Complete Blow-Up after T_{max} for the Solution of a Semilinear Heat Equation

P. BARAS

Luboratoire TIM-3-IMAG, B.P. 68, 38402 Saint Martin D'Heres Cedex, France

AND

L. COHEN

32, Rue du Javelot, 75645 Paris Cedex 13, France Communicated by H. Brezis Received June 1985; revised December 1985

INTRODUCTION

Let Ω be a bounded open subset of \mathbb{R}^{\vee} with a smooth boundary $\partial \Omega$. Consider the problem

$$u_t - \Delta u = f(u) \quad \text{in} \quad \Omega \times (0, T),$$

$$u = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \quad (P)$$

$$u(x, 0) = u_0(x) \quad \text{for all } x \in \Omega,$$

where $\int :\mathbb{R}^+ \to \mathbb{R}^+$ is locally Lipschitz, nondecreasing and f(0) = 0. If u_0 is a continuous function on $\overline{\Omega}$, there exists a unique classical solution u of (P) defined on $[0, T_{\max})$ and such that $u \in \mathscr{C}^{2,1}(\overline{\Omega} \times (0, T_{\max})) \cap \mathscr{C}(\Omega \times [0, T_{\max}))$ with $\lim_{t \to T_{\max}} ||u||_{\infty} = \infty$ if $T_{\max} < \infty$. A well-known result asserts that if u is large enough and $f(u) = u^p$, p > 1, for example, then $T_{\max} < \infty$ (this is the case when $1/2 |\nabla u_0|^2 - 1/(p+1) \int_{\Omega} |u_0|^{p+1} < 0$ see, for example, [1] or Corollary 2.2). In what follows, we suppose that $T_{\max} < +\infty$.

Assume $f_n: \mathbb{R}^+ \to \mathbb{R}^+$ is a sequence of functions such that

(a for each $n, u \rightarrow f_n(u)$ is globally Lipschitz, non decreasing, $f_n(0) = 0$,

(b for each $u, n \to f_n(u)$ is increasing and converges to f(u).

Let u_n be the unique global classical solution of

$$u_{ni} - \Delta u_n = f_n(u_n) \quad \text{in} \quad \Omega \times (0, +\infty),$$

$$u_n = 0 \quad \text{on} \quad \partial \Omega \times (0, +\infty), \quad (P_n)$$

$$u_n(x, 0) = u_0(x) \quad \text{for all } x \in \Omega.$$

We say that f satisfies (h) if:

f is convex and
$$\exists \gamma > 1, a \ge 0$$
 such that $u \to f(u)/u^{\gamma}$
is nondecreasing on $(a, +\infty)$. (h)

Our main result is

THEOREM 1. Let $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$. Suppose that one of the following hypotheses holds:

(H1) Ω convex and if $N \ge 2$, there exists $p \in (1, N/(N-2))$ and c > 0such that $0 \le f'(u) \le C(u^{p-1}+1)$ for all $u \ge 0$. $u_0 \in W_0^{1,1}(\Omega)$, $\Delta u_0 + f(u_0) \ge 0$ in $\mathscr{L}'(\Omega)$. (No hypothesis on f for N = 1.)

(H2) f satisfies (h) and $u_0 \in W_0^{1,1}(\Omega)$, $\Delta u_0 + f(u_0) \ge 0$ in $\mathcal{D}'(\Omega)$.

(H3) f is convex and there exists $p \in (1, (N+2)/(N-2))$ such that $0 \leq \lim_{u \to \infty} (f(u)/u^p) < \infty$.

Then

(i)
$$\lim_{n \to \infty} u_n(x, t) = u(x, t)$$
 for all $(x, t) \in \Omega \times [0, T_{\max})$,

(ii) $\lim_{n \to \infty} u_n(x, t) = \infty$ for all $(x, t) \in \Omega \times (T_{\max}, \infty)$.

We will see that Theorem 1 proves, in some appropriate sense that u cannot be extended beyond T_{max} and blows up everywhere on $\Omega \times (T_{\text{max}}, \infty)$ which is a conjecture of H. Brezis.

In this paper, we consider also the notion of an integral solution of (P) which is, in some sense the weakest definition of a positive solution and we prove that it cannot be extended beyond T_{\max} . Let us be more precise. Let u_0 be a nonnegative measure on Ω . We say that V is an *integral solution of* (P) if $V(x, t): \Omega \times (0, +\infty) \rightarrow [0, +\infty]$ is a nonnegative measurable function such that

$$V(x, t) = \int_{\Omega} G(t, x, y) \, u_0(y) \, dy + \int_0^t \int_{\Omega} G(t - s, x, y) f(V(y, s)) \, dy \, ds \quad (1)$$

for a.e. (x, t) in $\Omega \times (0, \infty)$, where G(t - s, x, y) denotes the Green function of the heat equation with Dirichlet boundary condition. Given an integral solution V we define its *true Time of existence*

$$T^*(V) = \sup\{T; V \text{ is finite a.e. on } \Omega \times (0, T)\}.$$

BARAS AND COHEN

Using the properties of G, we easily see that $V \equiv +\infty$ on $\Omega \times (T^*(V), \infty)$ and if ι_0 belongs to $\mathscr{C}(\overline{\Omega})$, we have $u \leq V$ on $\Omega \times (0, T_{\max})$ where u is the classical solution of (P) (see Proposition 2.1). In this framework, our main result becomes:

THEOREM 2. Under the assumptions of Theorem 1, let V be any integral solution of (P) then $T^*(V) \leq T_{max}$.

