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Abstract
We present a new approach to analyse the deformation of the left ventricle of the heart bas
parametric model that gives a compact representation of a set of points in a 3-D image. We p
a strategy for tracking surfaces in a sequence of 3-D cardiac images. Following tracking, w
infer quantitative parameters which characterize: left ventricle motion, volume of left vent
ejection fraction, amplitude and twist component of cardiac motion. We explain the compu
of these parameters using our model. Experimental results are shown in time sequences
modalities of medical images, nuclear medicine and X-ray computed tomography (CT).
sequences presenting these results are on the CD-ROM.
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1. INTRODUCTION

The analysis of cardiac deformations has given rise to a la
amount of research in medical image understanding. Inde
cardiovascular diseases are the primary cause of mortalit
developed countries. Various imaging techniques (Acharyaet
al., 1995) allow the acquisition of dynamic sequences of 3
images (3-D+T) during a complete cardiac cycle (contracti
and dilation). These images are well-suited to studying
behaviour of the cardiac system since they visualize h
the heart wall deforms. Processing these images op
numerous fields of applications, such as detection and anal
of pathologies.

Advanced techniques of 3-D imagery, such as nucle
medicine and X-ray computed tomography (CT) provide ev
increasing resolution in space and time. Consequently,
data available to the radiologist are becoming larger. Howev
to establish a reliable and fast diagnosis, the physic
needs models that are defined by only a small number
characteristic quantities. A parametric deformable mod
allows the representation of a dynamic set of points by
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reasonable number of useful parameters, as we shall see be
Since the left ventricle motion and deformation is an

indication of the health of the heart, their study has bee
addressed by a number of research groups.

• The left ventricle reconstruction was done with generi
deformable surface models (Ayacheet al., 1989; Cohen,
1991; Leitner and Cinquin, 1991; Cohenet al., 1992b;
Cohen and Cohen, 1993; Ayacheet al., 1994) but
also with surface models dedicated to the left ventricl
shape (Duncanet al., 1991b; Amini and Duncan, 1992;
Clarysseet al., 1995).

• The left ventricle tracking was also studied with generi
deformable surface models (Pentland and Horowitz
1991; Ayacheet al., 1992; McInerney and Terzopoulos,
1995) and with the help of curvature information (Amini
et al., 1991; Duncanet al., 1991a; Cohenet al., 1992a;
Fribouletet al., 1993; Benayounet al., 1994; Benayoun
et al., 1995). Four dimensional models have bee
proposed by Shiet al. (1994) and Nastar and Ayache
(1996) and the exploitation of temporal constraints wa
studied by Meyeret al. (1995) and McEachenet al.
(1995).
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• Finally, the extraction of parameters which capture t
overall deformation was presented by Duncanet al.
(1991a), Shiet al. (1995), Benayounet al. (1995) and
Nastar and Ayache (1996).

• In some images, some sparse ‘anchor points’ can
produced within the image to help the tracking proce
This the case of MRI-SPAMM images, and a number
studies take advantage of their properties (Aminiet al.,
1994; Guttmanet al. 1994; Younget al., 1994; Kumar
and Goldgof, 1994; Parket al., 1996).

In a previous article (Bardinetet al., 1996a), we introduced
a parametric deformable model based on a superquadri
followed by a free form deformation (FFD). The advantag
of parametric deformable models like superquadrics is
small number of parameters needed to describe a sh
combined with a better robustness in the presence of no
or sparse data. Also, at the expense of a reasonable num
of additional parameters, FFDs provide a close fit and
volumetric deformation estimation.

In the present article, we first give a summary of our se
mentation algorithm, specific to cardiac images, in Section
In Section 3, we briefly summarize the results of Bardinetet
al. (1996a) on the parametric model, necessary for a go
understanding of this article. In Section 4, we present
approach to track surfaces with this model in a sequence
3-D images, and give experimental results for tracking t
deformation of the left ventricle in two different kinds o
e

e
.

f

3-D medical images. In Section 5, we explain how to inf
from the parametric reconstruction, a number of quantitat
parameters useful to characterize the left ventricle moti
We demonstrate the feasibility of the approach on two kin
of temporal sequences of 3-D images. We believe that
results are sufficiently promising to initiate a thorough clinic
validation.
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2. SEGMENTATION OF CARDIAC IMAGES

We studied two different kinds of images.

