function of ρ by
considering the following map:

j : ρ �−→ Ωρ �−→ uρ, solution of Equation (2) �−→ j
(
ρ
)

:= J
(
Ωρ,uρ

)
.

(3)

In order to apply the topological asymptotic theory, aρ,
lρ, and J have to satisfy the hypotheses of the following result
[50, 51].

If there exist a linear form Lρ defined on Vρ, a function
f : R+ → R+, and four real numbers δJ1, δJ2, δa, and δl
such that

(1) limρ→ 0 f (ρ) = 0,

(2) J(Ωρ,uρ)−J(Ωρ,u0) = Lρ(uρ−u0)+ f (ρ)δJ1+o( f (ρ)),

(3) J(Ωρ,u0)− J(Ω,u0) = f (ρ)δJ2 + o( f (ρ)),

(4) (aρ − a0)(u0, pρ) = f (ρ)δa + o( f (ρ)),

(5) (lρ − l0)(pρ) = f (ρ)δl + o( f (ρ)),

where the adjoint state pρ is solution of the adjoint equation

aρ
(
w, pρ

)
= −Lρ(w) ∀w ∈ Vρ, (4)

and uρ is solution of the direct (2), then the cost function has
the following asymptotic expansion:

j
(
ρ
)− j(0) = f

(
ρ
)
g(x) + o

(
f
(
ρ
))

, (5)

where g(x) is the topological gradient, given by

g(x) = δJ1 + δJ2 + δa− δl. (6)

Indeed, from second and third items, j(ρ) − j(0) =
J(Ωρ,uρ)−J(Ω,u0) = Lρ(uρ−u0)+ f (ρ)(δJ1 +δJ2)+o( f (ρ)).
From the definition of the adjoint state and the direct
equation, Lρ(uρ − u0) = −aρ(uρ, pρ) + aρ(u0, pρ). From
fourth item and direction (2), −aρ(uρ, pρ) + aρ(u0, pρ) =
−lρ(pρ) + a0(u0, pρ) + f (ρ)δa+ o( f (ρ)) = −lρ(pρ) + l0(pρ) +
f (ρ)δa + o( f (ρ)). Finally, from fifth item, this term is equal
to f (ρ)(δa− δl) + o( f (ρ)).

Then, from an asymptotic point of view, as f (ρ) ≥ 0,
the idea is to create cracks in the domain Ω, where the
topological gradient g is the most negative, because

J
(
Ωρ,uρ

)
= J(Ω,u) + f

(
ρ
)
g(x) + o

(
f
(
ρ
))

, (7)

and the cost function corresponding to the perturbed
problem will be smaller than the original one. The main
advantage of this method is that it only requires the
resolution of the direct (2) and adjoint (4) problems.

2.2. Application to Edge Detection. LetΩ be an open bounded
domain of R2, representing the image domain. For a
given function v in L2(Ω) (in our application, v represents
the input image), the initial problem is defined on the
unperturbed domain and reads as follows: find u ∈ H1(Ω)
such that

−div(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(8)
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where n denotes the outward unit normal to ∂Ω and c is a
given function. Note that this problem is equivalent to linear
diffusion restoration.

For a given x0 ∈ Ω and a small ρ ≥ 0, let us now consider
Ωρ = Ω\σρ the perturbed domain by the insertion of a crack
σρ = x0 + ρσ(n), where x0 ∈ Ω, σ(n) is a straight crack, and
n a unit vector normal to the crack. Then, the new solution
uρ ∈ H1(Ωρ) satisfies

−div
(
c∇uρ

)
+ uρ = v in Ωρ,

∂nuρ = 0 on ∂Ωρ.
(9)

Edge detection is equivalent to looking for a subdomain
of Ω in which the energy is small. Indeed, we consider the
image gradient energy function, and the edges correspond to
high variations of the image intensity, and then to high values
of the gradient. So, our goal is to find the most energetic
parts of the image (in order to identify the edges), and we
reformulate this problem as the minimization of the energy
norm outside the edges

j
(
ρ
) = J

(
Ωρ,uρ

)
=
∫

Ωρ

∥∥∥∇uρ
∥∥∥2
. (10)

Then, the cost function j has the following asymptotic
expansion (see, e.g., [52] for more details):

j
(
ρ
)− j(0) = ρ2G(x0,n) + o

(
ρ2), (11)

with

G(x0,n) = −πc(∇u0(x0) · n)
(∇p0(x0) · n)

− π|∇u0(x0) · n|2,
(12)

and where p0 is the solution to the adjoint problem

−div
(
c∇p0

)
+ p0 = −∂uJ(Ω,u0) in Ω,

∂np0 = 0 on ∂Ω.
(13)

The topological gradient could be written as

G(x,n) = (M(x)n) · n, (14)

where M(x) is the 2 × 2 symmetric matrix defined by

M(x) = −πc∇u0(x)∇p0(x)T +∇p0(x)∇u0(x)T

2

− π∇u0(x)∇u0(x)T .

