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INTRODUCTION

Let 2 be a bounded open subset of RY with a smooth boundary ¢Q.
Consid:r the problem

u,— Adu=f(u) in Qx(0,7),
u=0 on ¢Q2x(0,T), (P)

u(x, 0) = uylx) for all xe Q,

where “R* - R* is locally Lipschitz, nondecreasing and f(0)=0. If u,
is a coatinuous function on £, there exists a unique classical solution u
of (P) defined on [0, T,,.) and such that we%>'(Q2x(0, T,.,))N
€(2x]0, T,,,)) withlim,_ . |u|l., =% if T,,, <. A well-known result
asserts that if u is large enough and f(u)=u”, p> 1, for example, then
Trax < o0 (this is the case when 1/2 [Vuo|* — 1/(p+ 1) [oluol” "' <O see.
for exzample, [1] or Corollary 2.2). In what follows, we suppose that
T < +x.
Assume f,: R* - R™ is a sequence of functions such that

(a- for each n,u—f,(u) is globally Lipschitz, non decreasing,
£,00)=2,
(b for each u, n > f,(u) is increasing and converges to f(u).
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Let u, be the unique global classical solution of
Uy — Aun :ﬁx(ulz) in Qx (0’ + )»
u,=0 on 0Q2x(0, +x), (P,)

u,(x,0)=uy(x) forall xe Q2.
We say that f satisfies (h) if:

fis convex and 3y > 1, a = 0 such that u — f(u)/u’

1s nondecreasing on (a, + oC). (h)
Our main result is

THEOREM 1. Let uge L™ (R2), uy=0. Suppose that one of the following
hypotheses holds:

(H1) Q convex and if N =2, there exists pe (1, N/(N—2)) and ¢>0
such that 0<f"(u) < Cu” "+ 1) for all u=0. uye Wi(Q), dug+f(ug) 20
in 7'(2). (No hypothesis on f for N=1.)

(H2) [ satisfies (h) and uye Wi'(Q), dug+ flug) 20 in 2'(2).

(H3) [ is convex and there exists pe(l, (N +2)/(N—2)) such that
O S limu - 1 (f‘(u)/ul’) <.

Then

(1) lim,_ . u,(x, O)=u(x.t) for all (x,)e 2x [0, T ..
(it lim, _ , u,(x, )= for all (x,t)e 2 x (T, o).

max* ~

We will see that Theorem 1 proves, in some appropriate sense that u
cannot be extended beyond T, and blows up everywhere on
Qx (T, %) which is a conjecture of H. Brezis.

In this paper, we consider also the notion of an integral solution of (P)
which is, in some sense the weakest definition of a positive solution and we
prove that it cannot be extended beyond T,,,,. Let us be more precise. Let
u, be a nonnegative measure on Q. We say that V is an integral solution of
(Py if V(x,t): €x(0, +o0)—>[0, +ov] is a nonnegative measurable
function such that

Ve = Guxugp)dy+ [ [ Gle—s,x 1) f(V(35) dyds (1)
0 [URg9]
for a.e. (x, 1) in 2 x (0, 20), where G(f—s, x, y) denotes the Green function

of the heat equation with Dirichlet boundary condition. Given an integral
solution V' we define its true Time of existence

T*(V)=sup{T; V is finite a.e. on 2x (0, T)}.
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Using: the properties of G, we easily see that V'= + 00 on Q x (T*(V), o)
and if ¢, belongs to (), we have u<V on 2 x (0, T,,,,) where u is the
classica solution of (P) (see Proposition 2.1). In this framework, our main
result bxcomes:

THEOREM 2. Under the assumptions of Theorem 1, let V be any integral
solution of (P) then T*(V)< Ty, -

Let us explain why Theorems 1 and 2 are equivalent. The integral
solutiors of (P) are not in general unique (see [2, 11]). Among all these
solutior s, there exists a minimal element U which is the least integral
solutior of (P) and it is easy to see that we have

lim u,(x, t)=Ulx, 1) forall (x. f)in 2 x (0, =)

and

limu,(x, ty=ulx, 1) forall (x, 7)in  x (0, T,,.\)

n

(see Proposition 2.1).

If we suppose that Theorem | is false, U would be a continuation of u
behond T, and we would have T*(U)>T,, which contradicts
Theoreta 2. Thus Theorem 2 implies Theorem 1. For the converse, observe
that Thzorem | means T*(U)= T, and we have for all integral solution
V of (P) T*(V)< T*(U) (see Proposition 2.1).

To pirove these theorems, we use different techniques. In the first part, we
prove cirectly Theorem | under (HI) by resuming some techniques of
[4.8].

In the second part, we prove Theorem 2 under (H2). The method is quite
differen because no usual a priori estimates on « hold in this case, but we
know a necessary and sufficient condition on u, and T to get an integral
solutior U of (P) such that 7*(U) > T (see [5]). The first step of the proof
is Lemraa 2.1 where we establish in some sense that if (P) has an integral
solution U when the initial data is u,, the least integral solution of (P)
when the initial data is iu,, is a classical solution on (0, T*(U)) for all 2 in
(0, 1). (Remark 2.1). The second step is to prove that there exists a function
£* # 0 which realizes the equality in the criterion given in [5]. Recall that
this critzrion can be written

J, €0 u sjﬂr J, rr=g—azyer g dva



BLOW-UP AFTER T, 145

for all suitable test function £. Here f* is the conjugate function of /. We
prove that £* is a solution of

—EH— A =f' (W) E*>0  on 2x(0, Toay),
é* = 0 on 69 X (07 Tmax)’

¢*(x, Trax) =0 for ae xeQ,

f'(u) E* and uf'(u) E* belong to L'(2x(0, T,,,)) (see Theorem 2.2),
Theorem 2 is then a corollary of this result.

In the third part, we prove Theorem 2 under (H3). Using the techniques
of [6], we begin by proving that without any restriction on the growth of f
(other than (h)), the least integral solution of (P) satisfies

UelL}

loc

(0, T*), Hy(R)), dUjdt € Li, (0, T*), L*(R)),

loc

UftU)e Li, ((0, T*), L'(2)),
where T* = T*(U). Theorem 2 is then a consequence of a result of Giga
{see [9]). As corollary of Theorem 2, we prove that under (H3), ug— T,
is continuous on L™ (Q).

Finally, note that many authors have studied the behavior of u near T,,,
(cf. [7, 10, 12, 17, 18]). Especially, Weissler proves in [18] that for
suitable u, and f, lim ;. u(x, r) < oc except at one point. Friedman and
B. Macleod [7] obtain under some specific assumptions that
lim,, 4 u(, ), <o when g <N(p—1)/2 and f(u)=u’.

We would like to thank F. B. Weissler for his helpful suggestions which
lead to an improved version of this paper.

I. PROOF OF THEOREM | UNDER HYPOTHESIS (H1)

We recall « and u, are, respectively, the classical solutions of (P) and
(P,).

We shall first derive some properties of u and u,. By applying the
maximum principle (see [15]), we have that u, and u are positive for xe Q
and 1> 0. Since (f,) is nondecreasing in #n, so is (u,). Therefore we can
define:

Ulx, )= lim u,(x,t) for all (x, t)in Q x (0, o). (1.1)

Note that U(x, 1)e R* u {00} and

Ulx, )y <u(x, 1) for all (x, 1) in 2 x [0, T\ax)- (1.2)
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Morzover, the following lemma shows that u(x, t) is nondecreasing in ¢
for all x in Q.

