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Abstract

We propose a new image compression method based on
geodesic Delaunay triangulations. Triangulations are gen-
erated by a progressive geodesic meshing algorithm which
exploits the anisotropy of images through a farthest point
sampling strategy. This seeding is performed according to
anisotropic geodesic distances which force the anisotropic
Delaunay triangles to follow the geometry of the image.
Geodesic computations are performed using a Riemannian
Fast Marching, which recursively updates the geodesic dis-
tance to the seed points. A linear spline approximation
on this triangulation allows to approximate faithfully sharp
edges and directional features in images. The compression
is achieved by coding both the coefficients of the spline ap-
proximation and the deviation of the geodesic triangulation
from an Euclidean Delaunay triangulation. Numerical re-
sults show that taking into account the anisotropy improves
the approximation by isotropic triangulations of complex
images. The resulting geodesic encoder competes well with
wavelet-based encoder such as JPEG-2000 on geometric
images.

1. Introduction
Image compression requires the extraction of meaningful

features of an image to minimize the rate distortion curve.
A popular tool is the wavelet transform, that offers a sparse
representation of natural images. Wavelet coefficients are
mapped to a binary code using an adaptive arithmetic en-
coder such as in the JPEG-2000 standard, see for instance
[13]. Because of their square support, wavelets are however
sub-optimal to extract geometric features such as edges or
directional textures.
Geometric compression. Anisotropic representations such
as curvelets [4] or bandlets [16] allows one to improve over
the wavelet approximation, but their extension to practical
coders remains difficult. Another attractive representation is
the design of an adaptive triangulation to approximate the
image with linear splines whose supports follow the geo-

metric features of the image. Optimal adaptation of trian-
gulations is a NP-hard problem [1], and one has to use ap-
proximate greedy schemes to design the sampling and the
triangulation layout.
Triangulation simplification. Methods from computer
graphics based on mesh simplification are efficient for sur-
face approximation [7]. Similar methods based on thin-
ning together with Euclidean Delaunay triangulations have
been applied to image compression [5]. Using an Euclidean
metric might be problematic in highly anisotropic regions
where an optimal triangulation deviates from an Euclidean
Delaunay triangulation.
Triangulation refinement. Mesh adaptation using vertex
insertion is popular for the resolution of PDEs whose solu-
tions might exhibit singular features [8]. The first attempt to
use anisotropic metric for Delaunay refinement [11] makes
use of an approximate Riemannian geodesic metric.
Contributions. We propose to define a truly Riemannian
geodesic sampling, and use the anisotropic Delaunay trian-
gulation for image approximation. This combines in a com-
mon framework several important features from previous
works, including fast Delaunay insertions, anisotropic sam-
pling [6, 15], anisotropic triangulations [12, 11, 17, 2, 3].
We show that these properties are indeed crucial to improve
over the sate of the art for the compression of geometric
images.

2. Approximation by Triangulation and
Anisotropy

2.1. Image approximation by triangulations

It is possible to approximate an image, expressed as a
function f ∈ L2(Ω), using m linear spline functions de-
fined on a triangulation (V,F), where V = {vi}i=n

i=1 ⊂Ω de-
notes the vertex set and F ⊂{1, . . . ,m}3 the triangle set.
Each triangle of F is represented as a triplet of vertex indi-
cies. The resulting approximated image is given by

fm =
∑

i

aiϕi, (1)
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where ϕi is linear on each triangle of F , and ϕi(vj) = 1
if i= j and 0 otherwise. The coefficients ai are computed
such that fm is the othogonal projection of f on the space
V generated by the ϕi, e.g.

fm = argmin
g∈V

‖f − g‖. (2)

This leads to solve the linear system Φa=F , where
Φi,j = 〈ϕi, ϕj〉 and Fi = 〈f, ϕi〉.