(15)

For a given x, G(x,n) takes its minimal value when n is
the eigenvector associated to the lowest eigenvalue λmin of
M. This value will be considered as the topological gradient
associated to the optimal orientation of the crack σρ(n).

Then, we can define the identified edge set

σ = {x ∈ Ω; λmin(x) < δ < 0}, (16)

where δ is a negative threshold.

We first illustrate this technique on a synthetic two
dimensional image, in grey level, defined by a sigmoid
function in x-coordinate (cumulative distribution function
of a Gaussian). The image is represented in Figure 2(a).
Then, the L2 norm of its standard gradient ‖∇u(x)‖ and its
topological gradient λmin(M(x)) are represented in Figures
2(b) and 2(c), respectively.

One can see that the topological gradient is less sensitive
to a smooth variation of the image intensity than the
standard gradient. The support of the topological gradient is
indeed much smaller. Thanks to the homogeneous Neumann
condition on the crack, the solution of the perturbed
problem is discontinuous along the crack, and the solution
has a much smaller energy if one inserts a crack in the image
near the middle of the x-axis.

We now apply this edge detection technique to the image
represented in Figure 3(a). The opposite of the L2 norm of
its standard gradient is represented in Figure 3(b). Note that
we represent its opposite in order to have comparable images
with the topological gradient, which has negative values.

The topological gradient is represented on Figure 3(c). As
it quantifies in a global way whether a pixel is part of an edge
or not, it is much less sensitive to noise and small variations
of the image than the standard gradient. For instance, the
topological gradient takes much larger absolute values on
the edges than outside, contrary to the standard gradient.
Note also that the time required for the computation of
the topological gradient is not much higher than for the
standard gradient, thanks to the O(n · logn) complexity of
the topological gradient algorithm.

However, for segmentation (or simply edge detection),
the next step of topological gradient algorithms usually
consists of thresholding the topological gradient in order
to define the edge set. Such a threshold is represented in
Figure 3(d). One can see that in order to obtain at least the
main connected edge, the threshold coefficient has been set
to a large value, leading to add many unwanted points to the
edge set, but also to thick edges. And even in this case, the
main contour is not totally continuous. This is why we need
to hybridize this method with the fast marching algorithm
(see Section 3.4) in order to obtain continuous edges for the
segmentation and to remove the isolated unwanted pixels.

We will also see below that the fast marching algorithm
needs a potential function highly related to the edges of
the image, much more than the standard gradient of the
image. Then, we will see that the topological gradient also
improves the fast marching method within the segmentation
framework, as the quality of the segmentation is directly
related to the choice of the potential function.

2.3. Inpainting Algorithm by Topological Asymptotic Analysis.
We also consider the inpainting application. We present here
the topological gradient-based algorithm. Let ω ⊂ Ω be the
missing part of the image and γ its boundary. We still de-
note by v the input image (assumed to be known in Ω \ ω,
and unknown in ω). The algorithm is based on the fact
that two measurements are available on the boundary of the
hidden part of the image: the value of the image (Dirichlet
condition) and its normal derivative (Neumann condition).
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(a) (b)

(c)

Figure 2: (a) Original image; (b) L2 norm of the (standard) gradient of (a); (c) Topological gradient of (a).

From these two measurements, by considering the standard
crack localization problem (see, e.g., [50]), it is possible to
solve a Dirichlet problem and a Neumann problem for a
given crack σ

ΔuD = 0 in ω \ σ ,

uD = v on γ,

∂nuD = 0 on σ ,

uD = v in Ω \ ω,

(17)

where uD ∈ H1(Ω \ σ), and

ΔuN = 0 in ω \ σ ,

∂nuN = ∂nv on γ,

∂nuN = 0 on σ ,

uN = v in Ω \ ω,

(18)

where uN is in H1(Ω \ σ).

