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Abstract

We present a new approach to analyze the deformation of the left ventricle of the heart, based
on a parametric model that gives a compact representation of a set of points in a 3D image.
We present four different approaches to tracking surfaces in a sequence of 3D cardiac images.
Following tracking, we then infer quantitative parameters which are useful for the physician,
such as the variation of volume and wall thickness during a cardiac cycle, the ejection fraction
or the twist component in the deformation of the ventricle. We explicit the computation of these
parameters using our model. FExperimental results are shown in time sequences of two kinds of

medical images, Nuclear Medicine and X-Ray Computed Tomography (CT).

KEYWORDS: Parametric models, Tracking, Motion, Heart left ventricle deformation,

Quantitative parameters.

1 Introduction

The analysis of cardiac deformations has given rise to a large amount of research in medical image
understanding. Indeed, cardiovascular diseases are the primary cause of mortality in developed
countries. Various imaging techniques [1] allow the acquisition of dynamic sequences of 3D images
(83D+T) during a complete cardiac cycle (contraction and dilation). These images are perfectly

adapted to studying the behavior of the cardiac system since they visualize how the heart wall



deforms. Processing these images opens numerous fields of applications, like the detection and
analysis of pathologies.

Advanced techniques of 3D imagery, like Nuclear Medicine and X-Ray CT, provide ever increas-
ing resolution in space and time. Consequently, the data available to the radiologist is becoming
larger. However, to establish a reliable and fast diagnosis, the physician needs models that are
defined by only a small number of characteristic quantities. Our parametric deformable model
allows the representation of a dynamic set of points by a reasonable number of useful parameters,
as we shall see below.

Since it is characteristic of the good health of the heart, the left ventricle motion and deformation
has been extensively studied by medical image processing groups. Since its creation in 1989, our
group has pioneered work in the use of deformable models to extract the left ventricle [5, 17, 6, 8,
19, 16, 7, 13]. Other groups have also contributed to the understanding of the complex deformation
of the ventricle [4, 31, 3, 30, 36, 29].

Over the last decade, many surface reconstruction problems have been formulated as the mini-
mization of an energy functional corresponding to a model of the surface. Using deformable models
and templates, the extraction of a shape is obtained through minimization of an energy composed
of an internal regularization term and an external attraction potential (data term), illustrated for
example in [23, 14, 43, 26, 41, 19, 28, 45]. The use of such models is often very efficient for locating
surface boundaries of organs and structures, and for the subsequent tracking of these shapes in a
time sequence.

Although previous approaches based on general deformable surfaces [19, 16] give satisfying
results, they involve very large linear systems to solve. This is why the parametric model presented
here is more appropriate when dealing with a huge amount of data as is the case for object tracking
in a sequence of 3D images. In a previous article [11], we introduced a parametric deformable model
based on a superquadric fit followed by a free-form deformation (FFD). In the present article, after
a brief review of the parametric model in section 2, we describe our segmentation algorithm, specific
to cardiac images, in section 3. Then, in section 4 we present several approaches to track surfaces
with a parametric model in a sequence of 3D images, and give experimental results for tracking
the deformation of the left ventricle in different kinds of 3D medical images. In section 5, we
explain how to infer, from the parametric reconstruction, quantitative parameters which are useful

for the physician, like the variation of volume and wall thickness during a cardiac cycle, the ejection



fraction or the twist component in the deformation of the ventricle.

2 A parametric model to fit 3D structures

In this section, we describe briefly the deformable model that we use to represent the inner and
outer walls of the left ventricle.

We assume that a segmentation algorithm has already been applied to the 3D images of the
heart to extract a number of 3D points belonging to the surface of the inner or outer wall of the
left ventricle (this algorithm is described in section 3).

The advantage of parametric deformable templates such as superquadrics or hyperquadrics is
the small number of parameters needed to represent a shape. However, if these models give a good
global approximation to a surface, the set of shapes described by superquadrics is too limited to
approximate precisely complex surfaces. To take into account local deformations, Terzopoulos and
Metaxas [42] couple superquadrics with a deformable model. In [15], an implicit approach is used
to refine the initial approximation.

We refine our superquadric model using a parametric deformation. More precisely, for a given
set of 3D points, we first fit 3D data with a superellipsoid, and then refine this crude approximation

using Free Form Deformations (FFDs).

2.1 Fitting 3D data with superquadrics

Superquadric shapes have been widely used in Vision and Graphics. In computer vision, their first
use is due to Pentland [32], followed by Solina and Bajcsy [9, 37, 38] who used superellipsoids
to approximate 3D objects. The goal of the algorithm is to find a set of parameters such that
the superellipsoid best fits the set of data points. Superquadrics form a family of implicit surfaces

obtained by extension of conventional quadrics. Superellipsoids are defined by the implicit equation:
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Suppose that the data we want to fit with the superellipsoid are a set of 3D points (x;,v;,2;),1 =
1,---, N. Since a point on the surface of the superellipsoid satisfies F = 1, where F' is the function

defined by equation (1), we find the minimum of the following energy:
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using a minimization algorithm (see [10] for details and also for a geometric interpretation of this

energy).

