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A New Approach of Geodesic Reconstruction for
Drusen Segmentation in Eye Fundus Images

Zakaria Ben Sbeh, Laurent D. Coher8enior Member, IEEESérard Mimoun, and Gabriel Coscas

Abstract—Segmentation of bright blobs in an image is an im- |
portant problem in computer vision and particularly in biomed-
ical imaging. In retinal angiography, segmentation of drusen, a yel-
lowish deposit located on the retina, is a serious challenge in proper | =
diagnosis and prevention of further complications.

Drusen extraction using classic segmentation methods does
not lead to good results. We present a new segmentation method | =
based on new transformations we introduced in mathematical

morphology. It is based on the search for a new class of regional

maxima com i i @ () ©
ponents of the image. These maxima correspond to

the regions inside the drusen. Fig.1. Example of drusen segmentation usingitfie)-maxima of ordeps. (a)

We present experimental results for drusen extraction using Original image, (b) segmentation, and (c) using geometric constraints. Notice
images containing examples having different types and shapesin (b) some small regions which are removed in (c).
of drusen. We also apply our segmentation technique to two
important cases of dynamic sequences of drusen images. The first
case is for tracking the average gray level of a particular drusen in
a sequence of angiographic images during a fluorescein exam. The
second case is for registration and matching of two angiographic
images from widely spaced exams in order to characterize the
evolution of drusen.

Index Terms—bPrusen, edge detection, eye fundus angiography,
geodesic reconstruction, image segmentation, mathematical mor-
phology, registration.

I. INTRODUCTION

ITH aging, the eye experiences a number of pathologies, @) (0)
one of which is the appearance of macular drusen. Fig. 2. (a) Hard drusen. (b) Soft drusen.
Drusen are yellowish deposits located at the level of the
retinal pigmentary epithelium. They first appear around ageLittle research has been undertaken in the field of the segmen-
50 and with time, may change in number and size. Drusen asgion and quantization of pathology in retinal ophthalmology.
considered the initial stage of age-related macular degeneratiimiong these works, one finds the contribution of [27] on the
(ARMD), the major cause of legal blindness in developeguantification of the gray levels according to the macular types

countries for people age 50 and above. of drusen. The principle used is to digitize an angiography se-
Significant complications that involve loss of vision, such aguence. Image registration is carried out using the initial green
hemorrhages, originate with the appearance of drusen. stereotype of the vascular tree. Drusen of the sequence are then

The exact mechanism for the appearance of drusen is Begmented and tracked manually and then compared using pho-
known. Nevertheless, the modification of size, confluence apsinetry software. The results of this experimental study high-
coloring of the drusen seems to be an essential risk factor in tighted the average appearance of the gray levels of the various
veloping complications. This paper falls within the applicatiotypes of drusen. In spite of the possibility of quantification that it
of image processing to digitized retinal angiography with a pagermits, this method suffers from two major handicaps: manual
ticular emphasis on automatic segmentation of drusen. segmentation and manual registration.

The use of traditional segmentation methods generally poses
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In this paper, we propose a new segmentation approach based Cellular System Without Divisior©On the contrary, this
on mathematical morphology. This consists of extracting from  consists of cells not presenting division after their initial
the set of traditional regional maxima and minima particular  development, such as for example the cells of the neu-
subclasses of connected components (Section 1lI-B). It con- rosensory retina. If the quickly renewed system is sur-

cerns the maxima and minima of order(Section 11I-C). For rounded by two systems which do not divide, secondary
further study, we showed some mathematical properties of deteriorations can occur. For example, the presence of
these subclasses in [1]. waste coming from the system with division and accumu-

Also, we introduce a new segmentation tool that we call the lating within the system which does not present division.
h(x)-maxima of orders. It is based on the synthetic construc- A pathology often encountered for older subjects is ARMD.
tion of an adaptive contrast functidr{z) (Section IlI-F) from ARMD appears as complications in the macular area. It occurs
maxima and minima of order, respectively,y. The results of at age about 50 years and often presents as a deformation and
this algorithm are much better than those of the previous agistortion of the images and in particular of the straight lines
proach fork-maxima. For that approach it is difficult to get anand a loss of acuity with feeling of hole or scotome in the visual
automatic choice of the contrast constant and we propose herféeld. Angiographic anomalies include presence of drusen, ap-
two ways of defining an automatic value fhr(Sections IlI-E pearance of subretinal neovessels (SRNV) or choroidal of vis-
and IlI-F). The resulting image is like the original image wherible type with sharp edges or occult type with blurred edges,
the background has been removed and it lets appear only thbemorrhages (membrane) or separation of the pigmentary ep-
blobs that contain regional maxima. ithelium.

InFig. 1, we illustrate an example of drusen segmentation ob-The long-term monitoring of effects such as the diabetic
tained by our segmentation method. In Fig. 1(b), a segmentati@tinopathy or the ARMD, has been recently facilitated by
using the morphological transformatign- 62%(f(x) — h(z))  registration and superposition of the images [28]. Our contribu-
is shown. In Fig. 1(c) The image of the same transformatiotion is to go further in the automation of the user’s task in the
under constraints (see Section IlI-G-3) is shown. context of drusen segmentation.