Then, in order to identify the missing edges, one has to
minimize the following cost function:

J(σ) = 1
2
‖uD − uN‖2

L2(Ω). (19)

For the actual cracks (hidden edges), the solutions uD and
uN should be equal, as the actual solution satisfies both
Neumann and Dirichlet conditions. By minimizing this cost
function, one tries to find a solution that is consistent with
both conditions on the boundary.

The topological gradient corresponding to this cost
function is given by

G(x,n) = − [(∇uD(x) · n)
(∇pD(x) · n)

+(∇uN (x) · n)
(∇pN (x) · n)],

(20)

where pN and pD are the two corresponding adjoint states
[25, 50]. As previously, the topological gradient can be
rewritten as G(x,n) = nTM(x)n, where M(x) is a symmetric
matrix, and G takes its minimal value when n is the
eigenvector associated to the lowest eigenvalue of M.
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Figure 3: (a) Original image; (b) L2 norm of the (standard) gradient of (a); (c) Topological gradient of (a); (d) Identified edges by
thresholding the topological gradient.

The inpainting algorithm is then the following:

(i) calculation of uD and uN ,

(ii) calculation of pD and pN ,

(iii) computation of matrix M(x) and its lowest eigen-
value λmin at each point of the missing domain ω,

(iv) definition of the set of cracks: {x ∈ ω; λmin(x) < δ <
0}, where δ is a negative threshold,

(v) dalculation of u solution to the Neumann problem
taking into account the cracks location.

This algorithm has a complexity of O(n · log(n)), where
n is the size of the image (i.e., number of pixels). We refer to
[25] for more details about this algorithm.

We now illustrate this algorithm on two synthetic
examples. We first want to restore a black square, partially
hidden by a red square. The degraded image is represented
in Figure 4(a).

If no edge is inserted in the hidden zone, then the
resolution of a Poisson problem gives a blurred image, as the
Laplace operator provides a smooth reconstruction between

the black square and the white background, as shown in
Figure 4(c). The restored image by the inpainting algorithm
is represented in Figure 4(e). Using the edges identified by
the topological gradient, the reconstruction by the Laplacian
is much better, as there is now an insulating crack between
the black and white zones.

The second synthetic example is the reconstruction of a
black circle, partially hidden by a red square. The degraded
image is represented in Figure 4(b), the restored image
by the Laplacian without any inserted edge is shown in
Figure 4(d), and the restored image the Laplacian using the
edges identified by the topological gradient is represented in
Figure 4(f). As one can see on these two synthetic examples,
the curvature of the reconstructed edges is continuous in
the neighborhood of the boundary of the occlusion. It is
not common that an inpainted image has C1 edges, and for
instance, TV-based methods would connect the boundary
points with a straight line.

We now explain why we also decided to hybridize the
topological gradient and minimal paths methods on a more
realistic case.
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Figure 4: (a) Occluded image, defined by a black square on a white background, the occlusion being represented by a red square; (b)
Occluded image, defined by a black circle on a white background, the occlusion being represented by a red square; (c) Inpainted image by
diffusion (see (a) for the original degraded image), without any inserted edge in the occlusion; (d) Same as (c) in the circle case; (e) Inpainted
image using the missing edges identified by the topological gradient, and then diffusion to fill in the image (see (a) for the original degraded
image); (f) Same as (e) in the circle case.
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Figures 5(a) and 5(b) show an example of image, in
which we added a mask on a quite large part of the image
(
800 pixels). The goal of inpainting is to reconstruct as
precisely as possible the original image from the occluded
image. We also want the inpainted image to have sharp
(unblurred) edges.

Figure 5(c) shows the corresponding topological gradi-
ent, provided by the inpainting algorithm. In this case, the
topological gradient gives some information about the most
probable location of the missing edges. In the inpainting
algorithm presented in [25], the idea is then to threshold
the topological gradient and to define the edge set of the
occluded zone as being the set of points below the threshold.
The main issue is that the identified missing edges must
be connected in order to avoid blurry effects (due to the
Laplacian) in the reconstruction. Then, the threshold is
sometimes set manually in order to have connected contours.
In our example, the identified edge set is represented by white
points in Figure 5(d).

Figures 5(e) and 5(f) show the corresponding inpainted
image. One can see that the reconstruction is not very good,
particularly in the top part. This is mainly due to the fact that
the missing edges identified by the topological gradient are
either connected but thick with a lot of wrong identifications
(if the threshold is too small) or discontinuous (otherwise).

The idea is then to apply the fast marching algorithm
on the topological gradient obtained during the inpainting
process in order to identify connected contours in the hidden
part of the image.