2.2 Refinement with Free Form Deformations (FFDs)

We now refine this parametric representation of the 3D data, using a global volumetric deformation
called FFD. This is a tool devoted to the deformation of solid geometric models in a free-form
manner (see [33]). The main interest of FFDs is that the resulting deformation of the object,
although potentially complex, is defined by a small number of points. This characteristic feature

allows us to represent voluminous 3D data by a model defined by a small number of parameters.

2.2.1 Definition of FFDs

FFDs were introduced by Sederberg and Parry [33] in computer graphics and have been used to
solve matching problems by Szeliski and Lavallée [39, 40]. An FFD is a mapping from R? to IR?,
defined by the tensor product of trivariate Bernstein polynomials. The principle of FFDs is as
follows: the object to be deformed is embedded in a 3D box. Inside this box, a volumetric grid
of points is defined, which links the box to the object (by the trivariate polynomial which defines
the deformation function). This can be written in a matrix form: X = BP, where B is the
deformation matrix ND x NP (N D is the number of points on the discretized superellipsoid and
N P is the number of control points of the grid), P is a matrix N P x 3 which contains coordinates
of the control points and X is a matrix ND x 3 with coordinates of the model points. The box is
then deformed by the displacement of its lattice, and the position of a point of the deformed object

is computed (see [11] for details).

2.2.2 The inverse problem

We need to solve the inverse problem: first compute a displacement field § X between the superel-
lipsoid and the data, and then, after having put the superellipsoid in a 3D box, search for the

deformation 6P of this box which will best minimize the displacement field 6 X:
min | B6P — 6X||? (3)
6P

This is illustrated in figure 1.



Figure 1: From the superellipsoid to the final model. Top left: data. Top right: superellipsoid fit and
initial box of control points. Bottom left: displacement field between data and the superellipsoid.

Bottom right: final model after minimization of the displacement field (see [11] for details).



2.2.3 Iterative algorithm

To represent 3D data with our model, we use an iterative two-step algorithm:

Step 1: Computation of the displacement field between the previous estimation X,

6X, such as: X =X, +6X,

a

and its projection on data X7,

Step 2: Computation of the control points P, 1 by minimization of | BP — X2||?
Computation of the deformed model: X, 11 = BP,

Stop test on the least-squares error || X 41 — X, ||

Py is defined as a uniformly spaced parallelepiped box of control points and X g = B P represents
the set of points of the initial discretized superellipsoid. This algorithm is similar to the formulation

of the B-splines snakes with auxiliary variables, as described in [18].

Size of the FFD || Computation time
2x2x%x2=8 243

I Xx3Ix3=27 244
4x4x4=064 265

Fxbxh=125 429

6 x6x6=216 751

Table 1: Typical computation times (in seconds) with an increasing number of control points of

the FFD for 20 iterations.

In practice, we use boxes of size 5 x 5 x 5 for data composed of about 6,000 points, and the
number of iterations is between 10 and 30. Therefore we get a compression rate of 47 (computed
as (6000 x 3)/(125 x 3+11), where 11 corresponds to the parameters needed for the superellipsoid.
In the following, we will write that the model is defined by 130 points). Table 1 presents typical
computation times of the FFD with 20 iterations and different sizes for the box of control points

(on a DEC Alpha 300). One can get a qualitative idea of the algorithmic complexity from figure 2.

2.2.4 Simultaneous deformation of two surfaces
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Figure 2: Computation time vs. number of control points (number of columns of the matrix B).

An essential feature of this algorithm is that FFD is a volumetric deformation. This means
that several objects can be deformed simultaneously with only one FFD. Using only one model
means that the two surfaces are put in a same box of control points, and the minimization of
equation (3) is done simultaneously on the union of both displacement fields. This shows that our
model can handle the deformation of many connected components at the same time by merging
the respective displacement constraints. This presents no difficulty since we have a 3D box which
defines a really 3D deformation. Moreover, our model gives an interpolation of the 3D deformation
everywhere in the volume between the two surfaces. Figure 3 shows the result of the algorithm for
the reconstruction of the epicardium and the endocardium, first with one FFD for each surface,
and then simultaneously computed with only one FFD (the fact that the two surfaces intersect
each other at the top and may cause some artefacts for the rendering is not important as will be
explained in Section 3.3). In this last case, the unique box of control points is the one previously
computed for the epicardium, thus including the two surfaces. The corresponding approximation
errors are presented in table 2. One can see that using two FFDs for the two surfaces leads to
a better quality of approximation. On the other hand, using only one FFD allows to reduce the
number of parameters by half, yielding a larger compression of the information needed for the

description of the parametric model. It also permits to infer from this single FFD, a deformation
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Separate computation || Simultaneous computation || Precision lost

Epicardium 0.007448 0.008236 10.5 %

Endocardium 0.012838 0.014376 11.9 %

Table 2: Least-square errors || BP — X || between original data and parametric models. Left column:
each model is computed independently. Middle column: the two models are computed with one

FFD. Right column: computation with only one FFD leads to a slight loss of the approximation

precision.

field over the entire space, due to the volumetric formulation of FFDs. In the particular case

of cardiac deformations, it allows estimation of the deformation at any point within the volume

between the epicardium and the endocardium, namely the myocardium. We show in figure 4 the
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Figure 4: Volumetric deformation. FFD previously computed simultaneously from the two isosur-
faces (figure 3) is applied to rigid links between the two superellipsoid models (on the left) and

provides an elastic volumetric deformation of the myocardium (on the right).

effect of the FFD applied to the volume between the two superellipsoids. To visualize this volume
information, we show on the left the segments linking these two surfaces. The FFD computed to

obtain simultaneously the epicardium and the endocardium surfaces also deforms these segments.