• Nuclear medicine data, the SPECT sequence, with e
successive time frames during one cardiac cycle. E
image is a volume of 64×64×64 voxels (volume of the
voxel: 1.446 mm3), describing a human heart.
• X-ray CT data, the DSR (dynamic spatial reconstruct

sequence, with 18 successive time frames during
cycle. Each image is a volume of 98×100×110 voxels
(volume of the voxel: 0.926 mm3), describing a canine
heart.

The original 3-D images are visualized as a series of 2
cross-sections in Figures 1 and 3.

We first have to extract a set of points belonging to t
endocardium (the inner surface of the left ventricle) and
to the epicardium (the outer surface of the left ventricl
These points will be then approximated by a deforma
superellipsoid in the next section. In DSR images, a sin
Figure 1. 3-D image of the left ventricle - SPECT image (the order of sections reads from left to right and from top to bottom). Dy
presentation in the video.
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threshold is sufficient to isolate the left ventricle cavity, an
therefore extract the endocardium. On the other hand,
epicardium is not sufficiently well-contrasted to be robus
extracted. In the SPECT images, it is possible to extr
grossly the epicardium and endocardium surfaces with
threshold based on the histogram of the intensities (Go
and Bertille, 1992). Then, with the help of mathematic
morphology operators (Serra, 1982; H¨ohne and Hanson,
1992), we automatically smooth and isolate both surfaces

Therefore, in the following, we assume that we ha
extracted the points belonging respectively either to the en
cardium (DSR and SPECT images) and/or to the epicardi
(SPECT images only). Although extracting surfaces fro
the SPECT sequence seems to be a difficult task, let
point out that we ran experiments successfully on six SPE
sequences with the same segmentation process. Resul
the segmentation processes on the two data sequence
presented in Figures 2 and 4 for data at time step 1, and
Figures 6 and 8 for one cross-section over time during
sequence. For a correct estimation of the quality of tho
segmentations, we superimposed the segmented surface(
the image.
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3. A PARAMETRIC MODEL TO FIT 3-D DATA

In this section, we briefly describe the deformable model th
we use to represent the inner and outer surfaces of the
ventricle [a detailed presentation is in Bardinetet al. (1996a)].
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We refine our superquadric model using a parametr
deformation. More precisely, for a given set of 3-D points
(we have seen in the previous section how get from the 3-
images of the heart a number of 3-D points belonging to th
inner or outer surfaces of the left ventricle), we first fit 3-D dat
with a superellipsoid, and then refine this crude approximatio
using free form deformations (FFDs).

3.1. Fitting 3-D data with superquadrics
Superquadric shapes have been widely used in vision a
graphics. In computer vision, their first use is due to Pentlan
(1987), followed by Solina and Bajcsy (1990) who used
superellipsoids to approximate 3-D objects. The goal o
the algorithm is to find a set of parameters such that th
superellipsoid best fits the set of data points. Superquadr
form a family of implicit surfaces obtained by extension o
conventional quadrics. Superellipsoids centered at the orig
and with principal axes corresponding to the reference ax
are defined by the implicit equation:(( x

a1

)2/ε2

+
(

y

a2

)2/ε2
)ε2/ε1

+
(

z

a3

)2/ε1

ε1/2

= 1, (1)

which involves five independent parameters. To genera
a superellipsoid centered at an arbitrary location and wi
an arbitrary orientation of its principal axes, we must ad
the six parameters of a rigid displacement, which makes 1
parameters required for an arbitrary superellipsoid. Suppo
Figure 2. Segmentation of the epicardium and the endocardium (external and internal surfaces of the left ventricle) on the SPECT ima
order of sections reads from left to right and from top to bottom). Dynamic presentation in the video.
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Figure 3. 3-D image of the left ventricle - DSR image (the order of sections reads from left to right and from top to bottom).
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ft to
Figure 4. Segmentation of the endocardium (internal surface of the left ventricle) on the DSR image (the order of sections reads from le
right and from top to bottom).
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that the data we want to fit with the superellipsoid are a
of 3-D points(xi , yi , zi ), i = 1, · · · , N. Since a point on the
surface of the superellipsoid satisfiesF = 1, whereF is the
function defined by Equation (1), we find the minimum of th
following energy:

E(A) =
N∑

i=1

[1− F(xi , yi , zi , A)]2 , (2)

whereA denotes the set of 11 parameters needed to desc
the superellipsoid [see Bardinetet al. (1996a) for details abou
the minimization technique used and also for a geome
interpretation of this energy].