3. A 2D Algorithm Based on the
Minimal Paths and Fast Marching Methods

3.1. Minimal Paths. In this section, we describe the standard
minimal path technique, adapted to our needs. We refer
to [37, 38, 41] for more details about the minimal paths
method.

In the following, let Ω be the considered image domain.
We assume that Ω is a regular subset of R2. In order to
compute some minimal paths, we need to define a potential
function, measuring in some sense for any point of Ω the cost
for a path to contain this point. As we want to identify paths
in the topological gradient image, and considering that this
potential function must be positive, we will define a potential
function as follows:

P(x) = g(x)−min
y∈Ω

{
g
(
y
)}

, ∀x ∈ Ω, (21)

where g is the topological gradient, defined in all the domain
Ω. We simply shift the topological gradient from its minimal
value, in order to obtain a positive function P. We can see
that the points where the topological gradient g reaches
its minimal values are quite costless. This is a way to say
that these points must be on the minimal paths. On the
contrary, if the topological gradient takes high values, then
the corresponding potential values lead to very expensive
paths.

Once each point has a cost (defined by the potential
function), we need to define the corresponding cost of a path.

We denote by C(s) a path, or curve, drawn in the image
domain, where s represents the arc length. We can now define
a functional, measuring the cost of such a path

J(C) =
∫

C
(P(C(s)) + α)ds, (22)

where α is a positive real coefficient that represents regu-
larization. The first part of the cost function measures the
cost itself of the path C(s) simply by summing the value of
the potential function on this path, and the second part is
a regularization term that measures the length of this path.
In our applications, α is usually very small, as the goal is to
connect the most negative parts of the topological gradient,
whatever the Euclidean distance is. Note also that we do not
consider any regularization terms on the curvature of the
contour, as the topological gradient already provides such
regularity on the curvature, contrary to TV-based methods.
Typically, α = 0 would be a good choice, as we really want
the minimal path along the topological gradient values, but
as the minimum of P is 0 (at the minimum of the topological
gradient), one has to set α to a very small value in order to
avoid numerical instability (see (24)).

We now consider a key point x0 ∈ Ω of the image, and
x will represent any point of the image. The energy J(C)
of a given path C can be seen as a distance between the
two endings of C, weighted by the potential function (and
the regularization). The goal is to find the minimal energy
integrated along the path C. We can now define the weighted
distance between key point x0 and point x by

D(x; x0) = inf
C∈A(x,x0)

J(C) = inf
C∈A(x,x0)

∫

C
(P(C(s)) + α)ds, (23)

where A(x, x0) is the set of all paths going from point x0 to
point x in the image. The idea is that finding the minimal
path between points x and x0 is now equivalent to computing
the weighted distance function between these two points.
If x and x0 are on the same contour of the image, then
the minimal path between these two points is obviously a
continuous contour of the image, connecting these points.
The minimal path has indeed the lowest cost, that is, the
points on this path have low topological gradient values. The
goal is now to compute the distance function given by (23).

3.2. Fast Marching. An efficient way to compute this distance
function is to solve a front propagation equation:

∂F (s, t)
∂t

= 1
P(F (s, t)) + α

nF (s, t), (24)

where nF (s, t) is the outer normal unit vector to the front
F . We initialize the propagation with F (s, 0), an infinitely
small circle centered at key point x0. This front evolves
then with a propagation speed inversely proportional to the
potential function. If for example a point in the outer part
of the front has a large potential (i.e., a large cost), then the
propagation speed will be nearly equal to zero, and the front
will not expand much at this point. On the other hand, if
the potential is small (i.e., this point is nearly costless), then
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Figure 5: (a) Occluded image (by a white rectangle); (b) Zoom of the occluded zone (see (a)); (c) Topological gradient of (b); (d) Identified
edges in the occluded zone by thresholding the topological gradient; (e) Inpainted image using the topological gradient; (f) Zoom of the
occluded zone (see (e)).

the propagation speed is large, and the front will quickly
propagate in this direction.

The distance D(x; x0) introduced in (23), between key
point x0 and point x, is then simply the instant t at which
the front, initialized at key point x0, reaches point x. The

algorithm to compute the distance function is called the
fast marching technique and is justified by the fact that the
distance satisfies the following Eikonal equation:

‖∇xD(x; x0)‖ = P(x) + α, (25)
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with the initialization D(x0) = 0. We refer to [37, 38, 44,
53, 54] for more details about the fast marching technique
and the justification of (25). If n is the size of the image,
the complexity of this fast marching method is bounded by
O(n · log(n)), which is also the complexity of the topological
gradient algorithm.