3 Segmentation of cardiac images

In order to get sets of 3D points which correspond to the anatomical structure that we want to
track (epicardium and endocardium of the cardiac left ventricle), and therefore fit our model on
these sets of points, we have to segment the original data.

The models were computed on two different kinds of images:

e Nuclear medicine data, the SPECT sequence, with 8 successive time frames during one cardiac

cycle. Each image is a volume of 64 x 64 x 64 voxels.

e X-Ray CT data, the DSR sequence, with 18 successive time frames during one cycle. Each

image is a volume of 98 x 100 x 110 voxels (size of the voxel: 0.926 mm?).

The original 3D images are visualized as a series of 2D cross-sections (transverse slices) in figures 5
and 6. On the DSR data, the ventricular cavity (high grey levels) is clearly shown up but the
outer wall of this cavity does not stand out, thus we will use the DSR sequence to analyze the
deformation of the inner wall of the left ventricle (endocardium). On the SPECT sequence, which
is with high contrast, we will study at the same time the deformation of the inner and outer walls
of the left ventricle (endocardium and epicardium). As one can observe from figures 5 and 6,
the extraction of the endocardium on the DSR image is not a very difficult task, because of the
high contrast between the endocardium and the rest of the image. Concerning the SPECT images,
which are also fairly noisy, a single thresholding will not provide the areas of interest.

We first recall some properties of SPECT and DSR techniques (sections 3.1 and 3.2) and then

detail our specific segmentation algorithm in section 3.3.

3.1 Nuclear medicine data (SPECT)

Nuclear Medicine provides two types of images: 1. PET (Positron Emission Tomography) and
2. SPECT (Single Photon Emission Computed Tomography). These medical imaging modalities
constitute the two different modalities of ECT (Emission-Computed Tomography). ECT has been
widely used in biomedical research and clinical medicine during the last twenty years. ECT dif-
fers fundamentaly from many other medical imaging modalities in that it produces a mapping of
physiological functions as opposed to visualizing anatomical structure. SPECT imaging techniques
employ radioisotopes which decay emitting a single gamma photon. This represents the fundamen-

tal difference between SPECT and PET. A typical transaxial resolution in SPECT ranges from



Figure 5: 3D image of the left ventricle - SPECT image (the order of sections reads from left to

right and from top to bottom and descends through the heart).

10 to 20 mm. Resolution in the axial direction specifies the slice thickness and is determined by
the collimation properties of the detectors; typically the axial resolution ranges from 10 to 20mm.
One can find a complete description of the Nuclear Medicine imaging techniques in the tutorial

article [1].

3.2 X-Ray CT data (DSR)

The images of this time sequence have a very high resolution (98 x 100 x 110 for a voxel size of
0.926 mm?). They were obtained with the Dynamic Spatial Reconstructor (DSR), which is a X-Ray
CT Scanner capable of providing dynamic synchronous volume 3D CT images, with a time step of
1/60 s. X-Ray CT is a medical imaging modality which allows acquisition of a 3D representation
of internal anatomical structures. A complete description of X-Ray imaging techniques can also be
found in the tutorial article [1]. To get these images, a contrast agent has been injected into the

ventricle, enhancing the appearance of the cavity.



Figure 6: 3D image of the left ventricle - DSR image (the order of sections reads from left to right

and from top to bottom and descends through the heart).



3.3 Morphological segmentation

To obtain an accurate and robust segmentation, we must combine thresholding with mathematical
morphology and connected components analysis (as in Hoehne [25]). We first choose a threshold
which grossly separates the ventricle (high values in SPECT and DSR images) from the rest of
the image. The same value is chosen for the whole sequence of images, which makes the algorithm
entirely automatic. Then we choose the largest connected component for each of the resulting 3D
binary images, and perform a morphological closing of order k (a closing of order k consists in a
series of k dilations followed by the same number of erosions [34, 35]). Typically, this number is equal
to 3. This last operation is necessary to bridge small gaps and smooth the overall segmentation.
Finally, the extraction of the isosurfaces from this sequence of images provides the set of 3D points
that we need as input for the following reconstruction and tracking algorithm. However, it has to
be precised that this set is unstructured. This is why getting a representation as we give is an
important contribution.

To understand the complex behavior of the cardiac muscle, we have to recover the deforma-
tions of both the internal and external walls of the myocardium, namely the endocardium and
the epicardium. It is possible to represent the geometry of the complete myocardium by a single
deformable superellipsoid-based model. However, by recovering the large concavity which corre-
sponds to the ventricular cavity, which means a strong displacement constraint, it follows that all
the other constraints are neglicted, thus involving a smoothing effect on the surface model. On the
other hand, the shape of the myocardium looks very much like two deformed concentric ellipsoids,
and it is thus natural to use two models to recover the two cardiac walls.