To minimize the error ‖f − fm‖ relative to the triangu-
lation (V,F), it is necessary to optimize the position of the
vertices and the connections between these vertices. We
must put more points near areas of strong image gradient,
and use strongly anisotropic triangles oriented in the direc-
tion of contours. For a cartoon image, which is a C2 func-
tion outside C2 contours, such an optimization of the trian-
gulation leads to an error in ‖f − fm‖=O(m−1), see for
instance [13, 4]. In this case, the side length ∆1 and ∆2 of
the triangles must verify ∆2 ≈ ∆2

1. We propose an efficient
triangulation algorithm adapted to this problem. This latter
result is far better than the wavelet m-terms approximation,
based on isotropic triangulations, which generates an error
in O(m−1/2).

2.2. Anisotropic metric

The desired anisotropy of a triangulation (V,F) can be
represented by a tensor field H : Ω→R2×2. At each point
x∈Ω, the local metric H(x) characterizes the shape (its
size and its orientation) of the mesh elements surrounding
x. It can be defined as a symmetric positive definite matrix,
and diagonalized as

H(x) = λ1(x)e1(x)e1(x)T + λ2(x)e2(x)e2(x)T , (3)

where the eigenvalue fields λ1 and λ2 satisfying 0 <
λ1(x) ≤ λ2(x), and e1, e2 are the orthogonal unoriented
eigenvector fields.

Each triangle of (V,F) conforming to H must be in-
scribed in an ellipsoid centered at x0

(x0 − x)T H(x0)(x0 − x) ≤ tm,

where tm depends on the number m of triangles in F . Tri-
angle sides are thus aligned with e1(x0), and they satisfy
the ratio ∆1/∆2 ≈

√
λ2(x0)/λ1(x0).

For a C2 function f , the ratio λ2(x0)/λ1(x0) can be
taken as the ratio |µ2(x0)/µ1(x0)| of the eigenvalues of
the Hessian of f at x0. This improves the constant in the
approximation error ‖f − fm‖=O(m−1) [14]. However,
this estimate is quite unstable and cannot be used to treat
noisy images, oriented textures, or cartoon images with
non-smoothed contours.

So, we propose to use the structure tensor [10] which is
computed from the image gradient by

Tσ(x) = Gσ ∗T0(x), (4)

where Gσ is a Gaussian kernel applied to each component
of the 1-rank tensor T0(x) = (∇xf)T∇xf . The parameter
σ allows a robust estimation in the presence of noise. We
have chosen σ =5/n for an image of size n×n.

From the diagonalization T (x) =µ1(x)e1(x)e1(x)T +
µ2(x)e2(x)e2(x)T , we define the triangulation tensor as

H(x) = (ε + µ1(x))α
e1(x) + (ε + µ2(x))α

e2(x), (5)

where ε > 0 controls the isotropic adaptivity of the triangu-
lation (the variation of density, see [17]), and α > 0 controls
the anisotropic adaptivity. A metric with a high value of ε
is almost constant, and a metric with a low value of α is al-
most isotropic. We have fixed ε to 10−5 and the influence of
the parameter α is adapted to the type of images to process.

2.3. Geodesic distance

As explained in Section 2.2, at each point x0 ∈Ω , the
local metric H(x0) defines the size of triangles around x0,
which must be of constant size tm for the modified metric

‖x0−x‖H(x0) =
√

(x0−x)T H(x0)(x0−x).

We compute a point set that achieves this condition by sam-
pling them uniformly according to a global metric dH(x, y)
between any pair of points (x, y)∈Ω×Ω.

The length of a piecewise smooth curve γ : [0, 1]→Ω,
according to the metric H , is measured by

LH(γ) =
∫ 1

0

‖γ′(t)‖H(γ(t))dt,

=
∫ 1

0

√
γ′(t)T H(γ(t))γ′(t)dt.

A curve γ reaching a point γ(t) =x of Ω, with speed γ′(t),
has a shorter local length if γ′(t) is approximately collinear
to e1(x) rather than to another direction. The geodesic dis-
tance between two points x and y of Ω is the length of the
shortest curve joining x and y

dH(x, y) = min
γ∈P (x,y)

L(γ), (6)

where P (x, y) = {γ : γ(0)= x∧ γ(1)= y} denotes the set
of piecewise smooth curves joining the points x and y. A
curve γ, which satisfies LH(γ) = dH(x, y), is a geodesic.