LemMua L1, Ifu,e L*(Q2)n WLNR) and Aduy+ f(uy) 20 in 2'(Q), then
the solution u of (P) on [0, Ty..] is nondecreasing in t for all x in Q.
Procf. Let w, be the solution of
—Adw, +nw, = f(uy) + nu, on £,

(Q")

w,=0 on Q.

Proble n (Q,) has a unique solution in W>?(Q)n H}(82) for all finite p. It
follows that

_A(wn_uO)+n(wn_u0)=f(u0)+AuO>O in 9’(9)

(1.3)
(w, —ug) € Wy'(R2).
Therefore, for all ne N, w, —uy>=0, and thus
—Mw,—w, ) +w,—w,, )=w,,,— Uy on £, 4
(1.4)

1.1
w,—w,, € W() (Q)

Hence, (w,) is a nonincreasing sequence and, by (1.3), its limit is
necessarily u,.
Morcover, dw, + f(w,)=n(w, — uy) + f(w,)—flug) =0 on £, and the
following problem has a unique solution on [0, T,):
VVm -4 Wn =f‘( W’”) on x [O* Tn ),
W, (0)=uw, on 0, (1.5)

W.=0 on 7Qx[0,T,),

with liry,, -, [ W, (-, 1)l = . Applying the maximum principle to W,,,. the
solution of:

dW,)dt—aW, =["(W,) W, on Qx[0,T,),
W, 0)=dw,+f(w,)=0 on 0, (1.6)
W,=0 on 2x[0,T,),

we find that W, is nondecreasing in . Applying the maximum principle

again we have that for all ne N:

Tn s Tn +1 S Tmax and Wn > Wn + 1 2 u on [0’ Tn ) ( 17)
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We can therefore set:

T=1lim T, and W=1m W, on [0,T)  (18)

H
n - x "o

If 1 (0, T'), Wis bounded on [0, 1] and W is an integral solution of (P)
with initial data u,. This can be seen by passing to the monotone limit in
the equation satisfied by W,. So W is classical on [0, ¢] an then equal to u
by uniqueness. W, is nondecreasing in ¢ for all n and so is u=W on
[o, 71

We now show that indeed T" = T,,,. We can assume that u,e C(£2) by
working with the initial value u(x, t,) for some ¢, € (0, T"). First, w, and u,
are continuous on £, a compact set. By Dini’s Theorem, (w,) converges
uniformly to uy on Q. Let T€ (0, Thax)s M = lufl ;5.0 x0.71) < 90, and C the
lipschitz constant for fon [0, M + 1 ]. Then there exists M,e N such that

CTmax

forall n=N,. lw, — il € <1 (1.9)

If n=Nyset A,={te[0,T,)|Vrel0,t], I(W,—u)lt)|,<1}. 4, can
be written A,=[0,T,) with 0<T,<T,. If T,<T, then T,<T, as
lim,,,, IW,(-, DI, =oc. For te[0, T,]. we have

I, =0, <o, =gl + | CUW,—u)e) e (L10)

An application of Gronwall’s Lemma gives:
(W, =), Tl < lw, = uoll €< 1. (L11)

This contradicts the definition of T,. Thus 7,2 T for n> N,. We have
also shown that T"=T,, and that W, converges uniformly to u# on
O x [0, T] for all Te [0, T,.,)- We deduce then that u is nondecreasing in
1. So we can define a(x)=1lim ;. u(x, 1) in Ru {oc}.

Define [ f(u)],=Inf(f(u), n). For the moment, we will assume that
f(u)=[f(u)],. This assumption will be removed later. For n > [lugl| .., we
have Auy+ f(uo) = Adug+f(ug) =0, and by applying Lemma 1.1 we see
that u, is nondecreasing in 7.

To show (i) and (ii), we use the three following lemmas:

Lemma 1.2, Foralle>0and all T> T, + € and all Q' € Q, there exists
a constant C >0 such that:

u,,(X, t) = C(t - Tmax - L) J~ fn(un(y9 Tmax)) d_V
c

forall (x,1) in Q' x[T.,.+¢&T]. (1.12)

580/71,1-10
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Proof We use here an idea of Baras and Goldstein [4]. If o € L*(Q),
we can write

() 9)x)= [ (S @)1 B3V dy =] (S(10.)(x) oly)dy. (113)

where d. is Dirac mass at point x. By the maximum principle we have
C=Inf{(S(t) 0. 0y), (1, x,y)e[6, T]x Q' xQ'} >0. (1.14)

By writing the integral formulation of (P,) and using (1.13) and (1.14), we
have

w1 = (SO u)(¥)+ | SU=5)flulx, shds. (115
0
Thus if (x, 1} Q2" X [T, + ¢, T], we have
w2 [ ] Sl s dyds (1.16)
0 Q2

and

&

uJLn>Cj“J Ll (3 Tonss)) ds. (1.16')

Tay "

That s, (1.12).

LEMMa L1.3. Assume (H1). Then,
lim || f(u(-, )], = oc. (1.17)
11 Trnax

Proof We recall that if | <p<g< 0, S(t): L7(2)— LY(2) 1s bounded
and

1
||S(1)¢||4<W||(p||p fora“(pELp(Q) and >0

(1.18)

Use of (1.18) in the integral equation satisfied by u yields the inequality:

rt

e il < Noll + |

1
(4H(t_s))N(l “1.q)72 ||f(ll(', sNI 1 ds

forallt in [0, T,.) (1.19)
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We remark that || f(u(-, ¢))||, is nondecreasing in ¢ and so have a limit as
11 Thax. It s sufﬁcwnt to show that it is not bounded. If N=1,
lim,, . lu(-, 1), = and (1.17) follows by taking g = oc.

In the same way, if N>2, lim [lu(-, ¢)[|,= oo for g> N(p—1)/2 (see [16]
and [5]), and (H1) permits us to find ¢>N(p—1)/2 such that
N(1—1/g)2< 1.

Lemma 14, Werecall u(x)=1lim,,,_ u(x, 1). If | f(@)|l, = 20, then there
exists Q, € Q such that

J' fla(x))dx= tim | flu(x, 1)) dx = oc. (1.20)

| 17 Tmax ¥£2,

Proof. We use the same definitions as in Gidas—Ni—Nirenberg [8] as
applied in Ni-Sacks-Tavantzis [14].

Recall that © is a bounded convex open set with smooth boundary. If
X € 8, we denote by v the outward unit normal vector at x. We then define
the hyperplanes T(4, x)={yeR" y-v=4}. Q is bounded, so for 1 large
enough, QN T(1, x)= . If A,=x"v, T(4,, x) is the tangent hyperplane to
Qatx,andif A>A_then T(A, x})n Q= and T(1,, x)n23x. For A< i,
we set

Y (L x)={yeQ, i<y v<i}

and
Y (hx)=1,, (2 (4 x)>,

where I, . is the reflection across 7(4, x). For A,—4 small enough
(A x)c Q.