As we said, the segmentation of the SPECT sequence provides a set of isosurfaces. To get two
separate closed surfaces of the epicardium and endocardium, we use again morphological operations
(closings and logic additions). For this reason, we have artificial caps at the base of the heart (on
top of the figures, for example in figures 11 and 12). This yields to some slight visual artifacts,
because the two surfaces intersect each other at the top, but this effect is minor both on the following
computation of quantitative parameters (cf. section 5) or for the qualitative analysis which is based
mainly on the observation of the remaining part of the surface.

Results of those operations on the dynamic sequence are presented on figures 11 and 13 (one
cross-section over time). For a correct estimation of the quality of those segmentations, we super-

imposed the segmented surface on the image.



Although extracting isosurfaces from the SPECT sequence seems to be a fiddly task, it is made
totally automatic. First, an initial threshold is used to isolate the myocardium. The threshold is
set at 40% of the histogram maximum, similarly to the procedure developed by Pr. Michael Goris
at Stanford for the analysis of SPECT images [22]. From this thresholded image, we obtain an
isosurface which represents the myocardium. It has two components, as seen on figure 11. To get the
two isosurfaces corresponding to the walls of the myocardium, we first apply a morphological closing
which provides the external surface (epicardium), and then, by application of a mask, we erase the

external surface from the myocardium isosurface and get the internal surface (endocardium).

4 Dynamic tracking of the left ventricle

Having extracted 3D points corresponding to the walls of the left ventricle in a time sequence of
images, we show in this section how we use our parametric model of section 2 to make an efficient
tracking of the LV wall in a sequence of 3D images of different modalities.

We present four strategies to use this model to track surfaces in a sequence of 3D images in
section 4.1. To make an efficient comparison between those strategies, we present in this section
error measurements and results computed on a synthetic example: a sequence of parametric surfaces
representing a synthetic heart during a complete cardiac cycle (17 successive time frames), see

figure 7. All the hearts of this sequence were obtained with the following implicit equation:

(G Q@) - (@ =) G) -

with different values for ¢; and ¢o. Actually, a synthetic example is well suited to compare the
theoritical pros and cons of each strategy, and to choose the most accurate one for the analysis of
cardiac motion.

We then present examples on two sequences of 3D medical images in section 4.2. In the following
chapter, we will show how to take advantage of the parametric model to easily compute some
important quantitative parameters which help to characterize cardiac motion, in particular the
variation of volume and wall thickness during a cardiac cycle, the ejection fraction or the twist

component.
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Figure 7: Synthetic beating heart (17 successive time frames). From top to bottom and from left

to right: frame 1, 8, 12, 15.



4.1 Four tracking strategies

Generally deformable models need an initialization which is close enough to the solution. This is
convenient for tracking in medical images since the deformation between two images is small and
the model can start with the solution in the previous image as an initialization for the current one.

Deformable contours have been used for tracking boundaries since their introduction by Kass,
Witkin and Terzopoulos [43]. This was applied to spatial tracking of the ventricle boundary in
successive cross-sections of a 3D MR image in [17], in view of 3D reconstruction from a sequence
of 2D models, and later applied to temporal tracking for ultrasound images in [8].

With our parametric deformable model, the initialization is made automatically through the
initial superquadric fit (see section 2.1), and then refined by the FFD. We studied four different
approaches for tracking which are described in figure 8 and now briefly presented. We computed
for each strategy a global error (|| BP — X||), which consists in projecting each 3D data point onto

the deformed model (see figure 9).

4.1.1 Fitting the model independently to each image

This first approach consists in fitting the deformable model independently to each segmented 3D
image. In this approach, we do not use the continuity of the motion, and the deformation obtained
at time n does not take advantage of the deformation computed at time n — 1. The error curve
labelled 1 in figure 9 show the global errors between the model and the 3D points of the synthetic
sequence. This is clearly the least accurate approach to computing the volumetric properties of the
ventricle. On the other hand, we do not need any previous model information to define the model
at time n, but only the superellipsoid and the FFD.

Following the formulation of section 2.2.3, the model at time n, X,,, can be written:

X = By P,
X9 = By (Py+6Pp)
X = BP
X1 = By (P1+6P7)
X = B, P,

\ X, = B, (P,+6P})



Figure 8: Four tracking strategies to deal with a temporal sequence. 1: Fitting at each time step
a superquadric and deforming it with an FFD (section 4.1.1). 2: Deforming at time step n the
result obtained at time 1 by one additional FFD (section 4.1.2). 3: Deforming at time step n the
result obtained at time n — 1 by one additional FFD (section 4.1.3) 4: Deforming at time step n a

superquadric with a single FFD, initialized from the FFD obtained at time n — 1 (section 4.1.4).
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Figure 9: Four tracking strategies (2). Time evolution of the least square error between the data
(synthetic sequence, see figure 7) and the final model for the 17 frames. The four curves correspond

to the four approaches.



where P; + 6 P; denotes the result of the minimization of |B; P; — X{|| (see section 2.2.3), and

X} denotes the sequence of initial superellipsoids.