The structure of the paper is as follows: Section Il presents
the medical background of drusen in angiographic images agd prysen
underlines the importance of their study. In Section IlI-A, we
present briefly some classic segmentation methods and shoPrusen constitute the initial signs of the ARMD. They are
that they fail to give satisfying results. After giving some back¢ellowish of round shape, with hyper-fluorescent spots and are
ground to Mathematical Morphology in Section 1I-B, we in-discovered with the examination of the retina in retinal angiog-
troduce the notion of Maxima arfidmaxima of order: in Sec- raphy in fluorescence. They correspond to deposits of extra-cel-
tions I1I-C and I11-D. We use these notions to find automaticalljlar material located between the basal membrane of the pig-
the i contrast parameter in Section I1I-E to get a first good se§rentary epithelium and the collagenous intern layers of Bruch’s
mentation of drusen. This method is improved in Section Ill-Fpembrane. Various types of drusen have been described (see
where we introduce the Adaptive contrast paramk(ed. The Fig. 2):
method has been shown to be very efficient on various kinds of « Hard Drusen:In optical microscopy, hard drusen appear
drusen images. In Section IV, we show how we applied our seg- round, small, of a diameter lower than sén with sharp
mentation tool to track drusen, first during a fluorescein exami-  edges [12], [30]. In electronic microscopy, the hard drusen
nation and then for the comparison and the mapping of drusenin consist of a finely granulous hyaline material [30]. They
two examinations taken on two different dates. This is relevant are interpreted as a metabolic disorder localized in the pig-
both for the application to quantitative and qualitative study of  mentary epithelium.
the evolution of drusen with age. Finally, we give in appendix « Soft Drusenin optical microscopy, they have a structure
more background in Mathematical Morphology. in the shape of a dome, are larger (2bf) and their
contours are blurred [30]. In electronic microscopy, soft
drusen consist of a pale amorphous material, comprising
membrane remains. Authors of [12], [39] interpret them

Initiated in the 1970s by Dallow, digitized retinal angiog- @S a diffuse abnormal operation of the pigmentary epithe-
raphy is used increasingly in ophthalmology. Its principle  lium. .
consists of replacing traditional photographic images by digi- * Other Drusen: Mixed druserre found between these two

tized images. Currently, images of sizes 51212, 768x 512, extrems. They are round, composed of a combination of
1024x 1024 pixels are used with 256 gray levels. membrane remains and residues of hyaline material. They

may be derived from hard drusen and transformed into soft
drusen [30].
Basal laminar drusencorrespond to a nodular and diffuse
Many pathologies of the visual system are due to cellulgfickening of the basal membrane of the pigmentary epithelium.
aging. There are two categories of cellular systems. This type of drusen seems to derive from a process different
* Cellular System With Divisiortheir speed of renewal is from other drusen [17].
considerable and the cellular system is replaced betweerA majority of authors propose epithelial theories: either the
one to six days (example: skin, scalp, cornea, etc.).  cell of the pigmentary epithelium is transformed directly into a

Il. DRUSEN IN ANGIOGRAPHICIMAGES

A. Some Pathologies of the Visual System
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drusenoidal substance (transformation theory), or the secretiepresents the energy functional to be minimized in the case of
of these cells forms drusen by deposit (deposits theory). a planar curves(s) = (x(s), y(s))

C. Drusen Evolution E(v) = / [wl 10 |1Z + s "2 + P (U(S))} s, (1)
The evolution of drusen is very variable. They can get joined @
together, disappear, transform from one type to another ldowever, deformable contours present some difficulties in the
become complicated to neovessels. The prognosis of each tiiaemework of an automatic algorithm, which we summarize
of drusen varies according to the respective risks of neovascudarfollows. Initialization of the contour must be made near
complications. Thus, hard drusen rarely become complicatdet physical object contour to segment. Enetfly admits
to neovessels. The soft ones are associated in a way thasdgeral local minima, algorithm may converge to a wrong local
statistically significant with subretinal macular neovessetsinimum. This is difficult to define potential functioff. The
(SRNV) [19]. The pseudoreticular have a bad prognosisethod treats only one contour at a time.
Drusen are strongly related to the early stages of the ARMD,Several solutions were proposed to solve these problems.
when the visual acuteness is normal before the appearanc@iufis, the balloon model introduced in [8] is less demanding on
complications. Treatment should be considered at this stagethe initialization, a single point in each drusen would suffice to
To prejudge and quantify the natural evolution and the modixtract its contour. Geometric implicit active contours [5], [25],
fication of the aspect and number of drusen and the effectiveng®$] make it possible to remove some of the other difficulties.
of the laser treatment, it is obvious that a quantifiable objectiidhey extend the balloon model and allow not only an automatic
system, ideally automatic, is not only desirable but is impossibieanagement of the changes of topology of contours but also
to circumvent. The goal of this paper is the development of dhe simultaneous processing of several contours or balloons.

gorithms for automatic drusen segmentation. However, like the balloon model this model presents also the
difficulty of automatic initialization of initial contours. This
I1l. A UTOMATIC SEGMENTATION OF DRUSEN problem is equivalent to that of the “germs” evoked above in

After notina some directions amona several that were e'g(he region growing method. A solution we suggest consists of
g 9 ugfing regional maxima of the image, noticing the fact that there

lored without satisfactory results, we introduce our methq . o
p y at least a regional maxima in each drusen. Once we were on

. 1
based on mathematical morphology. our way to this solution, we found out that the mathematical