By the strong maximum principle (see [15]), Vu(x, 75} v <0, for all
t,>0.

Let 75€(0, T,,.,) then we can find a neighborhood of x such that
Vu(y, ty)- v <0 on this neighborhood.

We can choose local coordinates at x defined by (x, T(4, x), v), if ye RY
it can be written y= ()", v5). A neighborhood of x can be choosen of the
shape C,={yeR" |} <e, lynl<é}nQ with e={¢,¢,}. We can
make this construction at every point x of Q2.

Let x,edQ and K, =T(A,, xo) n Q2. K, is compact convex set which
contains x,, moreover

x0°

K\'(;: ] m Z (is xO)'
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For all xe K, v is the same exterior normal and we can define an open
neighborhood O, of x on which Vu(y, t,)-v<0 and of the shape of C..
K.,<|)O, so we can extract a finite cover of K, by O, =C(x,¢,)
for 1<ign, U, =10, is an open set containing K, and so there
exists & A<A, such that X(4, x))cU,. Set u, =(A+41,)/2 we have
Z (o Xo) € Q and X'(f . Xo) U Z'(H s Xo) < U,

Note that if, for instance, £ is strictly convex, K, = {x,} and what we
have just done is unnecessary.

We set v(x, )= u(ITl,‘O_XO(x), t)on X(m,, x,). We have then

u,— Au=f(u)
and
v,—Av=f(v) on X(p.. X)X (0, Tray)s
v=0=u on X2, =02n2(u, x0)x(0, Tpyy)

v=u on X, =N T(Uy. X)X (0, Trax)
Since Vu-v<0on U, x {15} and 2w X'(u,,, Xo) = U, we have

v(x, to) = ul(x, ty) on X(u,,, Xo) (1.21)

We have then
u,—Au=f(u)
and
L—Av=f(e)  on E(iy. xo) X (0, Tk

vzu on AXx(0, T,

v(x, tg) Zulx. 15) on  Z(u,, Xg)

By tle maximum principle,
v(x, 1) = u(x, 1) forall (x, 1) e 2 (¢ Xo) X (1o, Tipax)-

Z(py»279) contains an open set of the type C,.nQ where
C.={)eR" |y <e,, |ynl <e&,} with coordinates in (xq, T(4,,, Xo), v). If
we choose &, <A, — ,, then the reflection of C, 2 across T(u,,, o) has
compact closure in €. These neighborhoods C, form an open cover of dQ.
Therefore we can extract a finite subcover denoted O, ,..., O, .

We szt Q' =Q/Jr_, O,. 2 is open and has compact closure in Q. If
1>ty

Flulx, 1)) dx+ Lz'f(u(x, 1)) dx

< i _[ Sflu(x, t))dx+f flulx, 1)) dx

r=1 P O ) @
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1 u‘,__“(Ox.lmQ) has compact closure in Q. If we set
Q2,=Q'vul,_, H#“‘,\.,(Oan), Q, is compact in 2 and

f flu(x, 1)) dx < (J fu(x, t)) a’x) (p+1) forall t > ¢,.
Q fo])

By taking the limit as 71 T,,,,, we have

| o) dx=oo.
2

Remark. We can see from the above proof that for the case N=1 and
Q= (0, 1), if u, is increasing in x on [0, a], then u remains increasing in x
and on the half interval [0, a/2] for all 1€ (0, T,.,)-

Proof of (i) and (ii). We deduce from (1.2) that U is an integral
solution of (P) on [0, T,..,) and is bounded on 2 x [0, T] for T < T,,,-
Then U=u on 2x [0, T] by uniqueness of bounded solution of (P) on
[0, T]. So we have (i).

To prove (ii), we chose (x, 1) e Q X (T .y, 20). We define Q, by applying
Lemmas | and 1.4, and Q' € 2 which contains £, and x. Choose ¢ >0 such
that r> T, + ¢ Then, Lemma 1.2 implies

U(x. 1) 2 C(t — Topy — &) J Fli(x)) dx = o. (1.22)
o

which is (ii).
Observe that under (H1) or (H2), we have

ProposiTiON 1.5. lim, 4 w(x, t)=lim,_  u,(x, T

max

) for all x in Q.

Proof. U is increasing in ¢, since u,, is for n large enough. Therefore if
te [0, Toax), u(x, 1)=Ulx, ) < U(x, T, for all xe Q. Taking the limit as
1T Trax» We have i(x) < U(x, T,.y), for all x in Q.

To prove the other inequality, we write

u,(x, 1y <u(x, t)<a(x) forallne N, and all (x, 1) e 2 x [0, T,
(1.23)

We then take the limits ¢ T,,, followed by n — oc.
The theorem is now proved for f,,= [ /], which gives a solution u,,. If z,
is the solution for £, in the general case, we have:

u,< lim z,<u forallpeN. (1.24)

n— o
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Indecd, (f,) is increasing in « and converges uniformly to f on every
compact set by Dini’s Theorem. Therefore for ¢> 0, there exists n, such
that if 12 ny and p is fixed:

fluw) = [fw)],—e (1.25)

Since u, and z, are solutions of (P,) and (P,) with f, replaced by [ /],
for u,, we have

(up - :n)f - A(up - :n) = [j.(up):]p _./;I(Z'I)' (126)
Multiplication by (#,—z,)" and integration over Q yields
djdt l(u,—z,) " (D3 <K, 1w, — 2,0 " ()3

+ Cell(u,—2,) " (1)l (1.27)

Where U is a constant depending only on Q. By Gronwall’s Lemma,

(2, — ) TN CeT [(u, — 2,0 1| 1.*(0.T;L3|Qn"KPT
forall te [0, T (1.28)
and herce
. ”(up_:11)+HL"(1).7:L21!2)).< CeTer?, (1.29)
lim {(u,—z,) (),=0 uniformly for re [0. T].
Therefore,
lim z,>u, forallpeN, te[0, o). (1.30)

"n—

That is, (1.24). We then deduce (i) and (ii) for z,. For Proposition 1.5, we
only have the inequality obtained by (1.23).

Remark 12. 1If (/,) is no longer assumed to be increasing in n, then the
preceding proof remains valid with lim, _ , z (x, r})= o0, for all (x,¢) in
'Q X (Trraxﬂ 20 )'

Remark 1.3. A result of Weissler [19] permits us to extend hypothesis
(H1) to f(u)=u™""~2 for N >3, which is the limit power in (H1).

II. Case (H2)
In this part, we do not need 2 bounded except for Theorem 2.2 and our

results hold for more general elliptic operators than 4 satisfying maximum
principl:.
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Let uy be a nonnegative measure on Q then

PROPOSITION 2.1
(i) there exists a least integral solution U of (P) that is whenever V is

an integral solution of (P) we have

ae.on2x(0,0) andso TXV)<T*(U).

V=U

() If V is an integral solution of (P) then, V=+o on
Qx(T*(V), x).

(iii}  If uge L=(2), lim,,_, . u,(x, 1)=U(x, t) a.e. on 2% (0, o)

u(x. ty=U(x, 1) on Qx[0, Tpha)

where u, is the solution of (P,) and u the classical solution of (P).