4.1.2 Independent representation with a reference deformation

A superellipsoid is computed and deformed by a FFD to fit the surfaces extracted in the first
image. This then acts as a reference surface which is deformed by only one additional FFD, to fit
the surfaces extracted in image n. The error curve is shown in figure 9 by the curve labelled (2).
The approximation is more accurate, being the composition of two FFDs and each image is now
described with only one set of superellipsoid parameters and two FFDs. This technique is thus
independent of the length of the time sequence. The method is a trade-off between the techniques
of section (4.1.1) and section (4.1.3).

As with the previous method, this approach does not provide temporal processing, but the use
of a reference model achieves more accurate solutions.

Following the formulation of section 2.2.3, the model at time n, X,,, can be written:

X = ByP,

Xy = By (Py+6Pp)
X, = B, P,

Xy = B (P1+6P7)
X, = B, P,
Xn1 = B,P,

X, = B;(P,+6P;)

where P; + 6P} denotes the result of the minimization of |B1 P; — X 7| (see section 2.2.3), and

X" denotes the initial superellipsoid at time 0.

4.1.3 Recursive representation

This approach is real temporal tracking. The complete model (superquadric fitting and free-form-
deformation) is applied only to the data of the first image. Then, at time n, the model is obtained
from the previous one by deforming the shape obtained at time n—1 by a new FFD. Therefore, the
surface at time n is obtained from the superellipsoid at time 1 iteratively deformed by a sequence of

n successive FFDs. This provides the advantage of being an increasingly accurate approximation,



but at the expense of a number of parameters increasing linearly with the number of images (the
model at time n is defined by n FFDs). The error curve is shown in figure 9 by the curve labelled
(3).

Following the formulation of section 2.2.3, the model at time n, X,,, can be written:

X = ByP,

Xy = By (Py+6P))
Xy = B.P,

X1 = B;(P1+6P7)
X1 = B; P>
X, 1 = B,P,

X, = B, (P,+6P"

\

where P; + P} denotes the result of the minimization of | B; P; — X¢||.

4.1.4 Recursive representation with a unique deformation

This approach is also real temporal tracking. The difference with the previous method is that only
one FFD is needed to compute all the parametric models in the sequence. More precisely, the
complete model is fitted only to the data of the first image. Then, a unique FFD (which is now
a deformed box of control points) is used with a new displacement field computed between the
previous model and the data of the next image, and so on for the complete sequence. Finally, the
models at any time are defined by only one FFD applied to a single original superellipsoid. The
error curve is shown in figure 9 by the curve labelled (4).

Following the formulation of section 2.2.3, the model at time n, X,,, can be written:
X, =By (Py+6Py+---+6P;_,), (4)

where P; + 6 P; denotes the result of the minimization of || By P; — X?||.

4.1.5 Discussion

From the error curve of figure 9, one can see that the second method is superior to the first one
by reducing and even stabilizing the error values after time frame 2. In addition, methods 3 and

4, which provide a real temporal tracking (this is the reason why these curves are decreasing)
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Figure 10: Four tracking strategies (4). Temporal evolution of the least square error between the
data and the model during the complete sequence, including each model initialization (peak values)

and the following iterations. From left to right and from top to bottom: approaches 1, 2, 3, 4.



, generate comparable errors along the sequence (the third one gives slightly better results but
requires much more parameters). Figure 10 represents the evolution of the error shown in figure 9,
but with all intermediate iterations. Remark that the error curves of method 4 in figure 9 is the
most regular. Moreover, we can notice that method 4 requires the inversion of a linear system of
the form X = BP (by computing the pseudoinverse of the matrix with the SVD) only once, and
is therefore much faster than the others.

For all these reasons, we selected method 4 in the next section to compute the quantitative

volumetric parameters characterizing the deformation of the left ventricle.

4.2 Experimental results on cardiac images

We present in this section results of the tracking algorithm on the cardiac images described in
section 3.

Figure 11 shows the dynamic SPECT sequence on a particular cross-section, with the segmented
and reconstructed surfaces superimposed (see section 3.3). It also shows the reconstruction of these
two surfaces using either one or two models as explained in section 2.2.4. Figure 12 depicts the
same results for the 3D rendering of the surface.

Figure 13 shows the dynamic DSR sequence on a cross-section, first the original image, then
the segmented endocardium surface superimposed (see section 3.3), and also the reconstruction of
this surface with the parametric model. Figure 14 depicts the same result for the 3D rendering of

the surface for three time steps of the sequence.

FFD || Model || Iterations || Frames || Computation time

SPECT || 125 2500 10 8 25

DSR 125 5000 10 18 72

Table 3: Computation times (in minutes) for tracking the complete DSR and SPECT3 sequences
(also number of iterations, number of points on the FFD and the models, and number of time

frames).