Let us explain why Theorems 1 and 2 are equivalent. The integral solutiors of (P) are not in general unique (see [2, 11]). Among all these solutions, there exists a minimal element U which is the least integral solutior of (P) and it is easy to see that we have

$$\lim_{n} u_n(x, t) = U(x, t) \qquad \text{for all } (x, t) \text{ in } \Omega \times (0, \infty)$$

and

$$\lim_{n} u_n(x, t) = u(x, t) \qquad \text{for all } (x, t) \text{ in } \Omega \times (0, T_{\max})$$
(see Proposition 2.1).

If we suppose that Theorem 1 is false, U would be a continuation of u behond T_{\max} and we would have $T^*(U) > T_{\max}$ which contradicts Theorem 2. Thus Theorem 2 implies Theorem 1. For the converse, observe that Theorem 1 means $T^*(U) = T_{\max}$ and we have for all integral solution V of (P) $T^*(V) \leq T^*(U)$ (see Proposition 2.1).

To prove these theorems, we use different techniques. In the first part, we prove directly Theorem 1 under (H1) by resuming some techniques of [4, 8].

In the second part, we prove Theorem 2 under (H2). The method is quite differen because no usual a priori estimates on u hold in this case, but we know a necessary and sufficient condition on u_0 and T to get an integral solutior U of (P) such that $T^*(U) \ge T$ (see [5]). The first step of the proof is Lemma 2.1 where we establish in some sense that if (P) has an integral solution U when the initial data is u_0 , the least integral solution of (P) when the initial data is λu_0 , is a classical solution on $(0, T^*(U))$ for all λ in (0, 1). (Remark 2.1). The second step is to prove that there exists a function $\xi^* \neq 0$ which realizes the equality in the criterion given in [5]. Recall that this criterion can be written

$$\int_{\Omega} \xi(0) \, u_0 \leq \int_0^T \int_{\Omega} f^*((-\xi_t - \Delta \xi)/\xi) \, \xi \, dx \, dt$$

for all suitable test function ξ . Here f^* is the conjugate function of f. We prove that ξ^* is a solution of

$$\begin{aligned} -\xi^* t - \Delta \xi^* &= f'(u) \ \xi^* > 0 \qquad \text{on} \quad \Omega \times (0, \ T_{\max}), \\ \xi^* &= 0 \qquad \text{on} \quad \partial \Omega \times (0, \ T_{\max}), \\ \xi^*(x, \ T_{\max}) &= 0 \qquad \text{for} \quad \text{a.e.} \ x \in \Omega, \end{aligned}$$

 $f'(u) \xi^*$ and $uf'(u) \xi^*$ belong to $L^1(\Omega \times (0, T_{\max}))$ (see Theorem 2.2), Theorem 2 is then a corollary of this result.

In the third part, we prove Theorem 2 under (H3). Using the techniques of [6], we begin by proving that without any restriction on the growth of f (other than (h)), the least integral solution of (P) satisfies

$$U \in L^4_{\text{loc}}((0, T^*), H^1_0(\Omega)), \, dU/dt \in L^2_{\text{loc}}((0, T^*), L^2(\Omega)),$$
$$Uf(U) \in L^2_{\text{loc}}((0, T^*), L^1(\Omega)),$$

where $T^* = T^*(U)$. Theorem 2 is then a consequence of a result of Giga (see [9]). As corollary of Theorem 2, we prove that under (H3), $u_0 \rightarrow T_{\text{max}}$ is continuous on $L^{\infty}(\Omega)$.

Finally, note that many authors have studied the behavior of u near T_{max} (cf. [7, 10, 12, 17, 18]). Especially, Weissler proves in [18] that for suitable u_0 and f, $\lim_{t \uparrow T_{\text{max}}} u(x, t) < \infty$ except at one point. Friedman and B. MacLeod [7] obtain under some specific assumptions that $\lim_{t \uparrow T_{\text{max}}} ||u(\cdot, t)||_q < \infty$ when q < N(p-1)/2 and $f(u) = u^p$.

We would like to thank F. B. Weissler for his helpful suggestions which lead to an improved version of this paper.

1. PROOF OF THEOREM 1 UNDER HYPOTHESIS (H1)

We recall u and u_n are, respectively, the classical solutions of (P) and (P_n).