3.2. Refinement with free form deformations
We now refine this parametric representation of the 3-D da
using a global volumetric deformation called FFD. This is
tool devoted to the deformation of solid geometric models i
free-form manner [see Sederberg and Parry (1986)]. The m
interest of FFDs is that the resulting deformation of the obje
although potentially complex, is defined by a small numb
of points. This characteristic feature allows us to repres
voluminous 3-D data by a model defined by a relatively sm
number of parameters (11 parameters + 125 points).

3.2.1. Definition of FFDs
FFDs were introduced by Sederberg and Parry (1986)
computer graphics and have been used to solve matc
problems by Szeliski and Lavall´ee (1994). An FFD is a
mapping fromR3 to R3, defined by the tensor product o
trivariate Bernstein polynomials. The principle of FFDs is
follows: the object to be deformed is embedded in a 3-D b
Inside this box, a volumetric grid of points is defined, whic
links the box to the object (by the trivariate polynomial whic
defines the deformation function):

X =
l∑

i=0

m∑
j=0

n∑
k=0

Ci
l C

j
mCk

n(1− s)l−i si

×(1− t)m− j t j (1− u)n−kukPi jk , (3)

where Pi jk denotes the volumetric grid of control points
(s, t,u) denotes the local coordinates of the object points
a frame defined by the box of control points and(l ,m,n)
denotes the degrees of the Bernstein polynomials. This ca
written in a matrix form:X = BP, whereB is the deformation
matrix Nd×Np (Nd is the number of points on the discretize
superellipsoid andNp is the number of control points of the
grid), P is a matrixNp × 3 which contains the coordinate
of the control points andX is a matrix Nd × 3 with the
coordinates of the model points. The box is then deformed
the displacement of its lattice, and the position of a point
,

n
,

t

g

.

e

3.2.2. The inverse problem
We need to solve the inverse problem: first compute a init
displacement fieldδX between the superellipsoid and the da
and then, after having put the superellipsoid in a 3-D bo
search for the deformationδP of this box which will best
minimize the displacement fieldδX:

min
δP
‖BδP− δX‖2 (4)

This is illustrated in Figure 5.
In practice, we use an iterative two-step algorithm [s

Bardinetet al. (1996a) for details], similar to the formulation
of B-spline snakes with auxiliary variables, as described
Cohen (1995).

The current displacement fieldδX is computed after a
set of matches is established between the image data po
and the current position of the model (which is a deform
superellipsoid after the first iteration). In our implementatio
a data point is matched with the closest model point, but oth
strategies, involving for instance the local curvature, cou
be successfully applied (Duncanet al., 1991a; Aminiet al.,
1991; Cohenet al., 1992a; Ayacheet al., 1992; Shiet al., 1994;
Benayounet al., 1994; Feldmar and Ayache, 1994; Benayou
et al., 1995).

We use boxes of size 5× 5× 5 for data sets of∼6,000
points, and the number of iterations is between 10 a
30. Therefore we get an average compression ratio of
[computed as(6000× 3)/(125× 3 + 11), where 11 is the
number of parameters needed for the superellipsoid (comp
with Subsection 3.1)]. This number of parameters provid
a reasonable trade-off between approximation quality a
computation time. Table 1 presents typical computation tim
of the FFD with 20 iterations and different sizes for the bo
of control points (on a DEC Alpha 300).

3.2.3. Simultaneous deformation of two surfaces
An essential feature of this algorithm is that FFD is
volumetric deformation. This means that several objects c
t

e

Table 1. Typical computation times with an increasing
number of control points of the FFD for 20 iterations.

Size of the FFD Computation time (s)

2× 2× 2= 8 243
3× 3× 3= 27 244
4× 4× 4= 64 265
5× 5× 5= 125 429
6× 6× 6= 216 751

the deformed object is computed [see Bardinetet al. (1996a)
for details].
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be simultaneously deformed with only one FFD. Using on
one model means that the two surfaces are put in a same
of control points and the minimization of Equation (4) is don
simultaneously based on the union of the two displacem
fields.