. morphology tools we used to determine the initial regional
A Classu-: Methods _ _ _ maxima could be extended to find directly the desired contours.
The main problems in the classic segmentation methods likais makes it useless to mix two kinds of methods since we
thresholding and edge detection are the choice of thresholgign get the result from the initialization itself. Notice, however,
as well as scale factors. Since the images we deal with havghat our results, presented in the next sections could be refined
variable contrast and a variable background, even choosing #rwards (if needed) using geodesic active contours [6].
best threshold, or hysteresis thresholding [4] cannot give good
results. B. Regional Maxima and Minima
We also tested the watershed method [3], [13], [38] and theqy pefinitions: We give in Appendix some basic definitions
main difficulty was in the (;h0|ce of the minima markers and thg¢ \1othematical morphology. For a complete introduction see
oversggmentaﬂon of the image [29]. ) ) ) 31] and [32]. A functionf being given fromiR? to Z, a chart
Similarly, drusen may have different sizes in the same ima - f consists of considering its subgragk( f). This set is
The authors of [10], [22] use Gaussian Filtering based a@i,ijar 1o a topographic map whose peaks correspond to the
proaches for blob detection. Notice also that in our case, We gy sructures and valleys to the dark structures. The notion

interested only in blobs that are brighter than the baCkgroqu'regional maximum and minimum allows the identification
We did many tests [1] with methods using similar approach(afthese peaks and valleys.

without satisfactory results. Definition 1: GivenX C IR?, the connected opening [36]

Region Growing and Active ContourBa order t0 improve 44 5 noing: js the set,, [X] defined as the connected component
edge detection, we also experimented with more compl8}<X containingz, if = € X andf else

methods such as region growing and active contours. The Definition 2: (Plateau of a function) Lef be a function
region growing methods require germs of initialization, hof € F(R2, Z), the plateau of at a pointz of £ c R? noted

mogeneity criterion, as well as a quality function [15]. W@Itm(f) is the connected component Bfcontainingz and of
tested this method by taking a certain number of pmdicatgénstant altitude equal th(x)

and as starting germs the regional maxima of the image (see
[S(]action [1I-B). The obtained results were not very convincing Plt.(f) =C.[{v € E| f(u) = f(z)}].
1].

The basic idea of Active contours or snakes, consists of Definition 3: A regional maximum, (respectively,
placing an initial curve in the neighborhood of the real contouminimum) A/ of an imagef is a plateau, without neigh-
of the object, then deforming it according to a minimizatiobors of higher (lower) level thary(A{). We will note by
process [16]. This technique has been used extensively &ax_req f), (mmin_reg(f)) the set of regional maxima,
improved during the last few years [9], [20], [26]. Equation (1jminima) of f.
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Notice that this definition corresponds to a region of th
image and not always a single point. Formally, C IR? is
a regional maximum (or minimum) of if and only if there
existsVy,, a neighborhood ol satisfying

vy € Vi \{M} f(y) < f(M)
(orv, € Vi \ {M} f(M) < f(y), respectively. (2)

We note that the concepts of regional maxima and minima
global and nonlocal. One cannot affirm that a connected co
ponent is a regional maximum (minimum), by examining onl
one small arbitrarily selected neighborhood of this component @ ®)

as it is the case for the local maximum concept. This is an ddg. 3. (a) the original image. (b) Set of regional maxima.

vantage since it will not consider points that are seen as local

maxima due to a flat neighborhood, but are not truly maximé@ show some mathematical properties whether they involve set
Also, only one regional maximum component is detected inc@mparison or distance criteria.

maximum with a flat area instead of many points. In Fig. 3(b), we show in white the set of regional maxima. We

2) Extraction by Markers:A practical way for the extraction notice that there are far more of them than the number of clear
of regional maxima and minima consists of using the conceptgifuctures present in the original image. We can confirm that
edges and plateau markers. The advantages of algorithms ba&sgdh maximum is a peak of intensity in a certain neighborhood
on these concepts are their simplicity of implementation anghich is not necessarily a drusen, or part of drusen. That is why
their speed, since they can be written in a parallel way (moités natural to find a specific selection criterion of these maxima,
details can be found in [1], [2], and [24]) . in order to keep only the most representative.

Using morphologic dilation, we can defirfe andf» the two ) o
following functions of F(IR2, Z): C. Maxima and Minima of Ordek

In this section, we define and use a new class of connected

Si=min([f ®gx — f],1) components of a given imagedepending on a parameter> 0
fo=min([(f+ )P gnr — (f+ )], 1) which may be seen as a scale factor.

Definition 6: We call the regional maxima (or maxima) of
where g5 is a planar structuring element arfd® g5 is the orderithe connected components of the(sét 5}f§°(f—1))1_
dilation of f by g (see Appendix for more details). The binary(é; » indicates geodesic dilation undgwith respect to a planar
mask associated with the edges of the plateaus is the set of pasitscturing element of sizk, with conventiort s 1 (¢) = é(g)).
such thatf; (z) # 0. Plateau markers correspond to the set dfe denote by Maxeg, (f) the set of maxima of ordex.
points such thaf>(x) # 0.

Definition 4: A regional maximum is a plateau which has Maxreg,(f) = {37 e R?/ (f — 65 1))(37) > 0} .
no marker.

3) Extraction by Geodesic Reconstructio@ne can also ex-
tract the set of regional maxima from an imggey considering
the reconstruction fronf by geodesic dilation fromf — 1)
underf (see Appendix, [29] and [37]) and substracting the re-
sult from the original imag¢'.