We see from these figures that the method provides an accurate tracking of the myocardium
walls, on two different imaging modalities, confirming visually the quantitative results obtained on

the previous synthetic data. Table 3 shows the CPU time for each complete time sequence (on a



Figure 11: Segmentation and representation of the epicardium and the endocardium (external and
internal walls of the ventricle) for a time sequence (3D+T) of the left ventricle during the cardiac
cycle - SPECT image; visualization of a cross-section over time. Top: isosurfaces superimposed on
the image. Middle: reconstruction of the two isosurfaces by two models. Bottom: simultaneous

reconstruction of the two surfaces by one model (see Section 3.3 for details).
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Figure 13: A cross-section over time, during a cardiac cycle (DSR). Top: original image. Middle:

segmentation (see section 3.3 for details). Bottom: reconstruction.
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Figure 14: Time sequence of the endocardium (t= 1, 8, 13). On the left : isosurfaces obtained by
data segmentation defined by 10000 points. On the right : reconstruction by the parametric model
defined by 130 points (DSR). Compression ratio: 77.
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5 Quantitative analysis of left ventricle deformation

The reconstruction and representation of a time sequence of surfaces by a sequence of parametric
models allows to visualize the estimation of the deformation in time. More precisely, the parametric
representation provides a way to determine the motion field on the cardiac walls. This motion field
can then be used to extract some characteristic parameters and give interpretation or diagnosis on
the patient. In the area of cardio-vascular diseases, and especially in the study of cardiac muscle,
the useful parameters for diagnosis, as mentioned in the introduction, are primarily the variation
of the volume and heart wall thickness during a cardiac cycle, the ejection fraction , and the twist
component in the deformation of the ventricle. We explain in this section how we extract those
parameters from the previously described parametric representation of time sequences of cardiac
images. Similar parameters are also obtained in the work of [30] quantifying the left ventricle

deformation.

5.1 Volume evolution

V

ES ED

Figure 15: Typical shape of the temporal evolution of ventricular volume. The curve is divided

into 3 parts: 1. Fast contraction 2. Fast dilation 3. Slow dilation



To evaluate the ejection fraction, we need a way to compute the temporal evolution of the
ventricle cavity volume. We first show how to calculate the volume of a polyedric region bounded
by a mesh of vertices, using the discrete form of the Gauss integral theorem, and then calculate an
explicit form of the volume of a superellipsoid, depending on its parameters.

5.1.1 Volume inside a mesh

Let D be a region of space with bounding surface dD; the unit normal vector n to 9D is drawn

///D Wc{x dy dz = E//(?Ducos(n,a:) s (5)

(and similarly for y and z). Equation 5 holds under very general assumptions: u must be continuous

outwards. Then:

in D and have continuous bounded first partial derivatives; the boundary surface §D must have
continuously varying tangent planes, except at finitely many vertices and edges. From this equation,

we obtain (among others) the following formula:

/_//Ddz'vu://apudsz_//w(u,n) is |

known as the Gauss integral theorem, where div(.) denotes the divergence of a vector field and
(.,.) denotes the scalar product in RR®.

Let O be a reference point. Using this theorem, we can write:

///D div(OM) dz dy dz :,/_ [ (©OMn) a5,

where M is a point on dD. Now, it is obvious that the value of the divergence of the vector field

OM is 3. Therefore, the Gauss integral thereom yields an expression of the volume inside a domain

o= jomn s

Considering an oriented mesh defined by a set of points and a set of facets, the volume inside

D:

the mesh can be written, using the previous formula:

K K
=3V —Z (OM,N) (7)
=1 =1

where K is the number of facets of the mesh.

W =

This expression can be rewritten:

K
Z OG7 Nd) )
i=1

Cr:IH



where Ng and G denote respectively the normal vector and the barycentre of a facet (see appendix A
for details of computation).

We applied this calculation of epicardium and endocardium volumes to the sequences of both
data points and parametric models obtained in the previous sections. Once we have the values of
the volume along a cardiac cycle, we can easily obtain the ejection fraction (calculated precisely

Vd — Ve

as: ————, with Vd volume at dilation (the end of diastole), V¢ volume at contraction (the end

Vd
of systole), see for example [20]. The results presented in figure 16 show that:
e The evolution of the volume has the expected typical shape found in the medical literature
[22] and shown in figure 15. Moreover, the estimation of the ejection fraction on our example

gives a value of 68%, which is in the range of expected values [22, 20].

e The volumes computed with all the data points or the approximation models are almost equal
as seen from the error curve in figure 16. The relative average error along the cycle is 0.42%.
This proves that our model is robust with respect to the volume estimation. Of course, the

ejection fraction is also obtained with a very small relative error (0.19%).

e The volume evolution found for initial superellipsoid models before FFD, have also a very
similar shape, as seen in figure 16. However, there is a size ratio due to the over-estimation of
the volume before the FFD. This ratio is almost constant in time, which makes it possible to
get a good estimate of the ejection fraction directly from the initial model. This proves that
the superellipsoid model provides a good global estimate of the shape. Also, the volume of the
superellipsoid can be obtained analytically from its set of parameters without the previous

discrete approximation (see 5.1.2).

5.1.2 Volume of a superellipsoid

Let S be a superellipsoid surface defined by the following implicit equation:
€

2 2 €1 2

) @
ai az as
Its volume can be explicitly computed by using the following formula:

€1

€2
V=2a1 as a3z €1 62ﬂ(§’ — 61+1)

See appendix B for details of computation.
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Figure 16: Cardiac volumes during the cardiac cycle. Left: volumes of the epicardium (SPECT).
Middle: volumes of the endocardium (SPECT). Right: volumes of the endocardium (DSR). Top:
volumes of the data. Middle: errors between the volumes of the data and the volumes of the

models. Bottom: volumes of the superellipsoid models. Note that the relative average errors along

the cycle are less than 1%.



5.2 Wall thickness

Figure 17: One volume element in the volumetric model of the myocardium.

