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ABSTRACT

Semiconductor quantum dots (QDs) are nanometer-sized
fluorescent particles with a great promise for advanced bio-
logical imaging. They have recently been shown to be very
favorable probes for ultrasensitive detection. When specif-
ically attached to a biomolecule of interest, they allow for
single molecule tracking in live cells over unprecedented
durations and open new prospects for the study of cellular
dynamics. We present an algorithm for automatically de-
tecting and tracking QDs in sequences of fluorescence im-
ages. It accounts for the blinking in the fluorescence sig-
nal of individual QDs assuming brownian dynamics of the
biomolecules. Our algorithm analyzes images sequentially
and can be extended to a real-time use.

1. INTRODUCTION

Single molecule detection (SMD), combined to single par-
ticle tracking (SPT) is a novel approach to investigate the
mobility of specific objects in heteregeneous systems such
as biological media. In live cells, SPT has been often used
to study the membrane dynamics of proteins or lipids [1, 2]
specifically attached to a probe. To truly access single-
molecule properties and not alter the dynamics of the bio-
molecules, the ideal probe should give a bright optical sig-
nal and be as small as possible. Among the fluorescent la-
bels used in recent years, semiconductor QDs appear spe-
cially promising for their small size (5 to 15 nm), brightness
and photostability [3].

Recently, QDs have been used to monitor the diffusion
of individual glycine receptors in cultured neurons [4]. QDs
were shown to provide high signal to noise ratio and al-
lowed continuous data acquisition for durations of at least
10-20 minutes, previously inaccessible with other fluores-
cent labels. For this experiment, live cells were observed
with an epifluorescence microscope. The light emitted by
QDs at wavelength A = 605 nm was spectrally filtered and
collected on a 16-bit CCD camera. Sequences of up to 1000
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consecutive images (128 x 128 pixels) were acquired with
an integration time of ¢, = 75 ms (Fig. 1.A).

To extract the relevant biological information from these
data, a method is required to automatically detect and track
single QD-tagged molecules. This is a challenging task :
fluorescence images are particularly noisy (high spatial and
temporal resolution limits the amount of photons available
for detection) and the light emitted by single QDs blinks in a
random manner [5]. Among the methods already proposed
to track objects in dynamic fluorescence microscopy [6, 7,
8], none was dedicated to detect and follow multiple punc-
tual objects which disappear and reappear after a potentially
long extinction period. In this paper, we present an algo-
rithm to monitor tagged molecules on the fly. Our method
allows the tracking of an unknown number of targets and
could be straightforwardly extended to a real-time use. Flu-
orescent images are analyzed sequentially and our scheme
is split in two main steps. First, in the detection stage, fluo-
rescent spots are detected by cross-correlation. Then, in the
association stage, the set of trajectories is updated assuming
brownian dynamics of the biomolecules.

2. DETECTION STAGE

2.1. Fluorescence image model

The size of a QD being much smaller than its wavelength
A, it acts as a point source of light. The response of the
optical system (the point spread function, PSF) can thus be
approximated by an isotropic 2D Gaussian function with a
standard deviation s = R4/3, where R4 ~ 1.22\/2N4
denotes the Airy radius and NV 4 the numerical aperture. For
our setup, the pixel size is ¢ = 216.7 nm and N4 = 1.45,
s0 s ~ 84.84 nm ~ 0.39 pixel. Neglecting motion of the
QDs during acquisition, a fluorescent image is a snapshot
of the sample at a given time and results from the convolu-
tion of the PSF with the spatial distribution of point sources
(Fig. 1.A and Fig. 1.B).

The intensity of each pixel in an image corresponds to
the number of detected photons added to a constant base-
line offset L . We assume that fluorescence images are af-
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(A) A typical fluorescence image. The inverted gray scale map is shown on the right. (B) A fluorescent spot results from the

convolution of the PSF with a point source. (C) Illustration of the peak selection on a fluorescence image profile. The two spot candidates

(located along the same line 1) pass the detection test.

fected by the superposition of two independent noises : shot
noise and dark noise [9]. Shot noise, due to the quantum na-
ture of light, is Poisson distributed with a variance equal to
the number of detected photons. Dark noise refers to the
noise caused by background photons, CCD readout noise
and dark current. We model it by an additive zero-mean
gaussian distribution with a variance 0% independant of the
number of detected photons. Let us note I, the 2™ frame of
the image sequence and I,(z, y) the intensity of the pixel of
coordinates (z, y). The uncertainty in the intensity I,(x, y)
is given by : var[,(z,y)] = (L(z,y) — L) + 0.