Figure 5 shows the result of the algorithm for the reco
struction of the epicardium and the endocardium from t
SPECT data with two superellipsoids deformed first by tw
x

t

independent FFDs, and then by a single common FFD (in t
last case, the unique box of control points is the largest o
i.e. the one computed for the epicardium). The correspond
approximation errors for the SPECT data, computed as
averages of errors between the data and the final mo
(projecting each 3-D data point onto the deformed mode
are presented in Table 2. One can see that using two FF
for the two surfaces leads to a better quality of approximatio
Figure 5. Deformation of two surfaces. Top left: data: epicardium (mesh) and endocardium (rendered surface) described respectiv
4500 and 1500 points. Top right: two fitted superellipsoids and the two initial boxes of control points. Bottom left: final models ob
with two FFDs (each defined by 11 parameters + 125 points). Compression ratio: 23. Bottom right: simultaneous deformation of
superellipsoids with only one FFD (defined by 11 parameters + 125 points). Compression ratio: 46.
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On the other hand, using only one FFD allows to divide t
number of parameters by two, yielding a larger compress
of the information needed for the description of the parame
model.
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4. TRACKING OF THE LEFT VENTRICLE

Having extracted 3-D points corresponding to the wall of t
left ventricle in a time sequence of images, we show in th
section how we use our parametric model to make an effici
tracking of the LV wall in a sequence of 3-D images.

4.1. Tracking strategy: recursive representation with a
unique deformation

Our strategy is the following: the complete model (superell
soid + FFD) is fitted only to the surfaces of the left ventric
extracted in the first image. Then, a unique FFD (which
now a deformed box of control points) is used with a ne
displacement field computed between the previous model
the data of the next image, and so on for the complete seque
Finally, the models at any time are defined by only one FF
applied to a single original superellipsoid.

Following the formulation of Subsection 3.2.2, the mod
at timen, Xn, can be written:

Xn = B0 (P0+ δP∗0 + · · · + δP∗n−1) , (5)

whereδP∗i is the increment in the position of control point
at iterationi which minimizes the error defined in Subsec
tion 3.2.2 between the deformed model and the extrac
surface(s) of the left ventricle.

One can notice that this strategy requires the invers
of a linear system of the formX = BP only once [by
computing the pseudoinverse of the matrix with a singu
value decomposition, see Bardinetet al. (1996a) for details],
thus tracking of a sequence is quite efficient.

4.2. Experimental results on cardiac images
We present in this section results of the tracking algorithm
the cardiac images described in Section 2.

Figure 6 shows the dynamic SPECT sequence on
particular cross-section (z = 32), with the segmented and
t

reconstructed surfaces superimposed (see Section 2). It a
shows the reconstruction of these two surfaces using eith
one or two models as explained in Subsection 3.2.3. Figure
presents the same results for the 3-D rendering of the surfa

Figure 8 shows the dynamic DSR sequence on a cro
section, first the original image, then the segmented end
cardium surface superimposed (see Section 2) and also
reconstruction of this surface with the parametric mode
Figure 9 depicts the same result for the 3-D rendering of t
surface for three time steps of the sequence. Table 3 shows
CPU time for each complete time sequence (on a DEC Alp
300).

All these results are also presented in the video attached
this article (see Appendix C).
d
e.

d

5. QUANTITATIVE ANALYSIS OF LEFT
VENTRICLE DEFORMATION

The reconstruction and representation of a time sequen
of surfaces by a sequence of parametric models allows
visualize the estimation of the deformation through time
More precisely, the parametric representation provides a w
to determine the motion field on the cardiac wall. This motio
field can then be used to extract some characteristic parame
useful for the diagnosis.

Let us here point out that these parameters are deduced fr
a geometrical representation of the left ventricle motion. Thu
the question we have to keep in mind is the following: wha
kind of parameters are of interest for the physician? The
are parameters which he already uses for diagnosis, and h
familiar with, so that he can assess the practicability of th
model. In the area of cardio-vascular diseases, and especi
in the study of the cardiac muscle, an important parame
is the volume of the left ventricle, as well as its tempora
evolution, which permits to compute the ejection fractio
(ratio characterizing the ‘pumping’ nature of the heart). Th
is the content of Subsection 5.1.