We shall first derive some properties of u and u_n . By applying the maximum principle (see [15]), we have that u_n and u are positive for $x \in \Omega$ and t > 0. Since (f_n) is nondecreasing in n, so is (u_n) . Therefore we can define:

$$U(x, t) = \lim_{n \to \infty} u_n(x, t) \quad \text{for all } (x, t) \text{ in } \Omega \times (0, \infty). \tag{1.1}$$

Note that $U(x, t) \in \mathbb{R}^+ \cup \{\infty\}$ and

$$U(x, t) \leq u(x, t) \qquad \text{for all } (x, t) \text{ in } \Omega \times [0, T_{\max}). \tag{1.2}$$

Moreover, the following lemma shows that u(x, t) is nondecreasing in t for all x in Ω .

LEMMA 1.1. If $u_0 \in L^{\infty}(\Omega) \cap W_0^{1,1}(\Omega)$ and $\Delta u_0 + f(u_0) \ge 0$ in $\mathscr{D}'(\Omega)$, then the solution u of (P) on $[0, T_{\max}]$ is nondecreasing in t for all x in Ω .

Proof. Let ω_n be the solution of

$$-\Delta\omega_n + n\omega_n = f(u_0) + nu_0 \quad \text{on} \quad \Omega,$$

$$\omega_n = 0 \quad \text{on} \quad \Omega.$$
 (Q_n)

Problen (Q_n) has a unique solution in $W^{2,p}(\Omega) \cap H^1_0(\Omega)$ for all finite p. It follows that

$$-\Delta(\omega_n - u_0) + n(\omega_n - u_0) = f(u_0) + \Delta u_0 \ge 0 \quad \text{in} \quad \mathscr{D}'(\Omega).$$

$$(\omega_n - u_0) \in W_0^{1,1}(\Omega). \tag{1.3}$$

Therefore, for all $n \in \mathbb{N}$, $\omega_n - u_0 \ge 0$, and thus

$$-\Delta(\omega_n - \omega_{n+1}) + n(\omega_n - \omega_{n+1}) = \omega_{n+1} - u_0 \quad \text{on} \quad \Omega,$$

$$\omega_n - \omega_{n+1} \in W_0^{1,1}(\Omega).$$
(1.4)

Hence, (ω_n) is a nonincreasing sequence and, by (1.3), its limit is necessarily u_0 .

Moreover, $\Delta \omega_n + f(\omega_n) = n(\omega_n - u_0) + f(\omega_n) - f(u_0) \ge 0$ on Ω , and the following problem has a unique solution on $[0, T_n)$:

$$W_{nt} - \Delta W_n = f(W_n) \quad \text{on} \quad \Omega \times [0, T_n),$$

$$W_n(0) = \omega_n \quad \text{on} \quad \Omega, \quad (1.5)$$

$$W_n = 0 \quad \text{on} \quad \partial \Omega \times [0, T_n),$$

with $\lim_{t \uparrow T_n} \|W_n(\cdot, t)\|_{\infty} = \infty$. Applying the maximum principle to W_{nt} , the solution of:

$$d(W_{n_i})/dt - \Delta W_{n_i} = f'(W_n) W_{n_i} \qquad \text{on} \quad \Omega \times [0, T_n],$$

$$W_{n_i}(0) = \Delta \omega_n + f(\omega_n) \ge 0 \qquad \text{on} \quad \Omega, \qquad (1.6)$$

$$W_{n_i} = 0 \qquad \qquad \text{on} \quad \partial \Omega \times [0, T_n],$$

we find that W_n is nondecreasing in *t*. Applying the maximum principle again we have that for all $n \in \mathbb{N}$:

$$T_n \leq T_{n+1} \leq T_{\max}$$
 and $W_n \geq W_{n+1} \geq u$ on $[0, T_n]$. (1.7)

We can therefore set:

$$T' = \lim_{n \to \infty} T_n$$
 and $W = \lim_{n \to \infty} W_n$ on $[0, T').$ (1.8)

If $t \in (0, T')$, W is bounded on [0, t] and W is an integral solution of (P) with initial data u_0 . This can be seen by passing to the monotone limit in the equation satisfied by W_n . So W is classical on [0, t] an then equal to u by uniqueness. W_n is nondecreasing in t for all n and so is u = W on [0, T'].

We now show that indeed $T' = T_{\max}$. We can assume that $u_0 \in C(\Omega)$ by working with the initial value $u(x, t_0)$ for some $t_0 \in (0, T')$. First, ω_n and u_0 are continuous on Ω , a compact set. By Dini's Theorem, (ω_n) converges uniformly to u_0 on Ω . Let $T \in (0, T_{\max})$, $M = ||u||_{L^{\infty}(\Omega \times (0,T))} < \infty$, and C the lipschitz constant for f on [0, M+1]. Then there exists $M_0 \in \mathbb{N}$ such that

for all
$$n \ge N_0$$
, $\|\omega_n - u_0\| e^{CT \max} < 1.$ (1.9)