2.2. Estimation of the background and o5

Let us assume that most of the pixels of I, represent image
background. It is not a strong assumption if the concentra-
tion of dye molecules is moderate.

First, we extract from I, an estimate I//;(z) of the back-
ground. We compute a mean image I, by averaging each
pixel value of I, in a M, x M, neighborhood, i.e. we con-
volve I, with a constant kernel hy : I, = I, * hq, so that
hi(z,y) = 1/(MzM,) on its support. The mask size, mo-
tivated by the diameter of the PSF, is M, = M, = 5. The
background value is expected to be the most represented in-
tensity value of I,. So, we assign to Eg(z) the intensity
associated to the maximum of a smoothed histogram of I,.
Note that I/J\B(z) decreases over z due to the residual aut-
ofluorescence and asymptotically tends to the baseline off-
set Lg.

Let I?(z,y) be the standard deviation of I,(z,y) in a
M, x M, neighborhood. Thus IZ = [(I, — I,)? % ho]'/?
where ho(z,y) = 1/[(My; — 1)(M, — 1)] onits support. In

order to estimate the gaussian noise variance, one defines an
auxiliary variable o (z), assigning to it the intensity asso-
ciated to the maximum of a smoothed histogram of I. Fi-
nally, we estimate o by G5(z), where G5(z) is the mean
value of o over the z already processed frames.

2.3. Template matching and peak selection

The fluorescent spots we want to detect present two conve-
nient properties : they are isotropic and of known spread.
For such a template matching, one of the most efficient
method is the normalized cross-correlation. In our case, the
template is the PSF, i.e. an isotropic 2D Gaussian func-
tion with standard deviation s, discretized on a support of
size M, x M,. Let us note PSF¢ this template, PSF¢ its
intensity mean over the support and PSF 2 its intensity stan-
dard deviation. The normalized cross-correlation image ~,
is computed in the following manner (here * denotes the
correlation operator) :

(I, —I,)  (PSFg — PSFg)
(M, —1) (M, —1)]2 I PSF&

Yz =

Note that computing I, 1 7 and 1y, in the the Fourier domain
using FFT is fast enough to be done in real time. The func-
tion -y, is a similarity measure between the template PSF¢
and the fluorescent image I,. To obtain a set of candidate
spot locations, we apply to v, a local maximum detection in
a M, x M, neighborhood.

Some correlation maxima are due to noise in the fluores-
cence image, so one needs to select the most reliable ones
among the set of candidate spot locations. Let (Zm, ym) be
the coordinates of one of the correlation maxima. We can




estimate the uncertainty in the intensity I,(Zm, Ym) by :
var(Ly(@m, yn)) = (L(@m, ym) — L5 (2)) +55°(2).

Let AN (Zm,ym) = k /var[l,(zm,ym)] be a confidence

interval so that £ is a detection threshold corresponding to
the minimal SNR that spots must satisfy to be detected. One
decides there is a spot located at (zm,ym) if (Fig. 1.C) :

[Iz(xmaym) - AN'(«’Em’ ym) ] > LB(Z)'

2.4. Spot location refinement

In order to get a rapid subpixel estimate of the position of
each detected spot, we apply a three point estimator on di-
rections z and y. Let (zm, ym) be the pixel coordinates of a
detected spot. The subpixel coordinate of that spot along the
x-axis, denoted xg, is estimated according to the following
relation, based on the assumption that a spot is gaussian :

"0 — 100

217y — 41g0) + 2175

where I(‘Z“zx) = log [IZ(:cm +iYm+J) — I//J\g(z)] The
same process is led on the orthogonal direction, in order
to get a subpixel coordinate yg. The accuracy of the three
point estimator, evaluated from Monte-Carlo simulations, is
about 20 nm (1/10 pixel) along each axis. A more accurate
localization can be obtained, at the expense of additional

computing time, using a full least-squares gaussian fit [9].

3. ASSOCIATION STAGE

Once spots are detected on the image I, the next task is to
associate them to the already estimated trajectories. We use
a model of the dynamics in order to predict the possible lo-
cation of spots in the neighbouring images of the sequence.