Given a point set S = {xk}k ⊂Ω, its minimal action map
is defined as

US(x) = min
xk∈S

dH(x, xk). (7)

An important theoretical result is if H is a smooth field, US

is the unique viscosity solution of the following Hamilton-
Jacobi equation

‖∇xUS‖H(x)−1 =1, with US(xk) = 0, ∀k. (8)

ha
l-0

03
66

93
3,

 v
er

si
on

 1
 - 

10
 M

ar
 2

00
9



Figure 1. Examples of geodesic distance map US from a central
point S = {x0}, together with a few geodesic curves. The metric
H is computed from the image f on the left using the structure
tensor (5) with an increasing value of ε and α = .75, so that the
metric becomes more isotropic from left to right.

The numerical solution of this equation can be computed
on a regular grid of N =n×n pixels. In the case of an
isotropic metric H(x) =λ(x)Id2, the Fast Marching (FM)
algorithm, introduced by Sethian [19], allows to efficiently
solve a discretization of (8) in O(N log N) operations. Sev-
eral extensions of the FM algorithm have been proposed to
solve (8) for a generic metric, see for instance [18]. Figure
1 shows examples of geodesics distance and minimal paths.

3. Anisotropic Geodesic Meshes
Computing a triangulation (V,F) conformed to a ten-

sor field H is a difficult optimization problem. The con-
formity constraint on V imposes that the vertices must be
uniformely distributed according to the geodesic distance
dH . This implies that dH(vi, vj) is approximately constant
if (vi, vj) is an edge of a face of F . A uniform distribution
of the vertices satisfies

∀x∈Ω, UV(x) ≤ δ, (9)

where δ > 0 controls the density of the vertex set. Such
a sample set of Ω can be computed using a farthest point
sampling strategy.

3.1. Anisotropic farthest point sampling

The farthest point strategy (FPS) has been introduced by
Eldar et al. [6] for image sampling. It is an iterative method
which starts with an initial sample set V ⊂Ω. Each iteration
places a new sample at the farthest point p∈Ω from the

(a) isotropic (b) anisotropic
Figure 2. Results of the FM-FPS algorithm for 2000 samples.

previously computed samples

p = argmax
q∈Ω

UV(q), (10)

until condition (9) is reached. This sampling strategy is
summed up by the following algorithm:

Algorithm: FPS(V, ε)
1. Find the point p∈Ω satisfying (10).
2. If UV(p) < ε, then exit, otherwise set V ←V ∪{p}.
3. Update the distance map UV , and goto 1.

Step 3 only requires a local update of the distance map in the
region {x\U{q}(x) ≤ UV−{q}(x)}. This makes the whole
seeding process becoming faster as new points are inserted.

In the case of the Euclidean distance, the FPS is linked
to the incremental construction of Voronoi diagrams. As
pointed out by Eldar et al. [6], the farthest point from the set
V corresponds to the farthest vertex of the Voronoi diagram
of V , which is to the center of the largest ball not containing
any point of V . This nice property allows to compute effi-
ciently the farthest point from the Voronoi diagram. How-
ever, it does not extend to the case of geodesic distances, for
which the farthest point does not necessarily correspond to
a vertex of the geodesic Voronoi diagram. Even if this draw-
back is not taken into account, computing geodesic Voronoi
diagrams is not possible with classical computational ge-
ometry techniques (see for instance [12, 11]).

To sample images with the FPS, Eldar et al. [6] proposed
to assign a weight to the vertices of the (Euclidean) Voronoi
diagram with an application-dependent function, and to se-
lect the next point to include in V as the Voronoi vertex
having the maximum weight. Later, Peyré and Cohen [17],
and Moenning and Dodgson [15], proposed independently
to approximate the geodesic distance with the fast marching
method, leading to a fast marching FPS (FM-FPS).

With an anisotropic fast marching algorithm, the pro-
posed extension of the FM-FPS to anisotropic metrics is
obvious. Nevertheless, it should be useful for the reso-
lution of problems which need a step of point selection.

ha
l-0

03
66

93
3,

 v
er

si
on

 1
 - 

10
 M

ar
 2

00
9



Using the structure tensor (4) as a metric, the anisotropic
FM-FPS concentrates the samples near the most important
image structures, see Figure 2 for a comparison with the
isotropic FM-FPS (computed with H(x) =µ1(x)Id2).