Another important feature that is useful for the diagnosis is the evolution of the wall thickness
during the cardiac contraction. Computing only one model to recover the deformation of both the
epicardium and the endocardium permits easy calculation of this parameter. Figure 17 represents
the volumetric model of the myocardium and a particular volume element. This element is defined
by two corresponding rectangular elements on each of the two parameterized surfaces (epicardium
and endocardium). The nodes of these rectangles are linked by curvilinear segments that show the
volumetric effect of the FFD (see Section 2.2.4). Figure 18 shows the evolution of the wall thickness
over time for this given volume element. This thickness has been computed as the difference of the
p parameters (one of the cylindrical coordinates, see figure 21) for two parametric points on the
epicardium and the endocardium. Figure 19 represents the volumetric deformation of the volume

element inside the myocardium muscle.

5.3 Trajectories

Listing the successive positions of a parametric point of the deformed surface model along the time
sequence, we obtain the trajectory followed by this point. We assume here that the position of a

point in the next frame is the closest point to the current data. This hypothesis is valid in the case
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Figure 18: Evolution of the wall thickness during the cardiac cycle for one point of the volumetric

model (x axis: time ; y axis: wall thickness).

of small deformations, which means that the time step is not too large. We also assume that the
deformation of a point in the parameterization of the surface corresponds to the deformation of
the material point of the tissue. Of course, some other constraints could be added to get a better
correspondence between the two physical surfaces. In [12, 8, 13, 21], local geometrical properties
based on curvature are used to improve the matching between two curves, surfaces or images in
a context of registration. However, since the deformation is nonrigid, the differential constraints
are not always very significant. We first study in section 5.3.1 an artificial case, where the data
consist in the synthetic sequence previously tracked (see section 4.1) on which a twist has been

added. Then, we present in section 5.3.2 the trajectories that we computed from the previous

cardiac sequences, DSR and SPECT.

5.3.1 Synthetic example

Starting from the synthetic sequence that we previously tracked, we added a twist (from —a on
the apex to +a on the base, with a varying from 0° up to 30°, then back to 0°) on this sequence
and tried to recover the a priori known trajectories using the four tracking strategies. Recovering a

twist motion is a difficult problem, since the displacement of each point has a tangential component
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Figure 19: Deformation of a volume element inside the myocardium during the cardiac cycle (8
time steps). Rows 1 and 3: volume element between the superellipsoid models. Rows 2 and 4:

volume element between the final models, after the volumetric deformation.



which cannot be easily detected. Figure 20 presents the trajectories found with the four strategies
compared to the original ones. One can see that the two temporal tracking methods (3 and 4)
provide results which are close to the original trajectories, and catch the twist component of the
motion, contrary to methods 1 and 2. Remark also that trajectories found with method 4 seem
smoother than the ones found with method 3. This is due to the use of only one FFD to recover
all the sequence.

To quantify the twist component of the motion, once the trajectories have been computed, we
decompose the corresponding displacement vectors in cylindrical coordinates (see figure 21):

2\ (e = vEER

y | = | ¢ = arcos( °

5 (9)

w2+y

The z-axis for the cylindrical representation correspond to the z-axis of inertia of the superellipsoid
model. To measure the twist, we compute the difference of the 6 parameters for the two points that
represent the same parametric point during the contraction. Figure 22 represents the ranges of
this twist, on the original synthetic data and for the models recovered by each of the four tracking
methods. Remark again that the twist component is pretty well recovered with the temporal
tracking methods (3 and 4). The maximum value of & on the models is 27° for method 3 and 26°

for method 4 (to be compared with 30°).

5.3.2 Experimental results

Figures 23 and 24 show the trajectories of the node points between the end of diastole and the end
of systole for the DSR and SPECT data. These are visualized from different viewpoints to better
appreciate the motion. One can see, especially from the upper and lower viewpoints on figure 24,
that our tracking methods catch the characteristic twist component of the motion.  Figure 25
represents the mean values of ¢’ — 0 (in radians) along the different latitudes. One can see that the
twist is in the range 10 - 12 degrees which is the expected range.

The pointwise tracking of the deformation allows an evaluation of the velocity field during the
sequence. The visualization of these displacements by different values, according to their range, on
the surface shows up clearly areas on the ventricle where the deformation is weak (see figure 26).

This visualization could be used by the physician to help localize pathologies like infarcted regions.
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Figure 20: Trajectories on a synthetic example. Top: original trajectories. Bottom: trajectories
computed with strategies 1, 2, 3 and 4. Left column: view from the apex. Middle column: front

view. Right column: view from the base.
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Figure 21: Cylindrical coordinates of two points M and M’, which represent the same parametric

point at the beginning and at the end of the cardiac cycle.

6 Conclusion

We presented a new approach to analyze the deformation of the heart left ventricle with a parametric
model. It is based on a parametric model that gives a compact representation of a set of points in
a 3-D image. We presented four approaches using this model to track efficiently the left ventricle
walls in a sequence of 3D images during a cardiac cycle and compared on synthetic and real data.
The model is able to track simultaneously the endocardium and the epicardium walls, since it is a
volumetric deformation. Experimental results have been shown for automatic shape tracking in a
time sequence of cardiac images.