We also present other types of parameters. These ones
not yet used for diagnosis, and a complete clinical validatio
is clearly required to assess their usefulness.

In Subsection 5.2, we present parameters that can
deduced from the trajectories of parametric points of the mod
Table 2. Averages of errors between original data and parametric models for SPECT data (in mm).

Separate computation Simultaneous computation Precision loss %

Epicardium 0.097590 0.102623 5.2
Endocardium 0.128125 0.135583 5.8

Left column, each model is computed independently; middle column, the two models are computed with one FFD; right column, computation with only o
leads to a slight loss of the approximation precision.
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during
. Middle:
soids (1
Figure 6. Segmentation and representation of the epicardium and the endocardium for a time sequence (3-D+T) of the left ventricle
the cardiac cycle - SPECT image; visualization of a cross-section over time. Top: segmented surfaces superimposed on the image
approximation by 2 independent deformable superellipsoids (2 FFDs). Bottom: approximation by 2 coupled deformable superellip
FFD).
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Figure 7. Time sequence of the epicardium (mesh) and the endocardium (rendered surface) (t= 1, 3, 5) SPECT images. Left: isosurfaces
obtained by data segmentation (4500+ 1500 points). Right: representation by two parametric models (2× (11 parameters+ 125 points)).
Dynamic presentation in the video.
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with a
Figure 8. A cross-section over time, during a cardiac cycle (DSR). Top: original image. Middle: segmentation. Bottom: reconstruction
deformable superellipsoid involving 11 parameters + 125 points.
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ht:
Figure 9. Time sequence of the endocardium (t= 1, 8, 13) DSR images. Left: isosurfaces obtained by segmentation (10000 points). Rig
reconstruction by the parametric model defined by 11 parameters + 125 points (DSR). Compression ratio: 77.
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during a cardiac cycle: amplitude and twist component of
motion, temporal evolution of the left ventricle wall thicknes

5.1. Volume evolution
To evaluate the ejection fraction, we need to compute
temporal evolution of the left ventricle volume. We firs
calculate an explicit form of the volume of a superellipso
depending on its parameters, and then show how to calcu
the volume of a polyhedric region bounded by a mesh
vertices, using the discrete form of the Gauss integral theor

5.1.1. Volume of a superellipsoid
Let S be a superellipsoid surface defined by the followin
implicit equation:((

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1 = 1. (6)

Its volume can be explicitly computed by using the followin
formula:

V = 2 a1 a2 a3 ε1 ε2β
(ε2

2
,
ε2

2
+ 1

)
β
(ε1

2
, ε1+ 1

)
(see Appendix A for details).

5.1.2. Volume inside a mesh
Considering an oriented mesh defined by a set of points a
set of faces, the volume inside the mesh can be written:

V =
K∑

i=1

Vi = 1

3

K∑
i=1

(O M, N) Si , (7)

whereK is the number of faces of the mesh,O is a reference
point, M is a point on the mesh andN is the normal vector at
M , pointing outwards.

This expression can be rewritten:

V = 1

6

K∑
i=1

(OG, Nd) ,

whereNd andG denote respectively the normal vector an
the barycenter of a face (see Appendix B for details).
a

5.1.3. Discussion
We applied this calculation of epicardium and endocardiu
volumes to the sequences of both data points and parame
models obtained in the previous sections. Once we ha
computed the values of the volume along a cardiac cycle, w
can easily obtain the ejection fraction [calculated precisely a
Vd−Vc

Vd , with Vd volume at dilation (the end of diastole),Vc

volume at contraction (the end of systole), see for examp
Daviset al. (1993)]. The results presented in Figure 11 sho
the following.

• The evolution of the volume has the expected typica
shape found in the medical literature (Goris and Bretille
1992) and shown in Figure 10. Moreover, the estimatio
of the ejection fraction on our example gives a value o
68%, which is in the range of expected values (Goris an
Bretille, 1992; Daviset al., 1993).
• The volumes computed on the data points or on th

deformable superellipsoids are almost equal. The relati
average absolute error along the cycle is 0.42%. This
proves that our model is robust with respect to th
volume estimation. Of course, the ejection fraction i
also obtained with a very small relative error (0.19%).
• The volume evolution found for initial superellipsoid

models before FFD, has also a very similar shape,
seen in Figure 11. However, there is a size ratio due
e

te
f
.