If $n \ge N_0$ set $A_n = \{t \in [0, T_n) \mid \forall \tau \in [0, t], \|(W_n - u)(\tau)\|_{\infty} \le 1\}$. A_n can be written $A_n = [0, T'_n]$ with $0 < T'_n \le T_n$. If $T_n < T$, then $T'_n < T_n$ as $\lim_{t \ge T_n} \|W_n(\cdot, t)\|_{\infty} = \infty$. For $t \in [0, T'_n]$, we have

$$\|(w_n - u)(t)\|_{\infty} \leq \|\omega_n - u_0\|_{\infty} + \int_0^t C \|(W_n - u)(\tau)\| d\tau.$$
 (1.10)

An application of Gronwall's Lemma gives:

$$\|(W_n - u)(\cdot, T'_n)\|_{\infty} \leq \|\omega_n - u_0\| e^{CT_n} < 1.$$
(1.11)

This contradicts the definition of T'_n . Thus $T_n \ge T$ for $n \ge N_0$. We have also shown that $T' = T_{\max}$ and that W_n converges uniformly to u on $\overline{\Omega} \times [0, T]$ for all $T \in [0, T_{\max})$. We deduce then that u is nondecreasing in t. So we can define $\overline{u}(x) = \lim_{t \uparrow T_{\max}} u(x, t)$ in $\mathbb{R} \cup \{\infty\}$.

Define $[f(u)]_n = \text{Inf}(f(u), n)$. For the moment, we will assume that $f_n(u) = [f(u)]_n$. This assumption will be removed later. For $n \ge ||u_0||_{\infty}$, we have $\Delta u_0 + f_n(u_0) = \Delta u_0 + f(u_0) \ge 0$, and by applying Lemma 1.1 we see that u_n is nondecreasing in t.

To show (i) and (ii), we use the three following lemmas:

LEMMA 1.2. For all $\varepsilon > 0$ and all $T > T_{max} + \varepsilon$ and all $\Omega' \in \Omega$, there exists a constant C > 0 such that:

$$u_n(x, t) \ge C(t - T_{\max} - \varepsilon) \int_{C'} f_n(u_n(y, T_{\max})) \, dy$$

for all (x, t) in $\Omega' \times [T_{\max} + \varepsilon, T].$ (1.12)

Proof We use here an idea of Baras and Goldstein [4]. If $\varphi \in L^{\infty}(\Omega)$, we can write

$$(S(t)\varphi)(x) = \int_{\Omega} (S(t)\varphi)(y) \,\delta_{x}(y) \,dy = \int_{\Omega} (S(t)\delta_{x})(y)\varphi(y) \,dy, (1.13)$$

where δ_x is Dirac mass at point x. By the maximum principle we have

$$C = \inf\{(S(t) \ \delta_x)(y), (t, x, y) \in [\varepsilon, T] \times \Omega' \times \Omega'\} > 0.$$
(1.14)

By writing the integral formulation of (P_n) and using (1.13) and (1.14), we have

$$u_n(x, t) = (S(t) u_0)(x) + \int_0^t S(t-s) f_n(u_n(x, s)) \, ds.$$
(1.15)

Thus if $(x, t) \in \Omega' \times [T_{\max} + \varepsilon, T]$, we have

$$u_n(x, t) \ge \int_0^{t-\varepsilon} \int_{\Omega^2} f_n(u_n(y, s)) \, dy \, ds \tag{1.16}$$

and

$$u_n(x, t) \ge C \int_{T_{\max}}^{t-c} \int_{\Omega'} f_n(u_n(y, T_{\max})) \, ds.$$
 (1.16')

That s, (1.12).

LEMMA 1.3. Assume (H1). Then,

$$\lim_{t \uparrow T_{\max}} \|f(u(\cdot, t))\|_{1} = \infty.$$
 (1.17)

Proof We recall that if $1 \le p \le q \le \infty$, $S(t): L^p(\Omega) \to L^q(\Omega)$ is bounded and

$$\|S(t)\varphi\|_{q} \leq \frac{1}{(4\Pi t)^{N(1,p-1,q)/2}} \|\varphi\|_{p} \quad \text{for all } \varphi \in L^{p}(\Omega) \quad \text{and} \quad t > 0$$

$$(1.18)$$

Use of (1.18) in the integral equation satisfied by u yields the inequality:

$$\|u(\cdot, t)\|_{q} \leq \|u_{0}\|_{q} + \int_{0}^{t} \frac{1}{(4\Pi(t-s))^{N(1-1/q)/2}} \|f(u(\cdot, s))\|_{1} ds$$

for all t in [0, T_{\max}). (1.19)

BLOW-UP AFTER T_{max} 149

We remark that $||f(u(\cdot, t))||_1$ is nondecreasing in t and so have a limit as $t \uparrow T_{\max}$. It is sufficient to show that it is not bounded. If N = 1, $\lim_{t \uparrow T_{\max}} ||u(\cdot, t)||_{\infty} = \infty$ and (1.17) follows by taking $q = \infty$.