3.1. Receptor dynamics model

Early models of the plasma membrane (notably the fluid
mosaic model) postulated that proteins, homogeneously dis-
tributed within the membrane, move by free diffusion in a
lipid bilayer. Whereas SPT experiments have revealed a
large diversity in the motion of individual molecules, let us
apply Occam’s razor principle and assume that the receptor
dynamics is a planar Brownian motion.

In an homogeneous two-dimensional system, the prob-
ability distribution C' that a particle with a diffusion coeffi-
cient D suffers a displacement r in a time period 7 is [1] :

1 r?
CrmD) = (gp7) e (— 4DT)~

In SPT experiments, one measures the successive positions
r(t) = [x(t), y(¢)] of the label molecule. The diffusion co-
efficient can be evaluated by means of the mean square dis-
placement (MSD) function defined by :

p(r) = (It + 7) = r(®)|*) = 4Dr.

3.2. Application to receptor tracking

Data association is fundamental when dealing with multiple
targets : new measurements on the image I, must be reli-
ably associated to tracks built with the (z — 1) first frames.
Conventional association methods, as the Joint Probabilistic
Data Association Filter (JPDAF) [10] or the heuristic tech-
niques presented in [11], do not account for long disappear-
ances of tracked objets. We present here a simple rule of
data association based on the receptor dynamics model.

Let us note T' the set of tracks built with the (z — 1)
first frames. To the ™ track of T, we assign the state vec-
tor 0, = [rg, 2k, Di] where r, = [z, yx] is the last known
position of the £ track on the plane z;, and Dy, is its esti-
mated diffusion coefficient (see below for details). Let us
note S, the set of spots detected on I,. For the j spot of
S, we have its position r; = [z;,y;]. In order to reduce
the complexity of the correspondence problem, we accept
matching between the k™ track of 7" and the ;™ spot of S,
if the following conditions are both satisfied :

o C1 The QD associated to the k™ track of T has not dis-
appeared on more than AT* frames, where AT is a
persistence criterion a priori fixed : (z—z) < AT*.

e C2 The probability that the QD associated to the k" track
diffused over a distance d; = |[r; — rz|| does not
exceed (1 — P), where P is a threshold probability
a priori fixed. The following inequality must thus be
satisfied : dj; < \/4 Dy, (z — zi)tin [log(P)].

The association stage algorithm is the following one :

1. Build the subset T of T so that each track of T¢q
satisfy C1.

2. Compute the euclidean distance between each spot of
S, and the last known position of each track of T¢;.
Store each distance satisfying C2 in a list LS)). Each
element of L((jo) gives the cost of an association be-
tween a spot and a track.

3. Apply the following sequential assignement scheme,
which prevents tracks from fusing :
1:=0
Do

o Find dj j» = Iil(lr)l dj i (nearest neighbour)

d
e Link the spot j* to the track k*



e 1:=7+1 .
o L9 = LS\ {dy | (G = 3*) or (k= k*)}
untilLE;) =0

4. For each track to which a new point has been added,
update the diffusion coefficient by applying a linear
least-squares fit to an estimate of the MSD calculated
over the last 30 positions [1, 12].

5. If some spots of S, remain not-assigned, they are con-
sidered as new tracks, to which are given an arbitrary
diffusion coefficient D;,; a priori fixed.

4. EXPERIMENTAL RESULTS

Our tracking method has been implemented in Matlab (Math-
works) on a 2.8 GHz Pentium IV and applied to sequences
of fluorescence images. A few minutes are sufficient to
analyse a complete image sequence of 1000 frames. Note
that an implementation with a compilable language would
allow a faster execution. Figure 2 shows some typical re-
sults, obtained with A" = 20, D;,; = 107 um?s~1,
P =0.15and k£ = 10.
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Fig. 2. Representative examples of molecular motions observed
by single quantum dot imaging. First row : subregion (29 x 20
pixels) extracted from a fluorescence image sequence. Notice that
some spots disappear and reappear. Second row : circles indicate
detected spots and are surimposed to estimated trajectories.

5. CONCLUSION

Single particle tracking experiments require computational
techniques to extract relevant biological information from
long sequences of fluorescence images. We propose a fully
automatic tracking algorithm, able to detect fluorescent spots
and track them over time in an on-line approach. Our method
is specially suitable for single quantum dot imaging, and ac-
counts for the blinking of the fluorescent probes. The algo-
rithm has been successfully applied to the analysis of the
diffusion dynamics of membrane receptors in live neurons.
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