3.3. Multiple Minimal Paths. The main issue is now to extend
this minimal path technique to more than one keypoint in
order to connect several points. This is exactly what we need
in order to connect the identified edges by the topological
gradient, as we have many identified keypoints (e.g., all
negative local minima of the topological gradient) that we
want to connect. As explained in [41], the first point of
a multiple minimal path algorithm is to reduce the set of
keypoints for computational reasons. Moreover, the selected
keypoints should not be too close to each other. One usually
chooses a total number N of keypoints and the first (or main)
one. Then, the N − 1 other keypoints can be chosen for
example as described in [41].

The next step consists of connecting these N points.
One has to compute the distance function from each of
these key points, and the common minimal paths algorithms
provide then the Voronoı̈ diagram of the distance and
the corresponding saddle points (minimal distance along
the edges of the diagram and maximal distance from the
keypoints). The Voronoı̈ diagram defines a partition of the
image in as many subsets as the number of keypoints. Each
subset is defined by the set of points that are closer to the
corresponding keypoint than to all others. The saddle points
minimize the distance function on the edges of the diagram:
minimal distance on the edge and maximal distance to the
keypoints [38]. It is useful to compute these saddle points
to save computation time, since it reduces the domain of
the image where the fast marching computes or updates the
weighted distance map.

Finally, the idea is to consider the saddle points as initial
conditions for minimizing the distance function. For each
saddle point as an initial point, a minimization is performed
towards each of the two corresponding keypoints (recall
that the saddle points are located at the interface between
two subsets of the Voronoı̈ diagram). Each minimization
produces a path between the saddle point (initial condition)
and a keypoint (local minimum of the distance function).
This step is usually called back propagation, as it consists of
a gradient descent from the saddle point, back to the linked
keypoints. The back-propagation step is straightforward, as
there is no local minimum of the distance function, except
the keypoints. The union of all these paths gives a continuous
path, connecting the keypoints together.

The interesting part of the approach introduced in [41]
is that each keypoint should not be connected to all the
others, but only to at most two others, as we are looking for a
set of closed connected paths. Thus, the keypoints have to
be ordered in a way such that they are only connected to
the other keypoints that are closest to them in the energy
sense [41]. For this reason, we sort all the saddle points
from smaller to larger distance, and we first try to connect
the pairs of keypoints corresponding to the saddle points

of smallest distance. These keypoints are indeed more likely
to be connected than distant keypoints, corresponding to
saddle points of large potential. Once the close keypoints
are connected, we repeat the process with the new closest
pairs of keypoints, provided each point remains connected
to at most two other ones. At the end of the process, all
the keypoints are connected to at most two other keypoints,
and the union of all minimal paths between the keypoints
represents one (or several) continuous contour of the image.
An interesting feature of this method is that the key points
are by construction widely distributed around.

If all the selected keypoints are on the same contour of
the image, we are almost sure that at the end, they will all be
connected together, and we will retrieve the corresponding
contour, as the potential function (related to the topological
gradient) is very low on this contour. If, on the contrary,
one keypoint is not part of the contour, the large values of
the topological gradient, and hence of the potential function,
will isolate this keypoint from the other ones, and it will not
disturb the contour completion process.

3.4. Algorithm. The hybrid algorithm we propose is then the
following.

Fast Marching Algorithm Applied to the Topological Gradient

(i) Compute the topological gradient of the image.

(ii) Set N the number of keypoints and choose the N
keypoints: the main one will be for example the
global minimum of the topological gradient, the
other ones being the most negative local minima of
the topological gradient.

(iii) Compute the distance function (23) with all these
keypoints, and the corresponding Voronoı̈ diagram.

(iv) Compute the set of saddle points: on each edge of
the Voronoı̈ diagram, determine the point of minimal
distance.

(v) Sort all these points of minimal distance, from
smaller to larger distance.

(vi) For each of these saddle points, from smaller to larger
distance, check if it will not be used to connect two
keypoints, one of which is already connected to two
other keypoints.

(vii) If this is not the case, perform the back propagation
from this point: use this saddle point as an initializa-
tion for a descent type algorithm in order to connect
the two corresponding keypoints.