In the same way, if $N \ge 2$, $\lim \|u(\cdot, t)\|_q = \infty$ for q > N(p-1)/2 (see [16] and [5]), and (H1) permits us to find q > N(p-1)/2 such that N(1-1/q)/2 < 1.

LEMMA 1.4. We recall $\bar{u}(x) = \lim_{t \uparrow T_{max}} u(x, t)$. If $||f(\bar{u})||_1 = \infty$, then there exists $\Omega_1 \in \Omega$ such that

$$\int_{\Omega_1} f(\bar{u}(x)) \, dx = \lim_{t \uparrow T_{\max}} \int_{\Omega_1} f(u(x, t)) \, dx = \infty. \tag{1.20}$$

Proof. We use the same definitions as in Gidas-Ni-Nirenberg [8] as applied in Ni-Sacks-Tavantzis [14].

Recall that Ω is a bounded convex open set with smooth boundary. If $x \in \partial \Omega$, we denote by v the outward unit normal vector at x. We then define the hyperplanes $T(\lambda, x) = \{y \in \mathbb{R}^n, y : v = \lambda\}$. Ω is bounded, so for λ large enough, $\Omega \cap T(\lambda, x) = \emptyset$. If $\lambda_x = x \cdot v$, $T(\lambda_x, x)$ is the tangent hyperplane to Ω at x, and if $\lambda > \lambda_x$ then $T(\lambda, x) \cap \Omega = \emptyset$ and $T(\lambda_x, x) \cap \Omega \ni x$. For $\lambda < \lambda_x$ we set

$$\sum (\lambda, x) = \{ y \in \Omega, \lambda < y \cdot v < \lambda_x \}$$

and

$$\sum' (\lambda, x) = \Pi_{\lambda, x} \left(\sum (\lambda, x) \right),$$

where $\Pi_{\lambda,x}$ is the reflection across $T(\lambda, x)$. For $\lambda_x - \lambda$ small enough $\sum' (\lambda, x) \subset \Omega$.

By the strong maximum principle (see [15]), $\nabla u(x, t_0) \cdot v < 0$, for all $t_0 > 0$.

Let $t_0 \in (0, T_{\max})$ then we can find a neighborhood of x such that $\nabla u(y, t_0) \cdot v < 0$ on this neighborhood.

We can choose local coordinates at x defined by $(x, T(\lambda, x), v)$, if $y \in \mathbb{R}^N$ it can be written $y = (y', y_N)$. A neighborhood of x can be choosen of the shape $C_{\varepsilon} = \{y \in \mathbb{R}^n, |y'| < \varepsilon_1, |y_N| < \varepsilon_2\} \cap \Omega$ with $\varepsilon = \{\varepsilon_1, \varepsilon_2\}$. We can make this construction at every point x of $\partial \Omega$.

Let $x_0 \in \partial \Omega$ and $K_{x_0} = T(\lambda_{x_0}, x_0) \cap \Omega$. K_{x_0} is compact convex set which contains x_0 , moreover

$$K_{x_0} = \bigcap_{\lambda < \lambda_{y_0}} \sum (\lambda, x_0).$$

For all $x \in K_{x_0}$, v is the same exterior normal and we can define an open neighborhood O_x of x on which $\nabla u(y, t_0) \cdot v < 0$ and of the shape of C_{ε} . $K_{x_0} \subset \bigcup O_x$ so we can extract a finite cover of K_{x_0} by $O_{x_i} = C(x_i, \varepsilon_i)$ for $1 \leq i \leq n_{x_0} \cdot U_{x_0} = \bigcup O_{x_i}$ is an open set containing K_{x_0} and so there exists a $\lambda < \lambda_{x_0}$ such that $\Sigma(\lambda, x_0) \subset U_{x_0}$. Set $\mu_{x_0} = (\lambda + \lambda_{x_0})/2$ we have $\Sigma'(\mu_{x_0}, x_0) \subset \Omega$ and $\Sigma'(\mu_{x_0}, x_0) \cup \Sigma'(\mu_{x_0}, x_0) \subset U_{x_0}$.

Note that if, for instance, Ω is strictly convex, $K_{x_0} = \{x_0\}$ and what we have just done is unnecessary.

We set $v(x,) = u(\Pi_{\mu_{x_0}, x_0}(x), t)$ on $\Sigma(\pi_{x_0}, x_0)$. We have then

$$u_t - \Delta u = f(u)$$

and

$$v_t - \Delta v = f(v) \quad \text{on} \quad \Sigma(\mu_{x_0}, x_0) \times (0, T_{\max}),$$

$$v \ge 0 = u \quad \text{on} \quad \partial \Sigma_1 = \partial \Omega \cap \Sigma(\mu_{x_0}, x_0) \times (0, T_{\max}),$$

$$v = u \quad \text{on} \quad \partial \Sigma_2 = \Omega \cap T(\mu_{x_0}, x_0) \times (0, T_{\max}).$$