Proof. Let V be an integral solution of (P) and (u¥), .. the sequence

defined by:
wh,—Auk=f(ut=")  on Qx(0, %),
u =0

on Q2 x (0, ),

uk(x, 0) = ug(x) for a.e. xin Q.

and #°=0 on Q x (0, ). We see by recurrence:

whiguk<uk <V on Q% (0, ).

n

The uniqueness of the solution for (P,) implies lim, _, . u*=u, thus
u, <V on Qx(0,) Taking the limit in s, we obtain

lim, ., u,(x, H<V(x, 1) forae (x,1)in 2x (0, o).
On the other hand, u, satisfies

1,(X, t):J G(1, x, _v)uo(y)dy-i—J '[ G(t—s.x,v) flu,(y, ) dy ds.
o] O Y0
By monotone convergence theorem, we deduce that U=lim,u, is an
integral solution of (P) which satisfies U < V' whatever V.
To prove the second point, let ¢, be such that there exists x, in Q with
V(xo, to) < +oo. The definition of an integral solution then implies

J.mj Glto—$, X0, ¥) f(V(», 8)) dvds <
0 Yo

from which we deduce
J” J Gt—s,. 5, v)f(V(y,s))dyvds< forae (x,7) in 2x{0, t),
0vQ
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so V' is finite a.e. on Q2 x [0, ¢4), and T*(V) > 1, which proves (ii). The third
point is immediate.
Consider the problem

u,, —Au; =f(u;) on Qx(0,7),
u,=0 on éQx(07), (P,)
uy(x, 0)=Auy(x) for all x in Q.

Let U, be the least integral solution of (P;) and T*(1)=T*(U,).

LemMa 2.1. Suppose (h). Let u, be a nonnegative bounded measure on
€2 and suppose there exists 1> 1 such that T*(1)> 0 then:

Ulx, ) < (M7= 1) E7D)S(t) up(x) + a)
Sfor all (x, t)in Q2 x (0, T*(4)), (2.1)
where U is the least integral solution of (P)=(P)).

Recal: that y and a are the constants given in the hypothesis (h) and that
S(1) u, clenotes the unique solution of:

V,—AV=0 on Q2x(0,0)re€>'(2x(0, T)),
=0 on Q2 x (0, x),
lin J V(t)<15=J‘ Duy(dx) for all @ in 6(Q).
Q Q

t—)

Proof. First, suppose uy€ %(Q). Let u} be the sequence given by

w=0 on Qx[0,7],

u'e 6> (Qx (0, T))nE(R2x [0, T]),

', — At =f(ut"") on Q2x(0,7)

=0 on 02 x(0, T), (2.2)

wi(x, 0) = Aug(x) for all x in £,

where 7 = T*(1). We see by recurrence,
Osuwi<uitgU, on 0Qx(0,T), 23)
Auf < ul on Qx(0,T) forall 1= 1.

For meN and u > 1, we define

En=1{(x,1)eQ2x (0, T); up(x, 1)> udP(x, 1)},
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where @(x, 1) = S(t) uy(x)+ a, and

ui(x, 1)

in
e ET U (x, 1)

w(x, ) =ut ', 1) — g () up(x, 1)+ Agr(u) —gr, () B(x, 1);

gnp)=

w belongs to €(2x [0, T])n€>(Qx (0, T]) and for n>m>1, A>0 we
have

w,o—dw=f])—g(u) f(uy"")  on E},
w2 g () ul — g ul + A(gn(u) —gr ()@ in EY
we deduce from (2.3),
gMu)=A>1  forallu=>1 (2.4)
and from (h):
f)zf(gr(uw) ut) 2 g (n)fluy)  in E}.
We obtain with (2.3)
w,—Aw =20 on E7.
Since u} = u® on SET\(Q x {T}), we have
wz=0 on JGEP\(2x{T})).

we deduce from the maximum principle that w >0 in E7.
For y' >y we have E} < E}! and

D(x, )< (1 )u(x,t) forall (x, ) in EJ.
w >0 on E7 then implies:
g () Z g (u) — (gr(u)" — g7y () w/i'.

For all 4, m such that E7' # (&, {g7(u)}, .~ is @ nondecreasing sequence
bounded by inf £ U, /w7 which is finite because T= T*(1). Its limit g™(u)
satisfies:

g™ ()= g™ (1) — (g™ () — g™(u)) ',
hence,

g"(u')—g (u)>u —u

— 2z — forallg' zu>1,
g" () —g™(u)" u
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SO

= d
Log(y/yo)sj d forall u = po> 1.

elu» 0 — 0

Since (2.4) implies g”(uy) = 4, we obtain that if u satisfies

.U>TA—.,,,
(/p r__ l)l'(' t)

then necessarily E"(u)= . Thus

Ut x, 1)< D(x, 1) forall (x,¢) in Qx(0,T).

A

Takiag the limit in (2.3), we obtain

lim u?< U,

How:ver, by using the monotone convergence Theorem, lim,, v is an
integral solution of (P;), so we have U,=limu? whatever A>1
(Proposition 2.1 (i)). We deduce U=Iim,,_ . u}, we have proved (2.1)
when u, e €(Q).

When u, is a nonnegative bounded measure on , we easily verify that
(2.3) holds. Taking the limit in the second inequality, we obtain: AU U,
on 2x (0, T) for A=1.

Take the origin at r=¢>0 and the initial data u, equal to S(¢) u,. We

have u, € 6(£2) and we deduce from the above inequality that

u,— Au=f(u) on 2x{(e T)
u=0 on Qx(e T) (P.,;)
u(x, )= Au(x) forall xe 2

has an integral solution U4 < U;. By applying the lemma we obtain:

A
Ui(x, 1) < o (S(2 = £)(S(e) uo)(x) + a)

1)
forall (x, 1) inQx (e, T*(1)),

where U* is the least integral solution of (P, ;). Observe that

JHx, e —e) 2 (S(e") ug)(x) for ¢'>¢ and xin Q.
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max

Thus

Ui(x, t) = U (x, 1) for ¢>¢ and (x,¢) InRx(¢, )

We deduce that lim, |, U°= U and, taking the limit, we obtain Lemma 2.1.
T*(2) is a nonincreasing function. Let T*(A*) (resp. T*(1°)) be the
right limit (resp. left limit) of 7#(1). We can easily see that

T*(A)=T*A")=T*11").

When u, belongs to L*(Q), we define T,,,(4) as the maximal time of
existence of the classical' solution of (P,). We have T, (1)< T*(1). We
see later that T,,(4)=T*(4A*). However, we can already deduce from
Lemma 2.1 the following remarks:

Remark 2.1.  Suppose u, is a bounded nonnegative measure then
Ue€>" (2 x (0. T*(11))).

Proof. For every T<T*(1%), we can find 4, such that
T*(Ao)e(T, T*(1")) and Ay>1. By applying (2.1), we deduce that U
belongs to L°.((0, T)x L>=(£2)) and so with standard bootstrap argument,
U belongs to (2 x (0, T*(1+))).

Remark 2.2. Suppose u, in L™ (Q) uy >0, we deduce from Remark 2.1
that T, = T, (1) = T*(17) and that U, the least integral solution, is the
classical solution on (0, 7*(1%)) (see Proposition 2.1 (iii) before).