Definition 5: The set of regional maxima is defined by

By transposition of the definition of the maxima of ordewe
can define the set of minima of ordarby

min reg,(f) = {x cR?/ (5}"3’\0(]c +1) - f) (z) > 0}

wheresjgio is the geodesic erosion (see Appendix).
We can show that the sets of regional maxima of order
oo (Max_reg, (f)), form a decreasing sequence with regard to in-
Maxreqf) ={z € R/ (f - 5f~(f = D)) >0} gucion h()x
e . 2
_ (f _ 6}1—00(f _ 1))1 3) Proposition 1: Vf € F(R*, Z)

if A <\, then Maxreg,,(f) C Max.reg,(f). 4)
using the notatiorf;, = {a: € IRQ/F(a:) > h} for the i level
set of . The equality in (3) is due to the fact that the function As illustrated in Fig. 4, the more the parameteincreases,
has integer values. the less maxima of ordex are retained. This is why can be
Remark 1: The algorithms described previously can b&een as a parameter for selecting the regional maxima of a given
used without any difficulty for the extraction of the regionaimage. The parameterallows a selection of regional maxima
minima of the image; we just have to replageoy (—f ) (or ©f the image according to their intensity and their intersepara-
(255 — f) to keep the same range of gray levels) and we hatien distance (see [1]).
min _req f) = Max_req —f). )
The two definitions (markers or geodesic reconstruction) git& /-Maxima
exactly the same set of points for regional maxima. However, it The previous sections present a way to find starting points
may be more convenient to use one or the other formula in order all the bright areas of the image, like drusen. Instead of
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f-R (f-h)

Al
(b)

Fig. 6. Example on a 1-D profile () andR,(f — h) are superimposed. (b)
@) (b) ©) Difference keeps only the bright spots and removes the background.

Fig. 4. Inwhite: Maxima of ordenx. (a) A = 2, (b) A =4, and (c)A =7.

(b)

Fig. 5. (a) Example for a one-dimensional (1-D) profile faand f — k. (b)
Result of geodesic reconstruction. The three flatten areas show the aspect o
h maxima. (@

Fig. 7. (a) Original image. (b) Set (Max.).

using these points as initialization for a second step, like active

contours or balloons [8], we extended the definition of the col S -

nected components to get a larger area. Thus, we define a\ ‘.'-_ R .: 4

to find the complete drusen spots with a method that remai * B

based on geodesic reconstruction (dilation or erosiof) oiVe i ‘.! Vi —_— -

will present now the set df-maxima ¢-minima can be defined q oy

by transposition). '
Definition 7: Theh-maxima of a numerical functiofiare i

the connected components of the set lMlax ]

-__E i of onder ¥
Max,(f) = (f = 67(F = 1)) . | JEEVI————

The h-maxima allow the extraction of the clear structures afig. 8. How to find the nearest minimum of orcer
the image without any constraint of shape or size. Only the pa-
rameterh intervenes. It is related to the height (contrast) of the  pafinition 8: The h-maxima of order) of a numerical

structures to extract. _ _ _ function f are the connected components of the set jhax
Geometrically, thei-maxima can be interpreted like the re-

gional rrlziilma of the |mag&;f°°(f—h) [37] (see Fig. 5, where Maxy, A(f) = (f _ 6j{§°(f _ h)) _
Ry = 67%). 1
We illustrate in Fig. 6 the principle of our methoq that has |, away similar to maxima of ordey, the sets ofMax;, x)a
removed the backgrounq and kep.t only the three bright spot%aﬂsfy the following inclusion:
We note that thé-maxima were introduced in order to over-  proposition 2: v f € F(IR?, Z)
come the problems of noise met with the regional maxima. This
concept is more robust and less sensitive to noise. However, the if A < X, then Max, x (f) C Max;, A(f). (5)
choice of the parameter of contrastemains to be determined.
In order to choose it automatically, we can make some remarksThe more the parametarincreases, the more the area of the
about the total behavior of the algorithm with this parametaronnected components of Max decreases. Wheh grows,
The area of each object extracted depends on the value of pame small objects vanish.
rameter:. An increase irh is accompanied by a growth of this  We illustrate in Fig. 7 an example of the (Max) set, here
area. We notice that only the maxima with strong contrast wil = 9 andh = 30.
persist. In the first two lines of Fig. 9, we show the evolution of the
By changing the size of the planar structuring elements in thesult with increasing parameterHere,/» appears as a contrast
definition of z-maxima, we find a new set of connected compgearameter and the result depends much on the choice for this
nents which we calk-maxima of order\. parameter. Ifh is small, we obtain small regions centered on
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the parameters, v that will be a kind of characteristic signature
of the processed image. This choice would probably be done
only once for a set of images that have the same kind of drusen.
In practice, we chose parametersy verifying: A > +. We re-
call thatA, v have a significant role in the number of markers of
the most representative structures of the image.

Before defining the relative dynamics of a maximum of order
A, we start by giving a definition of the relative support of a
maximum of order. Let (A, ) be two positive numbers dN,
M a maximum of orden.

Definition 9: The relative support of ordery of

a maximum M, supp (M), is the smallest dilated of
M with nonempty intersection withmin reg,, where
min reg, (M) = {p € min reg,(f)/f(p) < f(M)}.

The following is an algorithm to obtain the relative support

My =
My, =My 19 H
ko = inf {k € IN, M N min _reg;(M) # (Z)}

supp, (M) = My,

whereH is the basic structuring element. This corresponds to a
front propagation starting from/ and that stops when it meets
a minimum. This could be accomplished more efficiently using
fast marching simultaneously from all maxima [7].