Since $\nabla u \cdot v < 0$ on $U_{x_0} \times \{t_0\}$ and $\Sigma \cup \Sigma'(\mu_{x_0}, x_0) \subset U_{x_0}$ we have

$$v(x, t_0) \ge u(x, t_0)$$
 on $\Sigma(\mu_{x_0}, x_0)$. (1.21)

We have then

$$u_t - \Delta u = f(u)$$

and

$$u_{t} - \Delta v = f(v) \quad \text{on} \quad \Sigma(\mu_{x_{0}}, x_{0}) \times (0, T_{\max}),$$

$$v \ge u \quad \text{on} \quad \partial \Sigma \times (0, T_{\max}),$$

$$v(x, t_{0}) \ge u(x, t_{0}) \quad \text{on} \quad \Sigma(\mu_{x_{0}}, x_{0}).$$

By the maximum principle,

$$v(x, t) \ge u(x, t)$$
 for all $(x, t) \in \Sigma(\mu_{x_0}, x_0) \times (t_0, T_{\max})$.

 $\Sigma(\mu_{x_0}, \gamma_0)$ contains an open set of the type $C_{\varepsilon} \cap \Omega$ where $C_{\varepsilon} = \{y \in \mathbb{R}^n, |y_1| < \varepsilon_1, |y_N| < \varepsilon_2\}$ with coordinates in $(x_0, T(\lambda_{x_0}, x_0), \nu)$. If we choose $\varepsilon_2 < \lambda_{x_0} - \mu_{x_0}$ then the reflection of $C_{\varepsilon} \cap \Omega$ across $T(\mu_{x_0}, x_0)$ has compact closure in Ω . These neighborhoods C_{ε} form an open cover of $\partial\Omega$. Therefore we can extract a finite subcover denoted O_{x_1}, \dots, O_{x_n} .

We set $\Omega' = \Omega / \bigcup_{i=1}^{p} O_{x_i}$. Ω' is open and has compact closure in Ω . If $t > t_0$:

$$\int_{\Omega} f(u(x,t)) dx \leq \sum_{i=1}^{p} \int_{O_{x_i} \cap \Omega} f(u(x,t)) dx + \int_{\Omega'} f(u(x,t)) dx$$
$$\leq \sum_{i=1}^{p} \int_{\Pi_{u_{x_i}, x_i}(O_{x_i} \cap \Omega)} f(u(x,t)) dx + \int_{\Omega'} f(u(x,t)) dx$$

 $\Pi_{\mu_{\chi_i,\chi_i}}(O_{\chi_i} \cap \Omega)$ has compact closure in Ω . If we set $\Omega_1 = \Omega' \cup \bigcup_{i=1} \Pi_{\mu_{\chi_i,\chi_i}}(O_{\chi_i} \cap \Omega), \Omega_1$ is compact in Ω and

$$\int_{\Omega} f(u(x, t)) dx \leq \left(\int_{\Omega_1} f(u(x, t)) dx \right) (p+1) \quad \text{for all } t > t_0.$$

By taking the limit as $t \uparrow T_{max}$, we have

$$\int_{\Omega_1} f(\bar{u}(x)) \, dx = \infty.$$

Remark. We can see from the above proof that for the case N = 1 and $\Omega = (0, 1)$, if u_0 is increasing in x on [0, a], then u remains increasing in x and on the half interval [0, a/2] for all $t \in (0, T_{max})$.

Proof of (i) and (ii). We deduce from (1.2) that U is an integral solution of (P) on $[0, T_{max})$ and is bounded on $\Omega \times [0, T]$ for $T < T_{max}$. Then U = u on $\Omega \times [0, T]$ by uniqueness of bounded solution of (P) on [0, T]. So we have (i).

To prove (ii), we chose $(x, t) \in \Omega \times (T_{\max}, \infty)$. We define Ω_1 by applying Lemmas 1 and 1.4, and $\Omega' \in \Omega$ which contains Ω_1 and x. Choose $\varepsilon > 0$ such that $t > T_{\max} + \varepsilon$. Then, Lemma 1.2 implies

$$U(x, t) \ge C(t - T_{\max} - \varepsilon) \int_{\Omega'} f(\bar{u}(x)) \, dx = \infty.$$
 (1.22)

which is (ii).

Observe that under (H1) or (H2), we have

PROPOSITION 1.5. $\lim_{t \to T_{max}} u(x, t) = \lim_{n \to \infty} u_n(x, T_{max})$ for all x in Ω .

Proof. U is increasing in t, since u_n is for n large enough. Therefore if $t \in [0, T_{\max}), u(x, t) = U(x, t) \leq U(x, T_{\max})$ for all $x \in \Omega$. Taking the limit as $t \uparrow T_{\max}$, we have $\bar{u}(x) \leq U(x, T_{\max})$, for all x in Ω .

To prove the other inequality, we write

$$u_n(x, t) \le u(x, t) \le \overline{u}(x)$$
 for all $n \in \mathbb{N}$, and all $(x, t) \in \Omega \times [0, T_{\max})$,
(1.23)

We then take the limits $t \uparrow T_{\text{max}}$ followed by $n \to \infty$.