The reconstruction and representation of a time sequence of surfaces by a sequence of parametric
models has then allowed to infer some characteristic parameters useful to the physician, such as
the variation of the volume and heart wall thickness during a cardiac cycle, the ejection fraction
and the twist component in the deformation of the ventricle.

In some cases, the tracking can be helped by adding hard constraints when there is a prior:
knowledge of the deformation at some reliable anchor points. This is the case in tagged images,
where some tissues are marked and can be tracked after a simple preprocessing [2, 24, 44, 30, 27].

We hope to apply our work to this recent technique of imaging in a the near future.



Figure 22: Twist component estimation on a synthetic example. Top: from original data. From

left to right and from top to bottom: from models obtained using strategies 1, 2, 3 and 4.



Figure 23: Trajectories of points on the model of the endocardium during a cardiac cycle (DSR).

The two surfaces represent the models at end of diastole (dilation) and end of systole (contraction).



Figure 24: Trajectories of points on the model of the epicardium during a cardiac cycle from 2
viewpoints (SPECT). The two surfaces represent the models at end of diastole (dilation) and end

of systole (contraction).

10 20 30 40

Figure 25: Profile of the mean twist during the cardiac cycle along the z-axis (0 and 50 on the x

axis correspond to the positions of the two poles in the parameterization).



Figure 26: Range of the displacements of the points on the model during a cardiac cycle.
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A Calculation of the volume inside a mesh

From equations (6) and (7), considering an oriented mesh defined by a set of points and a set of

facets, the volume inside the mesh can be written:
1 K
=3 > (OM,N) (10)
=1

where K is the number of facets of the mesh.



We have to define the normal vector of a facet. Assuming that the facet is defined by 3 points

A1, A and Aj, the normal vector can be written:
Nig= (A1 — A2) A (A1 — A3) = AL A A + Ag A Ag + Az A Ay,

where (. A .) denotes the vector product. Note that the norm of this normal vector is linked to the
surface S of the facet as follows: || Ny [|[= 2S . One can easily generalize this formula for a facet
defined by a set of points A4;, 1 =1..M:

M-1
Ny= > (AiNAip1) + Ay AN Ay
=1

This expression can be seen as the average of the normal vectors of the decomposition of the facet
into triangular sub-facets.

Let suppose that the mesh is composed of triangular facets defined by A;, A2 and Az. The
volume V; of the tetrahedron OA1A5Aj3 is:

where H is the height. Let O be the origin and G be the barycentre of a facet. Then:

+, N,
H— (OC7 d)
| Na |
And therefore:
OG, N,

This last expression is still true for a facet defined by M points. Finally, equation 10 can be

rewritten:
K

Z (OG, Nd)
=1

V=

S| =

B Calcultion of the volume of a superellipsoid

Let S be a superellipsoid surface defined by the following implicit equation:

€2



An explicit parameterization of S is given by:

x = ajcosn cos?w
iy i
o —3<n<3
Yy = ao cosy sin“?w
—nm<w<T
z = agsinnp

Due to the symmetry of the surface in relation to the 3 axes of the coordinate system, the compu-

tation of the volume inside S can be made as follows:

ra3
V=2 / A(z) dz, (12)
0
where A(z) is the area of a slice among the z-axis. For n = 0, the implicit equation of the
corresponding slice is:
2 2
()2 + (L) =1
al an
This leads to:
2
ai aj T pp—
A(0) :4a2/ y(a:)dac:4a2/ M- (2)e)2 do
J0 J0 a1
€2
Setting: X = (i) 2 | it becomes:
as

€9
9

A(O) = 2aj as €y ﬂ(j 652 + 1),

where (3(x,y) denotes the Beta function (Euler’s integral of the first kind):
1
Blayy) = [ @ -t
J0

Finally, to calculate the volume inside S using equation 12, we have to write a; and as as functions

of z. From the implicit definition of S (Equation 11), we deduce:

2« 2«
z = z =
a1(z) = a1l = (—)€1] 2, aa(z) = a2[l — (—)€1] 2
as as
Therefore:
as
V=2 / 2 e ﬂ(e—Q, 2 1) a1(z) as(z) dz
0 2 2
2
Setting: Z = (i)fl, it becomes:
as
€ € €
V=2a1a2a3¢€ 625(52> 52 1) 5(51, €1+ 1)

Note that for a sphere (¢ = €2 = 1, a; = a2 = a3 = R), the previous formula gives:



Content of the video

The video consists in 6 sequences:

. Nuclear medicine data (SPECT image). The first image of the sequence is visualized as a

series of 2D cross-sections (transverse slices). See section 3 for details.

. Segmentation of the SPECT sequence. See section 3 for details.

. Tracking of the epicardium (mesh) and the endocardium (rendered surface) in the SPECT

sequence; on the left, the segmented surfaces, on the right, the reconstructed models. See

sections 3 and 4.2 for details.

. On the left, trajectories of the node points, on the right, velocity field during the SPECT

sequence. See section 5.3.2 for details.

. Recovery of a twist motion on a synthetic example (1). Data with trajectories. See sec-

tion 5.3.1 for details.

. Recovery of a twist motion on a synthetic example (2). Trajectories on the data and on the

models computed with tracking method 4. See section 5.3.1 for details.
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