Definition 10: The relative dynamics of a maximui*
of order\ is

dyn, (M*) = f (M?) — sup| f(m)|m € min reg; (M*)

andm N supp., (M)‘) #£0].

Fig. 9. Testimages: blobs are detected in spite of different contrast values. Inln_s’Ome cases, the fronF of propagation associated V\A_m_a
each blob, the gray level function is defined as ahalf sphere with a maximumrinaximum stops after having touched more than one minimum
the middle. The background itself has an increasing gray level from left to righit order~, in this case, for the calculation of relative dynamics it
The first two lines show theevolution with increasing constant parameten . .. . .
the last line, the result with automatic determination of funcfi¢m) and the S N€CESSary to choose the minimum of orglevith maximum
transformf — 65 (F — h). intensity.

Remark 2: According to these two definitions we deduce

regional maxima of the image. lf increases, the regions growthaty M* € Max_reg,, Vv € IN : dyn.,(M?*) > 0

and can merge together. 2) A First Step Toward Automatic Segmentation of
_ o Drusen: One of our first algorithms for the extraction of
E. Automatic Determination of Contrast Parameker drusen used thé:-maximum concept (see Section IlI-D).

During the last few years a particular interest was given to tigowever, the results obtained depended too much on the
concept of dynamic extremum [11], [21], [22], [35]. In mathePparameter:. We, thus, use our concept bfmaxima of order
matical morphology, we also find this concept in [13], [14], [20]? (connected components of the §¢t— 675°(f — £))1) and
and [33]. In the next section, we define a new concept, which @€apt the parametérto the processed image by giving a value
call “relative dynamics,” that we will assign to each one of tht 8 dependent on the type of drusen used.
maxima of order. Afirst way to find automatically the value of parametes to

1) Relative Dynamics:The idea of our modeling is based ordefine it as the average between the maximum and the minimum
the fact that one starts from sets of points representative of #fgelative dynamics of the image:
clear structures of the image. Then, we try to recover the object
marked by a given maximum according to its force of contrast = 3 (max [dyn~, (M})] +min [dyn., (Mﬁ)]) (6)
which we measure using its relative dynamics. ‘ ‘

The sets which we use are: the maxima of obdand minima  With this definition of A, we obtain rather good results, as
of order~. We used maxima of ordex to mark the centers of shown in the examples of Fig. 12 (middle images). However,
drusen and the minima of orderfor marking the local back- there were lacks in the localization and the elimination of the
ground of a drusen near its edges. Thus, according to the disartifacts. This is why we give in the next sections a different
bution of drusen inthe image, the doctor will be asked to provideay to define a local value df.
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@ (b) ©

Fig. 10. Test example. (a) Original image,. (b) Result with automat
determination of constank. (c) Result with automatic determination of
functionh(z) of (7) with: A = 13,8 = 13, andy = 21. Notice for example a
difference on the left of the image for the third circle from top which is bettg
localized withi () method.

=T

F. Adaptive Contrast Parametéi(x)

Inthe preceding sections, we saw in various examples that
algorithm ofA-maxima depends on the value of the paramkte
used. We now deal with the following question: in order to g4
automatic detection of drusen, can we adapt the pararhéter
the structures to be extracted?

Our idea consists of adapting locally the paramaterorder
to get the bright spots present in the image through the algo-
rithm of h-maxima of ordeis. Thus, we do not considérasa _. . ) L

. . Fig. 11. Main stages of our extraction algorithm: Original image, on the top
constant anymore but as a contrast functign) depending on eft; maxima of orden of the original image, on the top right; functidriz)
the location on the image. obtained after processing of the maxima and minima of okdsfithe image, on

s . _ ; ; the left of second row; the imag¢ & 2(x)), on the middle of second row; the
Definition 11: Theh(x)-maxima of ordeys of a numerical images s (£ — 1), on the right of second fow; the image- 57 (£ — k), on

function s are the connected components of the set the bottom left; the binarized image 6t 6ff;§°(f — h) by thresholding at gray
+ value 1, on the bottom middle; contours of the previous image superimposed on
oo o -
(f — 6ij8 f - h(x)))l . the original image, on the bottom right.

We now give a way to defink(z) in order to detect drusen. If
(M?); are the regional maxima of ordar let D; represent the
intersection between sup(d\/[}) and the other relative supports
of the image sup;(M;\). We then definéi(x) as follows:

G. Application to Drusen Segmentation

In this section, we describe the main stages involved in our
algorithm to apply it to drusen segmentation. In order to apply

dyn (M), if 2 € supp, (M) \ D; the method introduced in the previous sections, we need a few
o AS;;P oy F T €D; steps of preprocessing and postprocessing.
h(w) = d/wesupps M)y, (M), 1) Preprocessing: Smoothingnitially, we choose the area