Figure 10. Typical shape of the temporal evolution of ventricular
volume. The curve is divided into 3 parts: 1. Fast contraction
Fast dilation 3. Slow dilation.
Table 3. Tracking the complete DSR and SPECT sequences: number of points (FFD and model), number of iterations, n
of time frames and computation times.

FFD Model Iterations Frames Computation time (min)

SPECT 125 2500 10 8 25
DSR 125 5000 10 18 72
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the over-estimation of the volume before the FFD. Th
ratio is almost constant through time, which makes
possible to get a good estimate of the ejection fracti
directly from the initial model. This proves that th
superellipsoid model provides a good global estima
of the shape. Also, the volume of the superellipso
can be obtained analytically from its set of paramete
without the previous discrete approximation (see Su
section 5.1.1).
-

5.2. Trajectories
Listing the successive positions of a parametric point of t
deformed surface model along the time sequence, we ob
the trajectory followed by this point.

5.2.1. Decomposition into cylindrical coordinates
The decomposition of the model points trajectories into cyli
drical coordinates (see Figure 12) will allow us to compu
two interesting parameters: twist component of the motio
Figure 11. Cardiac volumes during the cardiac cycle. Left: volumes of the epicardium (SPECT). Middle: volumes of the endocardium (SPE
Right: volumes of the endocardium (DSR). Top row: volumes computed on the data points. Middle row: volumes of the superellips
Bottom row: volumes of the deformable superellipsoids. Note that the relative average absolute errors between the volumes of the defo
superellipsoids and the segmented data along the cycle are less than 1%.
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and temporal evolution of the wall thickness. x
y
z

→

ρ =

√
x2+ y2

θ = arcos

(
x√

x2+ y2

)
z = z

 (8)

We will consider, as frame of reference of the cylindric
representation, the frame of reference of the superellip
fitted to the segmented data at the first step of the t
sequence.
d

To measure the twist, we compute the difference of th
θ parameters for the two points that represent the sam
parametric point during the contraction.

The wall thickness is computed as the difference of theρ

parameters for two corresponding parametric points on t
epicardium and the endocardium [correspondences can
established by different criteria: in a preliminary study, w
used the parametric values on the original superellipsoid
before the application of FFDs, see Bardinetet al., (1996b)
for details, but this will be improved in a future work].
M

M’

,

x

y

   z

 ρ

,
 ρ

θ
θ

Figure 12. Cylindrical coordinates of two pointsM andM ′, which represent the same parametric point at the begining and at the end of
cardiac cycle.
Figure 13. Trajectories on a synthetic example. Top: original trajectories. Bottom: estimated trajectories. Left column: view from the
Middle column: front view. Right column: view from the base. Dynamic presentation in the video.
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5.2.2. Synthetic example

To get a precise idea of the capability of the model
recovering a twist motion, we studied a synthetic example

First, we define a sequence of parametric surfaces re
senting a synthetic heart during a complete cardiac cycle
successive time frames). All the models of this sequence
e-
7
e

obtained with the following implicit equation:((
x

a1

)2

+
(

y

a2

)2

+
(

z

a3

)2
)3

−
(

c1

(
x

a1

)2

+ c2

(
y

a2

)2
)(

z

a3

)3

= 1,
Figure 14. Twist component estimation on a synthetic example. Left: actual values. Right: estimated values (see tex
Figure 16. Amplitude of motion computed at each model point during a cardiac contraction (SPECT). Dynamic presentation in the
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wherea1 = 10,a2 = 12,a3 = 14 andc1 andc2 are periodic
temporal functions to simulate a gross beating motion (a m
sophisticated model would have included a translation of
origin and a rotation of the principal axes). The comple
sequence is computed with the following 17 values ofc1: 3.3,
2.9, 2.5, 2.3, 2.1, 1.9, 1.7, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7,
3.1, 3.3 (same values forc2).

Starting from this sequence, we add a global axial tw
around the z-axis of the models, as defined by Barr (1984

θ = f (z)
Cθ = cos(θ), Sθ = sin(θ) X = xCθ − ySθ

Y = x Sθ + yCθ
Z = z

f is defined as follows: the angleθ varies linearly fromα on
the apex to−α on the base, withα varying along the sequenc
from 0o up to 30o, then back to 0o. A very recent work (Wakes
et al., 1996) presents a cardiac motion simulator, which co
yield a more sophisticated synthetic example.