The theorem is now proved for $f_n = [f]_n$ which gives a solution u_n . If z_n is the solution for f_n in the general case, we have:

$$u_p \leqslant \lim_{n \to \infty} z_n \leqslant u \quad \text{for all } p \in \mathbb{N}.$$
 (1.24)

Indeed, (f_n) is increasing in *u* and converges uniformly to *f* on every compact set by Dini's Theorem. Therefore for $\varepsilon > 0$, there exists n_0 such that if $n \ge n_0$ and *p* is fixed:

$$f_n(u) \ge [f(u)]_p - \varepsilon. \tag{1.25}$$

Since u_p and z_n are solutions of (P_p) and (P_n) with f_p replaced by $[f]_p$ for u_p , we have

$$(u_p - z_n)_t - \Delta(u_p - z_n) = [f(u_p)]_p - f_n(z_n).$$
(1.26)

Multiplication by $(u_p - z_n)^+$ and integration over Ω yields

$$\frac{d}{dt} \|(u_p - z_n)^+(t)\|_2^2 \leq K_p \|(u_p - z_n)^+(t)\|_2^2 + C\varepsilon \|(u_p - z_n)^+(t)\|_2.$$
(1.27)

Where C is a constant depending only on Ω . By Gronwall's Lemma,

$$\|(u_{p} - z_{n})^{+}(t)\|_{2}^{2} \leq C \varepsilon T \|(u_{p} - z_{n})^{+}\|_{L^{T}(O,T;L^{2}(\Omega))} e^{\kappa_{p}T}$$

for all $t \in [0, T].$ (1.28)

and her ce

$$\|(u_p - z_n)^+\|_{L^2(0,T;L^2(\Omega))} \le C \varepsilon T e^{K_p T},$$

$$\lim_{n \to \infty} \|(u_p - z_n)^+(t)\|_2 = 0 \quad \text{uniformly for } t \in [0, T].$$
(1.29)

Therefore,

$$\lim_{n \to \infty} z_n \ge u_p \qquad \text{for all } p \in \mathbb{N}, \quad t \in [0, \infty).$$
(1.30)

That is, (1.24). We then deduce (i) and (ii) for z_n . For Proposition 1.5, we only have the inequality obtained by (1.23).

Remark 1.2. If (f_n) is no longer assumed to be increasing in *n*, then the preceding proof remains valid with $\lim_{n \to \infty} z_n(x, t) = \infty$, for all (x, t) in $\Omega \times (T_{\max}, \infty)$.

Remark 1.3. A result of Weissler [19] permits us to extend hypothesis (H1) to $f(u) = u^{N,(N-2)}$ for $N \ge 3$, which is the limit power in (H1).

II. CASE (H2)

In this part, we do not need Ω bounded except for Theorem 2.2 and our results hold for more general elliptic operators than Λ satisfying maximum principle.

PROPOSITION 2.1. Let u_0 be a nonnegative measure on Ω then

(i) there exists a least integral solution U of (**P**) that is whenever V is an integral solution of (**P**) we have

 $V \ge U$ a.e. on $\Omega \times (0, \infty)$ and so $T^*(V) \le T^*(U)$.

(ii) If V is an integral solution of (P) then, $V \equiv +\infty$ on $\Omega \times (T^*(V), \infty)$.

(iii) If $u_0 \in L^{\infty}(\Omega)$, $\lim_{n \to \infty} u_n(x, t) = U(x, t)$ a.e. on $\Omega \times (0, \infty)$

$$u(x, t) = U(x, t)$$
 on $\Omega \times [0, T_{\max})$

where u_n is the solution of (\mathbf{P}_n) and u the classical solution of (\mathbf{P}) .

Proof. Let V be an integral solution of (P) and $(u_n^k)_{n,k \in \mathbb{N}}$ the sequence defined by:

$$u_{nt}^{k} - \Delta u_{n}^{k} = f_{n}(u_{n}^{k-1}) \quad \text{on} \quad \Omega \times (0, \infty),$$
$$u_{n}^{k} = 0 \quad \text{on} \quad \partial \Omega \times (0, \infty),$$
$$u_{n}^{k}(x, 0) = u_{0}(x) \quad \text{for a.e. } x \text{ in } \Omega.$$

and $u_n^0 \equiv 0$ on $\Omega \times (0, \infty)$. We see by recurrence:

$$u_n^{k-1} \leq u_n^k \leq u_{n+1}^k \leq V$$
 on $\Omega \times (0, \infty)$.

The uniqueness of the solution for (P_n) implies $\lim_{k \to \infty} u_n^k = u_n$ thus $u_n \leq V$ on $\Omega \times (0, \infty)$. Taking the limit in n, we obtain $\lim_{n \to \infty} u_n(x, t) \leq V(x, t)$ for a.e. (x, t) in $\Omega \times (0, \infty)$.