¢, if Vi, z ¢ supp,(M}"). of interest of the original image (manual stage carried out by the
(7) doctor). We usually focus the search of drusen inthe central area
We choose constant such thate < min;[dyn.,(M;)]). Oftheretina (fovea). Then, in order to reduce the noise, we filter
We illustrate first this approach in Fig. 10 with a syntheti¢he selected area using a median filter followed by an average
example with nonhomogeneous spots on slanted disturd&@r-
background. Using:(z) as defined in (7) and defining the 2) Our New Approach for Drusen Segmentatiofhe next
constant: = min;[dyn~(M;")]), we obtain perfect detection of Stage consists of building a synthetic imdge) starting from
the clear spots. Notice that, as expected, the dark spots arethgtset of maxima of ordek and minima of ordery (gener-
extracted. For this simple example traditional methods wouddly we takey < A). The choice of the parametercan be
be completely inefficient [1]. taken as the expected minimal length separating two centers of
We show in Fig. 11 the main stages of our approach ondgusen. This choice is a useful criterion for selecting the regional
drusen image_ In order to S|mp||fy calculation of the SupporfgaXima that can be inside a drusen. Refer to [1] for theoretical
and the relative dynamics, we reduced (just for calculation E#sults showing that the distance between two regional maxima
h(z)) each minimum of ordery, m., and each maximum of of orderA with different gray levels is always greater than
orderA, M, to representative points of these connected compo-On angiography images, drusen correspond to areas with
nents (center of gravity). Thus, relative supports are compos&itbng contrast. It is the only relevant information we have.
of disks. This is the place where we use the main algorithm introduced
We see in Fig. 12 illustrations on different kinds of imagesn this paper in Section llI-F: thé(x)-maxima.
The use of a constahtinstead of.(z) does not make it possible  The result obtained at this stage is often accompanied by de-
to emphasize simultaneously all the spots especially for the ld&ction of a certain number of artifacts which will be almost
values ofh (see middle row). eliminated in the next stage.
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Fig. 12. Different types of real images. (top) Original images. (middle) Our method with consteoth (6). (bottom) Our method with the adaptive function
h(x) from (7).

3) Postprocessing: Segmentation Under Con- the criterias; < R (s is afixed threshold). This is sufficient
straints: Notice that the results obtained with our method may to discriminate between drusen and vessels.
have to be refined. First there are very small regions (artifaet Contrast criterion:In order to overcome the artifact problem
problem) that are detected which we remove using constraints,in mathematical morphology segmentation, some authors
as described below. Also, in case a very precise contour isuse thresholding and dynamic filtering technique of the
needed, active contours may be useful to improve localization ~A-minima (h-maxima) image. As reported by [13], a special
of edges (see Section IlI-A). care must be done when choosing th@arameter in this

In order to keep only the relevant spots and to eliminate a case. The author of [13] proposed to choastose to the
certain number of artifacts, we force constraints on the objects minimum dynamics of the structures to be extracted.
of the final segmentation. These constraints are to be adapted Here, we use a similar thresholding approach (contrast cri-
according to the nature of the images processed. For exampleterion) to remove the artifacts of weak contrast. Among the
in the case of the images obtained with green stereotype, ourcriteria of contrast which one can take into account in this
algorithm will avoid extraction of the blood vessels since they problem of segmentation under constraint, we retain the fol-
generally do not present a maximum of intensity. On the other lowing criterion over the considered regidgh
hand, in the case of a fluorescein image (see Fig. 14), vessels and
drusen have a similar hue. The use of shape and contrast criteria O(R) = (max (g) — min (g))
then becomes necessary to differentiate drusen spots from ves- ' ’

sels.
We used this parameter to eliminate the objects with weak

» Shape criterion’As a characteristic of the object shape we contrast from the result image= f — 6;{7;’;’( f="h.
have chosen the rati® = Apin/Amax Where Amin, Amax  * Area criterion: This criterion preserves in the final segmen-
are, respectively, the lower and upper eigenvalues of the in-tation image only those objects whose area is higher than a
ertia covariance measure matrix. The ratics a measure of  threshold7. Thus, small artifacts due to noise will be re-
the roundness of the object. In the case of drusen, we choosenoved. The threshold has to be chosen rather small since the



BEN SBEHet al. NEW APPROACH OF GEODESIC RECONSTRUCTION FOR DRUSEN SEGMENTATION 1329

of order which will be processed. In the case of our im-
ages, the detection phase of maxima of orleminima

of order~y, construction of the functioh(z) takes about
54% of the total time calculation. The remaining 46% are
to be distributed between the calculation of the function
g = f— 673 (f — h) and the postprocessing under con-
straints of the objects of the imageThe constraints stage
depends on the number of objects to be processed since
for each object, we must test whether or not it satisfies the
set of previous criteria. As an indication, on Pentium 133
MHz (which was used at the time of this work) the com-
plete processing of an image of size 26856 containing

two objects took about 37 s.

Obijective of drusen segmentatigdnce this segmentation
has been obtained through the previous steps, there can be
various goals of data analysis, like counting drusen and
finding their area. This is useful in the context presented in
Section IV dealing with drusen tracking and drusen clas-
sification.

IV. DRUSENTRACKING AND CLASSIFICATION

Tracking drusen during eye examination is very important
for ophthalmologists. We propose to describe briefly the stages
of the methods which we adopted in order to match drusen in
a sequence of retinal angiography. We study two examples of
tracking:

e Short term: propagation of fluorescein in a drusen;

» Long term: comparison of the area occupied by drusen at
two different examination dates (time between them could
be months or years).

In this section, we describe how we can use our segmentation
Fig. 13. Manual extraction of drusen illustrates the issue of reproducibilinethod (of Section IlI-F) on a sequence of images and how

by human drawing versus automatic detection. (top left) Original image (t . . . . .
right and in the second line) Manual drusen segmentation by three differiﬂtcan contribute to the medical dlagnOSIS of drusen du”ng a

ophthalmologists (last line) Results for automatic drusen segmentation, witdorescein examination.
constant: (left) and with the adaptive functioh(z) (right) with: A\ = 21,
3 =9, andy = 21.