It is straightforward to see that this algorithm converges
and that at convergence, all the keypoints are connected to
at most two other keypoints. This provides one or several
continuous contours containing the keypoints. As the first
keypoint is usually the global minimum of the topological
gradient, it is on one of the main edges of the image.
Consequently, using this algorithm, we can identify this edge.
Then, it is possible to restart the algorithm, using other
keypoints that are not on this identified edge, by initializing,
for instance, the first keypoint as the minimum of the
topological gradient outside the neighborhood of this edge.
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Note that for inpainting applications, the number of
keypoints can be set automatically, as the topological gra-
dient takes its minimal values on the edges located on the
boundary of the hidden zone, and all these minima (close to
the global minimal value of the topological gradient) can be
chosen as keypoints.

4. Numerical Experiments

4.1. Numerical Results for 2D Segmentation. We consider
again the grey level image represented in Figure 3(a) for the
segmentation application, and we now present the results
corresponding to the hybrid method.

Using an automatic thresholding for identifying the most
negative values of the topological gradient, Figure 6(a) shows
the set of points (or admissible keypoints, in blue), in which
we will choose the keypoints for the minimal path algorithm.
The first keypoint is set to the minimum of the topological
gradient. Then, we have set the number of keypoints to
N = 3. From the first keypoint, we start the minimal path
algorithm, and we choose the second keypoint as being the
point (in the admissible set) maximizing the distance to the
first keypoint. Then, we start again the minimal path algo-
rithm from these two points, and we set the third keypoint
in a similar way. These three keypoints are represented by
black points in Figure 6(a). Note that the keypoints can also
be (manually) provided by the user, for instance, with the
aim of identifying a specific edge of the image.

From these keypoints, we run the minimal path algo-
rithm in order to compute the distance map. Figure 6(b)
shows this distance function. One can clearly see that the dis-
tance does not correspond to the Euclidean metric in the
plane, as the distance remains very small on the common
edge of the 3 keypoints, whereas it takes much larger values
outside.

The corresponding Voronoı̈ diagram is represented in
Figure 6(c). The three keypoints are still represented by black
points. Each color represents the subset Ωi of points that
are closer to keypoint i than to the others. For instance,
all the points in the green zone are closer to the right
keypoint than to any of the two others. This diagram is
automatically provided during the distance computation by
the fast marching algorithm.

For any i /= j, we consider the interface Γi j = Ωi ∩ Ω j

between two subsets of the Voronoı̈ diagram. Γi j represents
then the set of points equidistant from keypoints i and j. A
saddle point minimizes the distance function on Γi j : same
distance to keypoints i and j, minimal distance on Γi j . These
saddle points are represented by blue points on Figure 6(c).
These saddle points can be found during the fast marching
propagation as the first meeting points of the fronts starting
from each of the keypoints.

From these saddle points, the idea is finally to perform
a descent-type algorithm in order to minimize the distance
function from the saddle points to the keypoints. We
consider a saddle point on an edge Γi j as an initial condition
for two minimizations of the distance function, one towards
each of the corresponding keypoints (i and j). Each of these
two minimizations provides a continuous path from the

saddle point to one of the two keypoints. The union of these
two paths connects the two keypoints. This process is done
for all pairs of keypoints.

The final set of paths is represented in green on the
distance function in Figure 6(d). The three keypoints are
also represented (in white). These paths correspond to the
contour of the original image that contains the 3 keypoints.

The minimal path is also represented on the original
image in Figure 6(e). It also confirms that the identified path
perfectly matches the edge we were looking at.

By applying again this algorithm, with other keypoints
(selected outside the first identified contour), it is possible
to detect other contours of the image. Figure 6(f) shows,
for instance, the first main contour in green and a second
one in red. Contrary to the first one, we can see that this
contour is not perfectly detected, as the algorithm missed
some parts of the contour in the bottom left and top parts of
the red zone. One should probably consider more keypoints,
and maybe a different regularization coefficient, in order
to avoid this phenomenon. But for the application of the
topological gradient to image segmentation, the main issue
was the discontinuity of the identified contours (see, e.g.,
[26]). With this approach, we ensure the continuity of the
contours, and hence, assuming the edges are well identified,
we can obtain a perfectly segmented image.

Finally, we illustrate the fact that the topological gradient
provides better information about the edges of the image
than the standard gradient, as previously observed (see Fig-
ures 3(b) and 3(c)). We have manually selected 3 keypoints
on an edge of the image. These keypoints are represented
in blue on Figure 7(a). From these keypoints, we have run
the fast marching algorithm (see Section 3.4) applied to both
the standard gradient and the topological gradient (hybrid
scheme). The identified paths are represented in Figures 7(b)
and 7(c), respectively.