Remark 2.3. Suppose ug in L (£2), ug=>0. Then U is the limit of an

foc

increasing sequence of classical solutions on (0, 7*(1)) of the problem (P).

Proof. Take ug, = (1—1/n)inf(uy, n) and call U, the least integral
solution of (P) with initial data u,. We deduce from Lemma 2.1 and a
bootstrap argument as in Remark 2.1 that U, is a classical solution on
(0. T*(1)). We deduce from Proposition 2.1 that U(x, 1)=lm,_, . U,(x, 1)
for all (x, ) in @ x [0, T*(1)].

Remark 2.4. Suppose that (P) has a global solution for all nonnegative
function u, such that sup(jug| . , |4o/,) is small enough and a=0in (h) if Q
is unbounded. Then if a bounded nonnegative measure u, is such that (P)
has a local integral solution (i.e., T*(1)>0) there exists A >0 such that
(P;) has a global solution.

Proof. Choose A,<1, we deduce from Lemma 2.1 that U,(x, )<
(LU =A=' N7 DS ug)(x) +a) for all (x, 1) in 2x(0, T*(1)). By

'When uy,e L*(Q), u is the classical solution of (P) on (0, T) if ue 4> (3 x(0, T))n
L*(2x(0, T)) and lim, _ o u(x, 1) =uy(x) for ae. xe Q.
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using th:> same construction as in (2.3) of Lemma 2.1, we see that for
A< Ay, U <(4/4o) Uy, on 2 x (0, o). Choose #,e (0, T*(1)), we deduce
from these two inequalities the existence of A>0 such that
SUp('U;.(', tO)l + IU/(v tO)ll) is small enough‘

Remark 2.5. Lemma 2.1 is valid for all #, nonnegative measure (not
necessar ly bounded). Indeed, if K, is a sequence of compact subsets of Q
increasir g to 2, we can apply (2.1) with uyyg, and take the limit.

Let f* be the conjugate function of f, that is

TH(r)=sup (ra—f(a)).

=0
We can improve the necessary condition for the existence of an integral

solution of (P) given in [5].

LemMa 2.2, Suppose that f satisfies (h). Let uy be a nonnegative measure
on Q. If (P) has an integral solution U such thatr T*(U)2 T then

J‘Q 6(0) Ho S J;? % (0, T)

SHREY Ex iy =) dx dt (2.5)

for all (%, &) such that

he L'(2x(0, T)) h=20 on Qx(0,T),

—¢,—AE=h in Q2x(0, T,
=0 on Q2 x (0, T), (2.6)
ET)=0 in Q,

where ye(X, 1)=0 if (x, V¢ E, yelx.t)=1if (x,1)e E. Let us recall that
(2.6) is >quivalent to

E(x, 1) = J G(s—1, v, x) by, 5) dy ds. (2.6 bis)

Q% (0,7}

Progy.  Suppose first u, in L) (). Let u, be the sequence given by

loc

Remark 2.3. Multiply by ¢ and integrate the equation satisfied by u,, we
obtain

uhzﬂ

n J
2 x(0.7)

| ) €+ [ 1, E(0)
Q2 x (0,7 Q
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Hence
[ umO) <] W)~ fw) &g
Q 2x(0.7)

S ACGET
Q=< (0.T)

Take the limit to obtain (2.5).
If u, is a nonnegative measure, for ¢>0, U(-, ¢) belongs to L. _(Q) and
we can apply (2.5) on 2 x (e, T):

[ aeayuerax<| ) s

o Q x & T)

but
J‘ Ulx, &) &(x, ¢) dx =f U(x, ¢) (JT S(s — &) h(s) ds> (x) dx
Q Q

&

> (S(a)uo(x)u S(s—s)h(s)ds) (x) dx
Q £

= [ f <S(s) uo)(x) hix, s) dx ds.
Q

£

We then deduce, taking the limit:

[ hxns(Se u)x dvds<| ) Engano
Q x(0,7)

2 x{0,T)

which is equivalent to (2.5).
The necessary condition (2.5) leads us to define:

X="{heL"(Qx(0, 1)), h=0, [*(h/E) Exih0,€ L' (R %(0, T)),
where ¢ is given by (2.6)}.

and for a nonnegative measure u:

he X
h£0

ol 7= sup {j 0w || f*(h/:)cx,h>o;}.
0 / Q2 x(0.T)

Equation (2.5) becomes |uy|r< 1. It is also a sufficient condition which
ensures the existence of an integral solution U of (P) such that 7*(U)>T.
Indeed, we have
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THEOREM 2.1. Suppose that f satisfies (h). Let u, be a nonnegative
measure on  and T > 0. (P) has an integral solution U such that T*(U) =T
if and ovrly if

luol r< 1 (2.7)

Proof. We have proved the necessity in Lemma 2.2. First, observe that
(h) implies the existence of two constants ¢, ¢, such that

fEr)<c,r +eyr,  Vr0, (2.8)

where 17+ 1/y=1.

We asply Theorem 2.1 of [5]. Equation(2.5) implies the condition (11)
of [5], so we have to prove that the solution provided by this Theorem is
an integral solution U of (P) such that T*(U)= T. To do this, we deduce
from (2.8) as in Section III (2°) of [ 5] that whatever K€ Qand 0< T, < T,
the space X of [5] contains a function which is positive on K x (0, T). We
know ttat U-he LY(Q x (0, T)) for all 4 in X, so we obtain that U belongs
to L}, (.2x(0, T)), hence T*(U)=T.

CoRrOLLARY 2.1. Suppose that f satisfies (h). Let uy, be a nonnegative
boundec measure on €, then

(1) T - {ugl|+ is a nondecreasing continuous function,
(i) fuply=1<Te[T*(1 "), T*(1 )]

Prooj. (i) T - |ug|r nondecreasing is a consequence of the definition
of |ug| ;. Let 4, be defined by

1/A+=lim |u0|7«, 1//17=hm IuolT9
T\ Ty T Ty

we have to prove that 4, =4 _

First. observe that 4 _ |uy| <1 for all T< T, Theorem 2.1 implies that
(P, _) has an integral solution U;_such that T*(U; )z T for all T< T, so
we have T*(U, )= T,. Thus, there exists an integral solution U, such that
T*(U,)zTyforall Ae[4,,A_]. Suppose A, <1 _ and let 4, be such that
Ay <ic<4i_. We deduce from Lemma2.l that U; belongs to
L*(2> (T,/2, T,)) and so can be extended on (0, T,) for some T, > T,
hence 1yu| r, < 1, but

[Aottol 1, Z Ao lim Juo| 72 2o/2, > 1
T T

we obtiin a contradiction.
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To prove (ii), first observe that
TET*(1 7 )=T*1) < |ugl r< L

Let A, T be such that A>1, T> T*(l), we obtain

|Aug| 7> 1

and thus, for T> T*(1") we have |uy| = 1; and so, for T>T*(1*) we
have Juy| -2 1.

We obtain that Te(T*(1%), T*(1 7)) implies |uy|/-=1. By using the
continuity of T — |uy|,, we obtain that Te[T*(1%), T*(17)] implies
luol r=1.

Suppose now |[uylr=1. We have immediately 7< T*(1) and for i>1
{tg| +;y= 1/A< 1 implies T> T*(4) and thus T>T*(1").