In the sequel, we present a modified version of the FPS
algorithm which generates triangulations of images con-
formed to a metric H .

3.2. Anisotropic farthest point meshing

We have modified the farthest point strategy so that
the faces of the triangulation (V,F) are aligned with the
direction of anisotropy e1. This is imposed by defining F
from the dual complex of the anisotropic Voronoi diagram
of the sample set V .

Anisotropic Voronoi diagram. From the anisotropic
geodesic distance dH , the anisotropic Voronoi cell Vi(V)
generated by a point xi ∈V is defined as the set of points
p∈Ω for which the geodesic between p and xi is shorter
than the geodesics between p and the other points of V

Vi(V) = {x∈Ω : dH(x, xi) ≤ dH(x, xj), ∀sj ∈V}.

The union of all Voronoi cells, for i = 1, . . . , n, partition
Ω to form the bounded anisotropic Voronoi diagram of V ,
noted V (V). This diagram is also known as the Riemannian
Voronoi diagram [12].

Anisotropic Delaunay complex. The dual complex
of V (V) is the anisotropic Delaunay triangulation of (V ,
noted D(V). Contrary to the (Euclidean) Delaunay trian-
gulation, its anisotropic version D(V) does not necessarily
define a valid planar triangulation:

– Some vertices can be isolted (connected to only one
other vertex of D(V)).

– Some edges can overlap.

Also, when V is the result of the FPS, D(V) is not neces-
sarily a triangulation of Ω. Indeed, the boundary ∂Ω should
always be represented in D(V).

Farthest point meshing. To construct a valid planar
triangulation of Ω according to the density constraint (9),
we initialize the set V with at least the four corner points
of ∂Ω, such that the boundary of D(V) corresponds to ∂Ω.
Then the FPS is modified as follows.

The farthest point xk (see (10)) is inserted in V if
Vk(V)∩ ∂Ω = ∅. Otherwise, there exists a boundary edge
(xi, xj)∈D(V) which satisfies Vk(V)∩ (xi, xj) 6= ∅. In
this case, the edge is said to be encroached by xk. To en-
sure that ∂Ω is always represented in D(V), the encroached
edge is split into two sub-edges (xi, x̃k) and (x̃k, xj), where
x̃k = argminx∈(xi,xj)∩Vk(V)dH(x, xk).

Once the FPS with boundary constraints has been com-
puted, the proposed algorithm iteratively inserts points to V
while the triangulation is not planar:

– If a vertex xi ∈D(V) is isolated, it is connected
to one vertex xj ∈D(V). In this case, the point
x̂i = argminx∈Vi(V)∩Vj(V)dH(x, xi) is inserted to V .

– If a triangle (xi, xj , xl) is inverted, its dual Voronoi
vertex Vi,j,l =Vi(V) ∩ Vj(V) ∩ Vl(V) is inserted to V .
When there is no inverted triangle, then no edge can
overlap.

The farthest point meshing method is summed up by the
following algorithm:

Algorithm: FPM(V, ε)
1. Find the point xk ∈Ω satisfying (10).
2. If UV(xk) <ε goto 5.
3. If xk encroaches a boundary edge (xi, xj)∈D(V)

Split (xi, xj) into (xi, x̃k) and (x̃k, xj)
V ←V ∪{x̃k}, update UV and goto 1.

4. V ←V ∪{xk}, update UV and goto 1.
5. If ∃xi ∈D(V) isolated, then xk← x̂i and goto 3.
6. If ∃ inverted triangle (xi, xj , xl)∈D(V)

xk←Vi,j,l and goto 3.

This algorithm is similar to the anisotropic Delaunay
reffinement meshing algorithm of Labelle and Shewchuk
[11, 2]. The main difference is we use a truly anisotropic
geodesic distance, meanwhile they use the modified metric
(3). This is also the strategy adopted by Bougleux et
al. [3], but in a different context. This allows to obtain
better results, in particular for triangulations with a few
number of vertices, where the approximation with (3) can
be important.