The topological gradient clearly provides the best iden-
tification of the edge. This can easily be explained by the
bad shape of the standard gradient in this region (see
Figure 3(b)). On the contrary, the topological gradient is less
sensitive to small local variations, and it is more likely to
define a potential function than the standard gradient.

4.2. Numerical Results for 2D Inpainting. We now consider
another application of this hybrid scheme to image inpaint-
ing. We recall that the idea of the topological gradient
algorithm is to identify the missing edges in the occluded
part of the image, and then to reconstruct the image from
the solution of a Poisson problem with Neumann boundary
conditions [25]. In this application also, it is crucial to have
connected contours; otherwise, the reconstruction with the
Laplacian will not be satisfactory.

We first present a comparison between the standard top-
ological gradient approach, a TV-based inpainting method,
and the new hybrid scheme. The original image is a black
rectangle, and we consider various perturbations of this
image. Figure 8(a) shows a first perturbation of the image, in
which the missing region is represented by the red rectangle.
The length of the hidden zone is 20 pixels. As previously
shown, the missing zone is quite large, and as the identified
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Figure 6: (a) Admissible set of points (i.e., most negative values of the topological gradient) in blue, and 3 keypoints automatically selected
in black; (b) Distance function computed from these 3 keypoints with the fast marching algorithm; (c) Corresponding Voronoı̈ diagram,
with the 3 keypoints and saddle points; (d) Identified minimal path between the keypoints represented on the distance function; (e) Minimal
path between the keypoints represented on the original image; (f) Another identified continuous contour from other keypoints.
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Figure 7: (a) Three selected keypoints on the original image; (b) Contours identified by the fast marching algorithm applied to the standard
gradient with the three selected keypoints (see (a)); (c) Contours identified by the fast marching algorithm applied to the topological gradient
with the three selected keypoints (see (a)).

edges have to be connected in order to avoid blurry effects
in the reconstruction, the threshold is set manually to a
quite small negative value. And then, the identified edges
are then quite thick with a lot of wrong identifications. The
reconstructed image by the topological gradient is shown
in Figure 8(b). The reconstruction is not very good, as
many wrong edges are considered in order to connect the
contours. Figure 8(c) shows the identified minimal path
between keypoints (that have been automatically selected,
as being the main edges on the boundary of the missing
zone) in green, represented on a zoom of the perturbed
image. Figure 8(d) shows the corresponding inpainted image
by the hybrid scheme: the image is reconstructed using the
topological gradient method, with the edges identified by
the minimal path technique. In this case, the reconstruction
is perfectly done, and the inpainted image is identical to
the original image. A TV-based inpainting method gives the

same result (see Figure 8(e)), as the missing zone is not too
wide (20 pixels, which is also the size of the black rectangle).

Figure 9 is similar to Figure 8 in the case of a larger
perturbation. The missing zone corresponds now to 40
pixels, twice the size of the black rectangle. In this case, the
topological gradient is much less negative near the middle
of the hidden zone, and the threshold has to be increased
to a smaller negative value in order to have closed contours.
The corresponding inpainted image is not good at all. But
the minimal path technique still identifies correct edges, and
the inpainted image by the hybrid scheme is almost perfect,
whereas a TV-based inpainting method does not connect
anymore the two regions of the rectangle.

Figure 10 is similar to Figures 8 and 9, in the case of a
larger perturbation. The missing zone now corresponds to
80 pixels, which is much larger than the size of the black
rectangle. In this case, the topological gradient still gives
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Figure 8: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

unsatisfactory results, due to badly connected edges. Even if
the topological gradient has strongly negative values along
the missing edges close to the boundary of the perturbation,
the missing zone is too wide, and the minimal path technique

now connects wrong keypoints, and the inpainted image
by the hybrid scheme is no more connected. As before, the
TV-based method does not connect the two parts of the
rectangle.
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Figure 9: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

We now consider again the occluded image given in
Figure 5(a).

After thresholding the topological gradient, several
points (identified by blue circles) have been identified

and define the admissible set of keypoints represented in
Figure 11(a). We choose then the most negative point of
the topological gradient as the first keypoint and then the
further admissible point as the second one. The keypoints
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Figure 10: (a) Occluded image (black rectangle) by a red rectangle; (b) Inpainted image using the standard topological gradient; (c) Minimal
path between the keypoints represented on the topological gradient; (d) Inpainted image using the hybrid scheme (fast marching algorithm
for closing the contours identified by the topological gradient); (e) Inpainted image using a TV-based method.

are represented by a large black point on the same image.
They are located on the edge of the domain, as the inpainting
topological gradient always takes its minimal values there.