COROLLARY 2.2. (i) Ler uy be a nonnegative bounded measure such that
u, # 0, and T>0, then there exists A>Q such that T*(A)< T.

(i) Let uge L™ (), uy=0 and T >0, then there exists 1> 0 such that
Tha(A) T

This corollary implies that there does not exist any nonnegative initial
data such that (P;) has a global solution for all 1> 0 (classical or integral).

Proof. (i) implies (ii) because T,,,(4)<T*(1). We have |Auyl,;=
A |ugl v and so for A> 1/|uy| 7~ Theorem 2.1 implies that T*(4) < T.

If |ug] =1, the question which arises is does there exist a # # 0 which
realizes the equality in (2.5)? We have the following result:

THEOREM 2.2. Suppose (h), Q bounded. Let uye L(2), uy =0, and T be
such that |ug|r=1. Let U be the least integral solution of (P). There exists
E* such that:

(i) E*20inQ2x(0,T), & £0,
(it)y f'(U)E* and Uf'(U) E* belong to L'(2 x (0, T)),
(i)

=¥ —A*=f(U)¢* on 2x(0,7),
E*=0 on 0Qx(0,T), 29)
E¥T)=0 on £,

and
(iv) jg uoé*(o):j‘ﬂx(O,T)f*(h*/é*) :*X{h‘>0; =1,
where h* =f'(U) &*.
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To piove this theorem, we need some lemmas. For ge L (Q x (0, T)),

220, we set

lelr = sup ([ en)[[ e &)
Q% (0.T) 02 x(0,T)

he X

h#0
(<. h) verifying (2.6)

hence || S(1) upll 7= lugl 7.

Lemva 2.3. For T>0, we have
(i) for all ¢>0, there exists >0 such that

A measurable subset of Q2 x (0, T)

meas(A4)<n }:HXA“T<E

() lixex<wonlr<c.

Proo” Let A be a measurable subset of 2 x (0, T). For ¢ >0, consider
the problem

ulx, ry= J‘[ G(r=s,x, v) fuly, $))dy ds + /ey 4(x, t). (P,)
0

A nuccessary condition for the existence of a nonnegative bounded
solution of (P,) is

lxallr<e (2.10)

Indecd, let 4 be a function of X and ¢ the solution of (2.6). Multiply (P,)
by 4 and integrate, we obtain

wh= J

Qx{0.7)

h(x, t) J.O' .[ G(t—s5,x, ) f(u(v,s))dy dsdxdt

JQ <(0.7) Q

+ 1/ej Lih

Q2 x10.7)

Hence by Fubini Theorem, we have

f h(x, 1) j G(t—s, x. p) fuly, s)) dy ds dx dt
2 x(0.7) o

f)y, s) &y, s)dy ds

J‘Q x (0.7}
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and so

(1/e) |

2x{0.T)

uh—f) E<| A oy

2x=x(0,T)

x,m:f

2x(0,7)

To prove that (2.10) holds as soon as A is suitable, we show that (P,)
has a bounded solution. To do this, it is sufficient to find a bounded upper
solution of (P,) on Q x (0, T).

Let C, be such that

Cy>0, J‘;’ (1/f(c)) do>T.

Let C(t) be the solution of:
C'(1)= 1721 (2C(t)), C(0)=C,. (2.11)

Verify that w(x, 1)=(1/g) y «(x, 1}+ C(t) is a bounded upper solution of
(P,). Since F is convex, we have

Y

J J Glt—s5, 5 1) f(w(y, s)ydvds+(1/s) x4
[URg 9]
<12 J: L} G(t—s5, ) f((2/e) x (3, 5)) dy ds

+1)2 H Gt —s, x, v) f(2C(s)) ds dy + w(x, 1) — C(1).
0vQ
We have

[ Gu—s x.7@Cs) dsdy <[ f(2C(s)) ds
0

MRS}

and
L JQ G(r—s, x,3) f((2/e} x a( ¥, 5)) dy ds

=7 [ [ Glt—5, % 3) xalys 5 dy ds.

ovae

w is an upper solution if
12126 [ | Glr—s.%p) gy, 9)) d ds+172 [ f(2C(s)) ds < C(o)
0vQ 1]

580,71.1-11
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with (2. 1), we obtain
fo jg Glt— 5, %, ¥) 1403 8)) dy ds < (2Co/f(2/e)). (2.12)

To prove (i), choose 4 =2 x (0, T). The left-hand side of (2.12) is boun-
ded on 2x(0,T) and for ¢ large enough, (2.12) will be satisfied on
Qx(0, 7).

To prove (i), observe that (2.12) is equivalent to

J‘ (ITJ G(t—s, x, ¥y o(x, t)dx dt) dy ds < (2Co/f(2/e))
A

i vQ

for all ¢ € L'(Qx(0, 7)), 9 =0 and [g, 0.1, @(x. 1) dx di=1.
By Dunford-Pettis Theorem, (i) is then equivalent to the relative weak
compac ness in L'(Q x (0, T)) of the subset:

<: gy, s):J‘TJ G(t—s,x,v) olx, t)dx dt, o e LY(2 % (0, T)),

v Y2

(PZOand‘ (p:l}

Y x(0.T)
which it a consequence of the compactness of the operator ¢ — g,
—g,—4g=0 on Qx(0,7),
vrhere g is the solution of g=0 on Q2 x(0,T),
g(x, T)y=0 forall xin ,

from L'(2 x (0, T)) to L'(2 x (0, T)).

LemMMa 24, (i) h—= (f*¥(B/E) Ex im0 (X, 1) where (C, h) satisfies (2.6) is
a convex function from X to R* for ae. (x, 1) in 2x(0, T).

(i, h— jQx w.m S *(h/E) £X:h>0}(x’ t) dx dt
is a lower semi continuous function on X with L' norm.
Proo” Let (h;/¢;) i=1,2 be two pairs of function satisfying (2.6). Using
the convexity of f*, we obtain
FE )G+ ENE +E5)
= R [EONENE + E2)) ¥ ha /S NE /(S + ENE +E5)
AUV ISR M UISIES
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and, for >0 and (A, ¢) satisfying (2.6), we have
S*(0h{0C) 0L =0(1*(h/¢) &)

the convexity is established.

We deduce the lower semicontinuity from Lebesgue and Fatou
Theorems.