A. Registration Problem

only drusen with small surface are round and have high con-MatChmg shapes and Image Registration are often used in

trast compared to the image background. medical image processing. They consist of superimposing im-
ages by the mapping of common characteristic elements. The

~4) Results:In Fig. 12, we show results of this method onygjjity of matching in digital ophthalmology is not to prove. In-
different kinds of drusen images. This underlines the fact th@éeq, it is enough to know that during an examination of retinal
our approach is efficient for a very large range of images. Rgngiography, the patient does not cease moving the treated eye,
sults with an adaptive contrast functib() are compared with yhich |ets any exploitation of the acquired images almost im-
the previous definition of the constahitwe used earlier in this possiple for sequential analysis. Currently, it is not possible in
paper. We show in the middle row of Fig. 15 examples of seghe medical protocol of the fluorescein examination, nor that
mentations under constraints. with the green of indocyanine to immobilize the eye treated
In Fig. 13, we show and compare the hand and automag an anaesthetic product throughout examination, because of
segmentation of drusen. The manual segmentation is givenynger.
hand drawing by three different ophthalmologists. It can be SeeNconcerning the problem of image registration in ophthal-
that the diff_erences .between_these segmentat!o_r{s are oftenm;mogy, some progress is reported in [18] who proposed an
portant. This underlines the issue of reproducibility by humag,;omatic geometrical method to perform the registration. The
drawing and the difficulty of the task at hand. The automatic rgythor dealt with a pair formed of an image in green light or
sults are obtained using our method with constant (6) and  p|ye and of an image at the early time of fluorescein injection.
our method with the adaptive functidriz) of (7). The technique starts by detecting the points of bifurcation of the
« Computation timeThe computation time of our segmen-ascular structure of the retinal images to match. These junction
tation method depends primarily on the number of maxingoints are then matched to find the best affine transform.
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Fig. 14. (top) Original fluorescein sequence. (bottom) Registered sequence using the anchors methods. All images of the sequence are hestérsd wit
image to remove eye motion. Notice how the patient moves his eye relative to the camera.

method we use, registration with anchors.

LetI,, I. be two images. We wish to registgrwith I, as-
sumingl,. is obtained as result of a linear transformation fro
the basic imagd,. There is then a vectdf’ and a matrixRk
such that ifAZ, and M,. are matched points, respectively,fin
and/, thenM, = T + R.M,.. This equation being satisfied by

found by least squares based on correspondence on the sé¢:

matched points (see [1]). We illustrate in Fig. 14 the result
using this registration method on a sequence of retinal angig
raphy during fluorescein examination. The control points we
selected on the vascular tree.

B. Sequence of Fluorescein Images
We consider in this section a sequence of images represenf

presenting drusen without confluences (see Fig. 14). At the v
ious stages of the examination, we are interested in the evd
tion of the gray levels inside a particular drusen. Such tracki
enables quantification of the diagnosis over time. Indeed, co
parison of the results obtained during repetitive examinatio
makes it possible to consider the effect of a treatment for the |
tient. The images of our sequences are R5%6 with 256 gray
levels. The examination lasts 20 min during which the doct
takes images at various intervals of time. Then, we carry out
each image of the sequentg) the following processing.

We show, in Fig. 15, the result of this approach on four imagés
of the sequence. The images on left column show contours
the objects obtained after a segmentation using our algorith
of h(x)-maxima of orde3. For all the images of the sequenc
we took as parametera; = 7,y = 7,3 = 5. Notice that in
this type of images, vessels are also bright areas, and they

Smoothing ofl (¢) by an average filter.
At ; Fig. 15. (left) Our segmentation method on four registered images of the
Gray level normalization Oﬂ(t) with same grey level sequence of Fig. 14. (middle) After constraints of shape, contrast, and area.

range as referenck0) by a linear transformation. (right) Results of the tracking constraints.
Registration ofi (¢) with 7(0).

g?llj(;lélst;n r?]f;:g ggsggvet)c %‘;;?ﬁ;%?cgzgg)' detected using our segmentation approach. However, they are
9 - ' easily removed, as shown in the middle column images, after

Selection of drusen according to constraints (we useaa lying the constraints of shape, contrast and area described
structure of “linked list of linked list,” see [1]). PRYINg Pe,

Tracking of different chosen drusen of the seguence. in Section 11-G-3. The images on the right column illustrate

; . . . the tracking of some chosen drusen. We specify that tracking
Output is the intensity evolution of the tracked drusen. is defined as the extra constraint that the tested object should

X included in one of the initial rectangles defined around each
tracked drusen chosen by the doctor.

Mwe were able to track each drusen of the right columnimages.
Swe show in Fig. 16 the evolution of the average intensity of
the central drusen in our sequence of fluorescein examination.
R'Similar evolution to that of Fig. 16 was established, but in a

We took three couples of points of junction on the vascular tree. manual way, in the case of drusen sequence in [27].
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Fig. 16. Average intensity of a drusen in sequence of images.
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C. Classification and Rate of Aggravation of Drusen in the
Course of Time

We now use our segmentation tool as a preliminary stage for -
the tracking of drusen over time. The subjective diagnosis of the = Llass 6 ":::}{:]
doctors evaluating the state of drusen for a patient could, thus, be D &>
replaced. Lef;, andl;, be two images such that: < ¢,2. We
subject these two images to the same series of transformations
described previously for registration and segmentation. We are [“ ]1.1
interested to evaluate the difference in area occupied by drusen
in the two imaged,, and,,. We can calculate for each druserrig. 17. Different classes of drusen.
of I, its match and its area changgebetween the two times
t; andt,. We can also use our results to classify the types
evolution of drusen. For the classification of drusen betwegen
andt, we distinguished six classes as illustrated in Fig. 17.