Then, the minimal path algorithm is run, and it provides
a path between the keypoints, represented in green in

Figure 11(b). We can see that the path follows very well the
valley line of the topological gradient, from one side to the
other. By choosing 3 keypoints instead of 2, there will be
another keypoint on the bottom edge, near the first one, and
it will simply add a small contour located all along on the
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Figure 11: (a) Admissible set of keypoints and selected keypoints on the topological gradient; (b) Minimal path between the keypoints
represented on the topological gradient; (c) Minimal path between the keypoints represented on the occluded image; (d) Corresponding
identified missing edge in white; (e) Inpainted image using the fast marching algorithm for closing the contours identified by the topological
gradient in the hidden part of the image; (f) Zoom of (e).
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edge of the domain, and consequently, there is absolutely no
impact on the reconstruction of the hidden part of the image.

Figure 11(c) shows the same identified path represented
on the occluded image. This allows one to see that the path
clearly gives a good approximation of the missing edge and
also that the topological gradient is very powerful for this
identification problem. The corresponding identified edge
set is represented in Figure 11(d). This image should be
compared with the thresholded edge set of Figure 5(d). From
these two images, we can conclude that the minimal path
algorithm is an excellent tool for extracting the valley lines
of the topological gradient.

Finally, using this minimal path as the set of missing
edges in the occluded zone, the inpainting topological gradi-
ent algorithm produces a much better reconstructed image,
shown in Figures 11(e) and 11(f). The quality of the image is
very good, as the missing edges used for the reconstruction
are connected, and the Laplace operator will not produce
any blurring effect due to a discontinuous contour. Note
that there are some small discontinuities on the top left
boundary due to the fact that we used the Neumann solution
of the perturbed problem. The construction of a Dirichlet
solution would be better, but it is also much more difficult
to solve the Dirichlet problem in this case, as it is ill posed.
This example confirms that the quality of all topological
gradient applications in image processing can be improved
by replacing a simple thresholding technique by a minimal
path algorithm.

As already shown in [25], the topological gradient
extrapolates the edges and their curvature in the missing part
of the image (see also Figure 11(d), in which the identified
edge is not a straight line), contrary to total variation-based
methods. Thus, provided the identified missing edges are
connected (this point is now ensured by the application of
the fast marching algorithm to the topological gradient), the
inpainted image has edges with continuous curvature, which
is not the case with many other inpainting schemes.

5. Conclusions and Perspectives

We have introduced a hybrid scheme, based on one side on
the topological gradient for edge detection, and on the other
side on the fast marching and minimal paths methods for
contour completion. These approaches allow us to extract
connected contours in 2D images and to solve the main
issue of all topological gradient-based algorithms for image
processing problems (discontinuity of the edges). Moreover,
the minimal path algorithm does not degrade the complexity
of the topological asymptotic analysis.

We have considered two specific applications in image
processing: segmentation and inpainting. In the first one
(segmentation), we showed that the topological gradient is
more efficient than the standard gradient for edge detection
and the hybrid scheme provides better results than the fast
marching method applied to the standard gradient of the
image. In the second application (inpainting), we showed
that the hybrid scheme particularly improves the quality of
the inpainted image, as the contour completion ensures a

nonblurred inpainted image and as it also helps removing
the manual thresholding of the topological gradient.

The hybrid scheme is very efficient and quite automatic,
as there is no more thresholding process. The topological
gradient algorithm has been shown in previous inpainting
articles to propagate the main edges inside the hidden zone,
with some continuity of their curvature, and the use of
a minimal path technique helps detect the valley lines of
the topological gradient. The main drawback of the hybrid
scheme is the same as for the standard topological gradient
algorithm: the image is filled in with the Laplacian, and
this part has to be improved in order to also recover
texture information. Some preliminary results show that it
is possible with the same kind of approach, thanks to higher
order operators.

An interesting and natural perspective is to apply this
hybrid scheme to 3D images and movies. The topological
gradient can very easily be extended to 3D images. The
minimal path technique has also been adapted to the iden-
tification of tubular structures in 3D [37]. Another perspec-
tive consists of dealing with the changes of topology of the
edges in order to automatically detect bifurcations and T-
junctions.
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