LeEmMA 2.5. Suppose (h). Then there exists K>0, ¢>1 and b= 0 such
that

[*¥er)< Kf*(r)  forall r=b. (2.13)

Proof. Observe that (h) implies for all x> 1 and a >4,

S (xa) 2 x'f ()
we deduce
forallr>0,0a=aq, X'ro—f(xo) < x¥(roe—f ().
Put ¢=x""", we obtain
SHer <)

for all r such that f*(r)=raf(a) for some a>a that is r>f"(a). (2.13)
holds with b=f(a), K=¢"" "

Proof of Theorem 2.2. Recall that we suppose |uo| =1 and uge L*(£2),
uy=0. Because |uplr=|S(t)ugll;=1, we can find a sequence
{(h,, £) ) nen such that (h,, £,) satisfies (2.6) and

| MR Etamoy = L
2x(0.T)

f S(t) to(x) b (x, 1)dxdi—1  when n— oo.
Qx(0.7)

We deduce from Lemma 2.3(i) that for all £¢> 0, there exists >0 such
that meas (U) <y implies j'u h,<¢ and from Lemma 2.3(ii).

j hn<”XQx10.T;||T< oc.
Qx(0, 1)

Since £ is bounded, we may conclude from Dunford-Pettis Theorem
that {h,}, . is weakly relatively compact in L(2 x (0, T)). Let 4* be a
weak limit of a subsequence.
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Using the fact that u, is bounded, we have
J S(1) tolx) h*(x, 1) dx dr = 1
Qx(0.T)
which inr plies A* # 0. Lemma 2.4 then implies that #* € X and

| e e <1,
Qx(0.7)

where (¢*, h*) satisfies (2.6). We deduce from ||S(f) 4yl =1 that

S(1) uglx) h*(x, 1) dx dz=J2 THIER) E¥ysa, = L.
Qx0.7
(2.14)

j!) % (0,7)

Let U be the least integral solution of (P). We claim that Uh belongs to
LY (2% (), 7)) for ali h in X. Indeed, we deduce from (2.13) that
FH(e(h/E)) Exinso, belongs to L'(Qx(0,T)) for all he X and for some
¢>1. Take U, given by Remark 2.3, we have U,e L7 (2 x (0, T')} and so
for all (1, &) satisfying (2.6),

~ .

Uph=| S, &

JQX(O.T) Q2x(0.7)

+ [ S(1) ug,(x) A(x, t) dy dt < .

Y2 x0T

Thus

j S(1) gu(x) h(x, 1) dx di+ (c— 1) | U,h
Qx(0.7)

YQ < (0.7

(U, ehf) —fWUNES] Xk Expnao-

Jme.T) “Q2x10.7)

The r ght-hand side is finite as soon as & e X. Taking the limit we obtain
our ass:rtion. In particular, we have Uh*e L' (2 x (0, T)) and we can
rewrite '2.14).

Uh* —f(U) &* = f*(h*/C*) S w0, =0

J.QX(O.Tl

which proves that Uh* =f(U) &* + f*(h*/C*) E* ae. on Qx (0, 7) from
which vie deduce

(h*/E%)x, Y=/ (U(x, 1)) forae{x, ) in {&*>0},



BLOW-UP AFTER T, 167
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and we have established (iii). #*e X and A* # 0 imply (i), (ii) is an
immediate consequence of h* and Uh*e L'(Q2 x (0, T)) and (iv) is (2.14).
CoroLLARY 2.3. Under the hypotheses of Theorem 2.2,
(1) Taax=T*(17).
(i1) There exists £* satisfying (1) — (iv) of Theorem 2.2 and such that

max

supp ¥ =Q x [0, Tpax -

Proof. We know that T, >T*(1") and that U is equal to the
classical solution on Qx (0, T*(1*)) (Remark 2.2). Suppose 7T,.>
T*(1%). U is then bounded on Qx (0, 7*(1")). Corollary 2.1 implies
that we may apply Theorem 2.2 with 7= T*(1"). We obtain the existence
of a nontrivial and nonnegative solution of (2.9) with f(U)Z*e
L' x (0, T*(1 7)) which is impossible because f(U)ye L™ (2 x (0, T*(1*)).

By using the same argument, we see that it is impossible that
supp E¥* <= Q2 x (0, Ty with T" < T,,,, when &* is a solution of (2.9).

Now, we can prove Theorem 2 under the assumption (H2).

Proof of Theorem 2 under (H2). Recall that we have to prove that
whatever an integral solution V of (P), we have T*(V)< T,,. Using
Proposition 2.1, it is sufficient to show that I'*(U)< T,,, which means
with our notation 7T*(1)<T,,,. From Corollary 2.3, we see that
Theorem 2.2 is then equivalent to T*(1*)=T7%*(1"). Suppose not and
choose ¢ >0 such that e< T, and e < T*(1 ~)— T*(1 ™). We deduce from
Lemma 1.1,

| o) ex(x, 0)dx<J~ U(X, £) E*(x, 0) dx

2 Q
(if the equality holds, u, would be a stationary solution and T,, = 4 oC)
where ¢* is a solution of (i)-(iv) and supp * =02 x [0, T,...]. We deduce
from the point (iv),

] = |u0| 7 max < |U(8)| T max

But U(r +¢) is an integral solution of (P) with initial data U(e) and the
time of existence of this solution is more than T,,,,. Thus, we deduce from
Theorem 2.1, |U(e)| 7 max < 1. We obtain a contradiction.

We can deduce from Theorem 2.2 the following uniqueness result.

COROLLARY 24. Suppose (h), Q bounded and uge L=(R2), uy=0. Then
for all integral solution of (P) such that T*(V)>=T,,,, we have V=u on
Q% (0, T ax)-
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Proof. Let £* be given by Corollary 2.3(ii). We easily see that for all ¢
in (0, Ty )

~ Tmay
[ utx. 0 gxx, t)dxzj [ r(hjex) e* dxdr.
Q ! v

For al integral solution V of (P), we have (Proposition 2.1),

ugsV on Qx(0, T,

and if T°(V')> T, we have [V(-, )|y, <1 which implies

" T
J Vix, ) E*(x, r)dxsj | Frhsex) e ddi
Q

Q 1

hence u:=V a.e. on Q x (0, T\ )-

III. Case (H3)
We begin to prove the following result where we do not suppose (H3).

THEOREM 3.1.  Suppose (h), Q bounded and uge L*(2), uy=0. Let U be
the least integral solution of (P) then:
(iy UF(U)e L, ([0, T*): L)),
(il) Uel] ((0, T*), H{(Q))N L7,

(ili) (dUsdrye L ((0, T*); L*(Q)),
where T = T*(U).

([0. T*); L*(2)),

Proof. First, we establish some a priori estimates on a classical solution
of (P) on (0, 7). We have (see [1]):

el ul3+ V3= | fu)u (3.1)
Q
and
|(dujdt)|3+ (djdty E(u) =0, (3.2)

where Eu)=1/2 |Vul2— [, F(u), F(r)={5f(s)ds and | |, is the norm of
L3 (Q).
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(h) implies the existence of two constants ¢ and a such that:
¢>2, a=0, and f(rrzcF(ry—a forallr=0.
Then, we deduce from (3.1)
Ydjdr) |u|§+2E(u)>(c—2)f Flu)—a |Q|. (33)
o)
We deduce from the convexity of f that <D(r)=F(\/7) is a convex
function. Using (h), we see that
D(r)yzc, r'"*0?  forall r=ry>0,
where ¢, and r, suitable positive constants. We deduce from Jensen
inequality,
- (y+1)2)
(@) <tuereope 10| an | ]
Q2 Q
<L0Qr"e,1{ Fu)
2
for all ¢ such that f, u”>r,|Q|. Then (3.3) implies

Yd/dt) |u|2>a (u)y+0 — QE(u) + a |2|). (3.4)

for all ¢ such that: f,u>>r, |2| and for a=(c—2)¢,/|R2]"7 "2 >0.
Suppose

|u([0)|§> ro 1821,

2E(ulty)) + a |Q] <O0.