RTay be applied only in conjunction with the presence of sim-
ilar drusen in the other image. We show in Fig. 18 the images
of an eye fundus presenting drusen for two different examina-
* Class liincrease or reduction in the area of drusen beuns. We applied our algorithm, as described above, to the cen-
tween times; andt, without any modification in number. {5 areas of the two images. We illustrate in Figs. 18 and 19 the

* Class 2:the drusen vanishes at time results of our method of geometrical classification.

* Class 3:state of confluence between at least two drusen oyr contribution, which consists of a geometrical classifica-
attimet; to give one drusen at timg. tion of drusen allowed us to give to the doctor a perfectly auto-

* Class 4:division of a drusen at; to at least two drusen at matic tool of recognition and appreciation of the various classes
ta. of drusen. Thus, we have the possibility of knowing with preci-

« Class 5:creation of new drusen aj. sion the area of each drusen of a given class, its space position,

« Class 6:drusen not belonging to previous classes. its average intensity and its match or matches, if they exist (case

We used the relations of intersection between the objects of @ifithe classes 1, 3, 4, and 6). These parameters make easier any
segmentations at times andt,, in order to classify the various later statistical study.

types of drusen. For example, drusepof I;, belongs to Class

1, if and only if there exists a unique drus&n of I;, such that: \. CONCLUSION

DinD andvD; e I, with j 1, D; N Dy = 0. . . . e
! 2 7 0 q h J 7 ’ 2 =0 Understanding the behavior of drusen, and their quantifica-

See [2] for more details. Our method is of course limited b N i . :
the hypothesis that we have a correct segmentation for both i‘?llr(?—n’ overtime s of primary importance for ophthalmologists. In

ages. In order to get similar results in the two images, they éFlelS pﬁpler, wer:pt:]oducid new _conce%ts pa_sed ofn n;a?smatmal
normalized in gray level, and the same segmentation pararﬂ?eqrp ology which are the maxima and minima of ordeThis

ters are used. It may happen, however, that a drusen detected AW se'gmentat|0n.tool W.h'Ch enables very good segmenta-
0 of our images. This tool is based on the construction of a

the first image was removed in the second due to size or shgt'g X ? : X )
constraints. A way to improve this point would be to make a G nthetic adaptive contrast functibir) from regional maxima
d minima and by considering the connected components of

operative segmentation of the two images. Also, the constraif’ﬁ% i . .
P g g the set f — 6}’?(]‘ — h))1. Experimentation of this method on

2, andt, will be two dates of different examinations for example. a set of images of different kinds and shapes of drusen is very
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Fig. 19. Automatic classification of drusen on (leff) and (right)I,,, on top
for Class 1 (one-to-one correspondence) and on bottom for Class 3 (confluence).

Fig. 20. The reconstruction functidi,(g).

z € K and—oo else. Letgx be a planar structuring element,
the dilation and erosion with are given, respectively, by:®
gx(x) = sup, {f(y) +9x(y— @)} = supy_perx {f(W)}
and f © g (v) = infy_syerx {f(¥)}-

Fig. 18. (left) Drusen of a patient in 1983. (right) Same patient in 1988, Fro: Cc0desic Dilation and Erosion

top to bottom, we show for both examinations the original image, a zoom on | et H# be the unit ball. The geodesic dilation of a numerical
the central area, segmentation of the corresponding central area, exampl f .. . . .
automatic classification (Class 2 (vanish) on the left, Class 5 (creation) on Ct'onf with respect to (or under) a function(f < 9)_ IS
right. 6;(f) = inf[(f & H),g]. In the same way, the geodesic ero-
sion of a numerical functiorf with respect to (or above) func-

o . . tion g, (¢ < f)isel(f) = sup[(f© H),g]. The composi-
satistying for the ophthalmologist. We extended this tool for ﬂ}?on for(mula of) dilatgic(Jn)and ero[s(ion in t)he ]case of the numer-

tracking and classification of drusen taken during a seque ) il B\ 1y f s il Y
of images. We illustrated by examples how our method of sgggl( fl:zrl(c;;c;ns givesy *2(f) = &5t (=*(f)) andp(f) =
g

mentation can be used in practice and contributes to the medlc,%'ﬂ

X X . . is very interesting to notice that in the case of
diagnosis of retinal angiography.

planar structuring elementsk, definitions above be-

come: 85(f)(x) = min{sup,_nex [f@)] 9(z)} and
APPENDIX 1 .
MATHEMATICAL MORPHOLOGY eg(f)(w) = max {infe, e [f()] o)}
A. Planar Structuring Element, Dilation and Erosion C. Numerical Reconstruction

Let K be a compact olR?. The planar structuring element We can define the reconstruction [29], [37] of a functipn
associated tdy¢ is the functiongy defined bygx(xz) = 0 if starting from afunction markey;, if ¢ < f,asR;(g) = 6j{°°(g)
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Whereéj{“’ is the limit whenr — oo of 6;; defined above.

(17]

This operation allows the total or partial (accordingstbcon-
struction of the image domes. In the case of valleys, we capg
consider the reconstruction by erosiongit> f, we put then

R3(g9) = €/°(g)-
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