We then try to recover the known trajectories using o
tracking strategy. Recovering a twist motion is a difficu
problem, since the displacement of each point has a tange
component which cannot be easily detected. Figure
presents the recovered trajectories compared with the orig
ones.
e
e

9,

t

d
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One can see (and this is particularly visible in the attach
video) that the tracking method provides results which a
close to the original trajectories, and catch the twist compon
of themotion. This is probably due to the discrete nature o
the synthetic example, which forces the ‘closest’ match on t
second surface to include a tangential component. With r
data, either tags or curvature attributes would be required
obtain a similar result.

Figure 14 represents the values of this twist, where a colo
has been associated to the twist value for each model po
on the original synthetic data and for the models recovered
the tracking method.

5.2.3. Real images
Figure 15 show the estimated trajectories on the epicardi
surface during the systolic stage for the SPECT data. Th
are visualized from different viewpoints to appreciate bett
the motion, and also in the video attached to this article (s
Appendix C).

The pointwise tracking of the deformation allows a
evaluation of the motion field during the sequence. Th
visualization of these displacements using different colo
values on the surface clearly shows those areas on the vent
where the displacements are small (see Figure 16).
Figure 15. Trajectories of points on the model of the epicardium during the systolic stage (contraction, during three successive time
from two viewpoints (SPECT). The two surfaces represent the deformable superellipsoids respectively at the beginning and end o
Dynamic presentation in the video.
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6. CONCLUSION

We have presented a new approach to analyse the deforma
of the heart left ventricle with a parametric model. It is base
on a parametric model that gives a compact representation
a set of points in a 3-D image. We have presented a meth
which efficiently tracks the left ventricle wall in a sequence
of 3-D images during a cardiac cycle using this model an
studied synthetic and real data. The model is able to tra
simultaneously the endocardium and the epicardium, since
is a volumetric deformation.

It is then possible to compute the variation of the volum
duringa cardiac cycle andthe ejection fraction. We showed on
a synthetic example that it might also be possible to estima
the twist component in the deformation of the ventricle
provided that some local features allow for the recovery o
the tangential component of the motion.

Future directions will include the clinical evaluation of this
work, and also its adaptation to MRI-SPAMM images wher
we could use our model to track and interpolate a smoo
deformation between tagged points.
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,
APPENDICES

A. CALCULATION OF THE VOLUME OF A
SUPERELLIPSOID

Let S be a superellipsoid surface defined by the followin
implicit equation:((

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1 = 1. (9)

An explicit parameterization ofS is given by: x = a1 cosε1 η cosε2 ω

y = a2 cosε1 η sinε2 ω

z = a3 sinε1 η

,
−π

2 ≤ η ≤ π
2−π ≤ ω < π

Due to the symmetry of the surface in relation to the 3 axe
of the coordinate system, the computation of the volume insi
Scan be made as follows:

V = 2
∫ a3

0
A(z) dz, (10)
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whereA(z) is the area of a slice among the z-axis. Forη = 0,
the implicit equation of the corresponding slice is:

(
x

a1

) 2
ε2 +

(
y

a2

) 2
ε2 = 1

This leads to:

A(0) = 4 a2

∫ a1

0
y(x) dx = 4 a2

∫ a1

0

(
1−

(
x

a1

) 2
ε2

) ε2
2

dx

Setting: X =
(

x
a2

) ε2
2
, it becomes:

A(0) = 2 a1 a2 ε2 β
(ε2

2
,
ε2

2
+ 1

)
,

whereβ(x, y) denotes the Beta function (Euler’s integral o
the first kind):

β(x, y) =
∫ 1

0
t x−1(1− t)y−1 dt

Finally, to calculate the volume insideS using Equation 10,
we have to writea1 anda2 as functions ofz. From the implicit
definition ofS (Equation 9), we deduce:

a1(z) = a1

(
1−

(
z

a3

) 2
ε1

) ε1
2

,

a2(z) = a2

(
1−

(
z

a3

) 2
ε1

) ε1
2

Therefore:

V = 2
∫ a3

0
2 ε2 β

(ε2

2
,
ε2

2
+ 1

)
a1(z) a2(z) dz

Setting: Z =
(

z

a3

) 2
ε1

, it becomes:

V = 2 a1 a2 a3 ε1 ε2β
(ε2

2
,
ε2

2
+ 1

)
β
(ε1

2
, ε1+ 1

)
Note that for a sphere (ε1 = ε2 = 1, a1 = a2 = a3 = R), the
previous formula gives:

V = 2 R3 β

(
1

2
,

3

2

)
β

(
1

2
, 2

)
= 4

3
π R3
B. CALCULATION OF THE VOLUME INSIDE A
MESH

Let D be a region of space with bounding surface∂D; the unit
normal vectorn to ∂D is drawn outwards. Then:∫ ∫ ∫

D

∂u(x, y, z)

∂x
dx dy dz=

∫ ∫
∂D

u cos(n, x) dS

(11)
(and similarly for y and z). Equation 11 holds under very
general assumptions:u must be continuous inD and have
continuous bounded firstpartial derivatives; the boundary
surface∂D must have continuously varying tangent planes
except at finitely many vertices and edges. From this equatio
we obtain (among others) the following formula:∫ ∫ ∫

D
di v u =

∫ ∫
∂D

u dS=
∫ ∫

∂D
(u,n) dS ,

known as the Gauss integral theorem, wheredi v(.) denotes
the divergence of a vector field and(., .) denotes the scalar
product inR3.

Let O be a reference point. Using this theorem, we ca
write:∫ ∫ ∫

D
di v(O M) dx dy dz=

∫ ∫
∂D
(O M,n) dS,

whereM is a point on∂D. Now, it is obvious that the value
of the divergence of the vector fieldO M is 3. Therefore, the
Gauss integral thereom yields an expression of the volum
inside a domainD:

V =
∫ ∫ ∫

D
dV = 1

3

∫ ∫
∂D
(O M,n) dS (12)

Considering an oriented mesh defined by a set of poin
and a set of faces, the volume inside the mesh can be writt
using the previous formula:

V =
K∑

i=1

Vi = 1

3

K∑
i=1

(O M, N) Si , (13)

whereK is the number of faces of the mesh.
We now have to define the normal vector of a face

Assuming that the face is defined by three pointsA1, A2 and
A3, the normal vector can be written:

Nd = (A1−A2)∧(A1−A3) = A1∧A2+A2∧A3+A3∧A1,

where(. ∧ .) denotes the vector product. Note that the norm
of this normal vector is linked to the surfaceS of the face as
follows: ‖ Nd ‖= 2S. One can easily generalize this formula
for a face defined by a set of pointsAi , i = 1..M :

Nd =
M−1∑
i=1

(Ai ∧ Ai+1)+ AM ∧ A1
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This expression can be seen as the average of the norm
vectors of the decomposition of the face into triangular sub
faces.

Let suppose that the mesh is composed of triangular fac
defined byA1, A2 and A3. The volumeVi of the tetrahedron
O A1A2A3 is:

Vi = S.H

3
,

where H is the height. LetO be the origin andG be the
barycenter of a face. Then:

H = (OG, Nd)

‖ Nd ‖
And therefore:

Vi = (OG, Nd)

6
This last expression is still true for a face defined byM points.
Finally, Equation 13 can be rewritten:

V = 1

6

K∑
i=1

(OG, Nd)

C. CONTENT OF THE VIDEO

The video is consisting in six sequences:

1. Nuclear medicine data (SPECT image). The first imag
of the sequence is visualized as a series of 2-D cros
sections (transverse slices). See Section 2 for deta
(0–20 s).

2. Segmentation of the SPECT sequence. See Section 2
details(20–40 s).

3. Tracking of the epicardium (mesh) and the endocardiu
(rendered surface) in the SPECT sequence; on the le
the segmented surfaces, on the right, the reconstruc
models. See Sections 2 and 4.2 for details(40 s–1 min).

4. On the left, trajectories of the node points, on th
right, velocity field in the SPECT sequence. Se
Subsection 5.2.3 for details(1–1 min 20 s).

5. Recovery of a twist motion on a synthetic example (1
Data with trajectories. See Subsection 5.2.2 for deta
(1 min 20 s–1 min 40 s).

6. Recovery of a twist motion on a synthetic example (2
Trajectories on the data and on the models computed w
tracking method. See Subsection 5.2.2 for details(1 min
40 s– 2 min).