(3.5)

We deduce from (3.2) and (3.4) that (3.5) remains true for all t > t,. Put
h(r)=|u|3 (). Then (3.4) implies

B = 2ah T2 p(t0) = |u(ty)|?

and because we suppose that (P) has a classical solution on (0, T'), we
obtain,

lu(t)13 < {aly — INT—t5)} =20 =1 = filt,).
Suppose now |u(to)l3 = Sup(f+{fo), ro 192]), (3.5) is false, so we have

E(u(ty)) = —(a/2) |9].
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But we ceduce from (3.2),
|l )|y < D)2+ (1 — ) 2(Eu(t)y — E(u(1))* forall 1< 1.
Hence:
lu(zo)l3 < 2 fu(1)]5+ (2o — W2E(u(1)) + a |Q]).
If we define

Ylto)=inf (2 |u()3+ (10— O2Eu(t)) +a |2]).

0<r<1n
We have proved
lul1))|3 <A lty) =Maxi{ry |Q], f1l10), Y(1o)} forall 1, (0, T).(3.6)

By integration, we deduce from (3.3),

Hutto) 3+ [ (@ 1914+ 2E)(s) ds > (¢ —2) ‘ J'Q Flu)(s) ds

for all 7> ty>1,>0. Thus,

[ Ry ds < (11t = 200 A o) + o — 1)@ 191 2E(u1,))

Yo Q

forall r, <ty<t (3.7)
Multioly (3.2) by (7, —t) and integrate by parts. This yields

" (to — o) ldurt]3 (01 dt = (1 = 1) Etutey)) — | Etuts)) ds,

4
so, we have

|'“(t(,—t)|du/dt|§(t)drs(to—z,)E(u(t,)H—Jw | Flu)s) ds,
n vQ

Ca

forall r, <tp<t.

Using (.7), we obtain

fh (to—t) |dujdt|3 (1) dt

n

Sty —0H) a Q]+ (¢/(c—2)) Eult;)) + (1/2(c = 2)) A 41,). (3.8)
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We deduce from (3.3).
(c—z)j Flu)<a|Q| + 2E(u) + |ul, |du/di],.
Q
and
(c—zfj”’(ro—r)q F(u)m) di
1 o
< (ty— 1, Na|Q] + 2E(u(1,)))”
+ 2 sup (|,,|g)j"° (1 — 1) |du/dt]3 (1) dr. (39)
(1. 10) 1

At last, we deduce from (3.2}):

%IVu(t)I%sJ (Flu)()+ E(u(t,))  forallz=£,>0.  (3.10)
Q

Choose ¢, (0, T) and & > 0. We deduce from (3.6) and the definition of i,
[l 1) < C(Jult ) -, E(ult)). &) forallte (¢, T—¢).

Applying (3.8) with 1,= T — (¢/2), we obtain

AT —u
| ldufdri3< Collu(e))ly, Elutr,)), ).

Then (3.9) and (3.10) implies

rT -

| (J’ F(u)(s>)" ds < Cyl[u(t))]2 Elu(ry)), 2),
«Q

AT 2
| IVu()ds < Cullula )]s, Euin)), e),

]

where the C,, i=1, 2, 3, 4 are continuous functions depending on |u(¢,)|,,
E(u(t,)) and £>0.

Let uye L*(2) and U be the least integral solution of (P). We can apply
the above inequalities to each term of the sequence U, constructed in
Remark 2.3. We take ¢, € (0, T,,,) in such a way that the right handsides of
the inequalities remain bounded when » tends to infinity. Because U, is a
classical solution on (0, T*(U)). we may apply these estimates with
T'=T*(U). Theorem 3.1 follows. ((i) in a consequence of (3.1) and the
above estimates).

Remark 3.1. The assumption u,e L*(£2) can be weakened. Indeed, we
use only the existence of ¢, such that |u,(¢,}|, and E(u,(¢,)) remain boun-
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ded to obtain the estimates on [1,, T* —¢). We need only the following
assumption: u, is a nonnegative measure on £2 and there exists T, > 0 such
that |ue| , < 1. Indeed, we deduce that (P) has an integral solution with a
true time of existence bigger that T, when the initial data is (uo/|uol ;). We
deduce that T*(1*)>T, and we apply Remark 2.5 and Remark 2.1 to
obtain tt ¢ existence of 1, € (0, 7). Under this hypothesis, the behavior of U
near =0 can be deduced from the estimate (2.1) which holds with
L= (1/ju)],) and T*(1)=T,.

CorolLARY 3.1.  We make the hypotheses of Theorem 3.1. Then

hm E(u(¢))= —c implies T, = T*(1).

t— Tmay

Proof. Suppose T...<T*(1). We deduce from Theorem (3.1) that
there ex sts foe (T, T*(1}) such that F(U(t,))e L'(L2). Let U, be the
sequence of Remark 2.3. We deduce from (3.2),

E(L/',,([))ZE(U,,([()))> - ii( F(L/,II(IO))Z ‘" F( U'(t()))
0 Y

for all 1+ <1¢,. For 1€ (0, T,,,), we have

lim E(U,(1))= E(u(1))
50, for ell 1€ (0, Ty ), E(utt))= — [ F(U(t,)).
This proves the corollary.

Proof of Theorem 2 under (H3). 1t is proved by Y. Giga in [9] that
when f catisfies (H3), we have lim, . ;  E(u(t))= — 2. Observe that (H3)
implies (h). Thus we can apply Corollary 3.1. We obtain T, = T*(1)
which i equivalent to Theorem 2 as we have already seen.

CorRO_LARY 3.2, Suppose (H3). uq— Toailiy) is a continuous function
from L™ (2) toR™.

Proof We easily deduce from the definition of |uy|, and from the
Lemma 2.4 (i) that | |, defines a norm on L () and for uq >0 and T>0,
we have

luol + < 2ol + 110l « - (3.11)

|xe| 7 is finite for all 7> 0 because (P) has a classical solution on (0, T)
when tt e initial data is a positive constant small enough (the best constant
1s just (1/|xol 7). see Theorem 2.1).
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Suppose that u,_is a sequence such that:
Tma\(uon) - T7é Tmax(uO) and uO,, - uO in LQ:(Q)

First suppose T > T, (uy) and choose Tg€ (Th.<(4p), T), we deduce
from Theorem 2.1 that for n big enough we have |u, |, < 1. Inequality
(3.10) implies that uy — |uy| , is continuous from L*(£2), hence |ug| r, < 1.
We obtain that T*(ug) > T, (see Theorem 2.1). But Theorem 2 implies
T*(ug) = T ., (1,). we have a contradiction.

Suppose now T < T, (4g) and choose Ty e (7. T, o)), using the same
arguments, we obtain |u,|,, > 1 and so |uy| 7, = |uyl 1., = 1. Then we deduce
from the Corollary 2.1(ii) that Toe [T*(1 "), T*(17)]). Toa> T, con-
tradicts the Corollary 2.3.

Remark 3.1. Observe that to prove Corollary 3.2, we use only
Corollaries 2.1 and 2.3 and 7*(1*)=T*(1 ). Thus, we have under the
hypothesis (h) and for uye L™ (Q), uy=0:

uy— T, (uy) continuous on L*() at point u, is equivalent to
T, .xlug) = T*(1).
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