4. Image Approximation and Compression
4.1. Spline approximation

Once the image f has been triangulated with the
anisotropic farthest point meshing method, its spline ap-
proximation fm, given by (1), is progressively refined as
the value of m increases. Figure 5 (left column) shows ex-
amples of triangulations for two values of m and α =0.75.

As shown in Figure 4, we found the error ‖f − fm‖min-
imal for α≈ 0.75, with fm the image of Figure 5 (bottom
left), and this for a wide range of m. Following an experi-
mental study, α≈ 0.75 seems to be an acceptable choice for
a wide range of natural images. From now on, that is the
value we are going to use in the paper.

Figure 3 shows the evolution of SNR, according to m, for
an anisotropic Delaunay triangulation. It is compared to the
SNR of the Euclidean Delaunay triangulation of the sample
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Figure 3. For α = 0.75, SNR according to m for the anisotropic
Delaunay triangulation (solid) and for the Euclidean Delaunay tri-
angulation (dotted).
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Figure 4. For m = 230, 260, 300, SNR according to α (bottom).

set generated with α =0.75. This shows the importance to
compute both an appropriate sampling and a suitable con-
nectivity to obtain a better approximation.

4.2. Quantification

To encode the approximation fm, we quantify the posi-
tion of the vertices of V with a setp Tv , as well as the coef-
ficients ai with a step Ta. Thus, we obtain rounded integer
values v̄i = [ai / Tv] and āi = [ai / Ta]. The coefficients ā
and v̄ are encoded with an arithmetic encoder on Rv +Ra

bits. The decoder can compute the decompressed positions
Ṽ = {ṽi}i and coefficients by ṽi =(v̄i + sign(v̄i) / 2)Tv and
ãi =(āi + sign(āi) / 2)Ta. The decompressed approxima-
tion is thus given by

f̃m =
∑

i

ãiϕ̃i,

where ϕ̃i is the spline basis assocated to the vertex ṽi.
The triangulation connectivity must also be encoded, on

Rc bits. In order to reduce this number Rc, we transform the
anisotropic Delaunay triangulation (Ṽ,F) to the Euclidean
Delaunay triangulation of Ṽ , which can be constructed by
the encoder and the decoder. We use the local optimiza-

tion procedure of Lawson (see for instance [9]) to compute
this transformation. Given an interior edge (vi, vj)⊂ F̃ in-
cident to the triangles (vi, vj , vk) and (vi, vj , vl), this edge
is replaced by the edge (vk, vl) if the triangles are not in
the Euclidean Delaunay triangulation. The number of bits
needed to encode F is reduced to Rc =K log2(A), where
K is the number of substitutions and A the number of edges
in F .

Other image compression methods, based on triangula-
tions, have already been proposed in litterature, see for in-
stance [5]. These methods begin with a dense triangulation
which is decimated to reduce the approximation error. Our
approach is different, it progressively refines the triangu-
lation, which is very fast for low values of m. Moreover,
it uses a Delaunay triangulation based on an anisotropic
geodesic distance, where the elongation of triangles easily
adapts to the image structures, contrary to the Euclidean De-
launay triangulation used for instance in [5].

The choice of Tv and Ta can be optimized to minimize
the curve of coding rate ‖f − fm‖ according to the number
of bits R =Rv +Ra +Rc. To simplify matters, we have
used Rv =10−2 and Ra = ‖f‖∞/100. Figure 5 (left) com-
pares compressions given by our method and JPEG-2000
(see [13]). This shows that for low coding rate, and for
images with sufficient geometric structures, our method im-
proves the current standard.

5. Conclusion and Perspectives
We have presented a new image compression method

based on anisotropic geodesic Delaunay triangulations. The
anisotropy of images is exploited to generate triangula-
tions through a farthest point sampling approach. Images
are then approximated by linear splines on the triangula-
tions. Finally, the compression is achieved by coding both
the coefficients of the spline approximation and the devia-
tion between the geodesic Delaunay triangulation and the
Euclidean one. By experimentation, we have shown that
the resulting geodesic encoder competes well with wavelet-
based encoder such as JPEG-2000.

Since anisotropic geodesic distances can also be com-
puted on meshes with fast marching methods, the proposed
approach can be extended, with some modifications, to
compress meshes.
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