On the other hand, u_n satisfies

$$u_n(x, t) = \int_{\Omega} G(t, x, y) \, u_0(y) \, dy + \int_0^t \int_{\Omega} G(t - s, x, y) f_n(u_n(y, s)) \, dy \, ds.$$

By monotone convergence theorem, we deduce that $U = \lim_{n \to \infty} u_n$ is an integral solution of (P) which satisfies $U \leq V$ whatever V.

To prove the second point, let t_0 be such that there exists x_0 in Ω with $V(x_0, t_0) < +\infty$. The definition of an integral solution then implies

$$\int_{0}^{t_{0}} \int_{\Omega} G(t_{0} - s, x_{0}, y) f(V(y, s)) \, dy \, ds < \infty$$

from which we deduce

$$\int_0^t \int_{\Omega} G(t-s, x, y) f(V(y, s)) \, dy \, ds < \infty \qquad \text{for a.e. } (x, t) \quad \text{in} \quad \Omega \times [0, t_0),$$

so V is finite a.e. on $\Omega \times [0, t_0)$, and $T^*(V) \ge t_0$ which proves (ii). The third point is immediate.

Consider the problem

$$u_{\lambda \iota} - \Delta u_{\lambda} = f(u_{\lambda}) \quad \text{on} \quad \Omega \times (0, T),$$
$$u_{\lambda} = 0 \quad \text{on} \quad \partial \Omega \times (0, T),$$
$$u_{\lambda}(x, 0) = \lambda u_0(x) \quad \text{for all } x \text{ in } \Omega.$$

Let U_{λ} be the least integral solution of (P_{λ}) and $T^*(\lambda) = T^*(U_{\lambda})$.

LEMMA 2.1. Suppose (h). Let u_0 be a nonnegative bounded measure on Ω and suppose there exists $\lambda > 1$ such that $T^*(\lambda) > 0$ then:

$$U(x, t) \leq (\lambda/(\lambda^{\gamma - 1} - 1)^{1/(\gamma - 1)})(S(t) u_0(x) + a)$$

for all (x, t) in $\Omega \times (0, T^*(\lambda)),$ (2.1)

where U is the least integral solution of $(\mathbf{P}) = (\mathbf{P}_1)$.

Recali that γ and *a* are the constants given in the hypothesis (h) and that $S(t) u_0$ denotes the unique solution of:

$$V_t - \Delta V = 0 \qquad \text{on} \quad \Omega \times (0, \infty) \ v \in \mathscr{C}^{2,1}(\Omega \times (0, T)),$$
$$V = 0 \qquad \text{on} \quad \partial \Omega \times (0, \infty),$$
$$\lim_{t \to -1} \int_{\Omega} V(t) \Phi = \int_{\Omega} \Phi u_0(dx) \qquad \text{for all } \Phi \text{ in } \mathscr{C}(\overline{\Omega}).$$

Proof. First, suppose $u_0 \in \mathscr{C}(\overline{\Omega})$. Let u_{λ}^n be the sequence given by

$$u_{\lambda}^{0} \equiv 0 \quad \text{on} \quad \Omega \times [0, T],$$

$$u_{\lambda}^{n} \in \mathscr{C}^{2,1}(\overline{\Omega} \times (0, T)) \cap \mathscr{C}(\Omega \times [0, T]),$$

$$u_{\lambda t}^{n} - \Delta u_{\lambda}^{u} = f(u_{\lambda}^{n-1}) \quad \text{on} \quad \Omega \times (0, T),$$

$$u_{\lambda}^{n} = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \quad (2.2)$$

$$u_{\lambda}^{n}(x, 0) = \lambda u_{0}(x) \quad \text{for all } x \text{ in } \Omega,$$

where $T = T^*(\lambda)$. We see by recurrence,

$$0 \leq u_{\lambda}^{n} \leq u_{\lambda}^{n+1} \leq U_{\lambda} \quad \text{on} \quad \Omega \times (0, T),$$

$$\lambda u_{1}^{n} \leq u_{\lambda}^{n} \quad \text{on} \quad \Omega \times (0, T) \quad \text{for all } \lambda \geq 1.$$
(2.3)

For $m \in \mathbb{N}$ and $\mu \ge 1$, we define

$$E^{m}_{\mu} = \{(x, t) \in \Omega \times (0, T); u^{m}_{1}(x, t) > \mu \Phi(x, t)\},\$$

where $\Phi(x, t) = S(t) u_0(x) + a$, and

$$g_n^m(\mu) = \inf_{\substack{(x,t) \in E_{\mu}^m}} \frac{u_{\lambda}^n(x,t)}{u_1^m(x,t)},$$

w(x, t) = $u_{\lambda}^{n+1}(x,t) - g_n^m(\mu)^{\gamma} u_1^m(x,t) + \lambda(g_n^m(\mu)^{\gamma} - g_{n+1}^m(\mu)) \Phi(x,t);$

w belongs to $\mathscr{C}(\Omega \times [0, T]) \cap \mathscr{C}^{2,1}(\overline{\Omega} \times (0, T])$ and for $n \ge m > 1$, $\lambda > 0$ we have

$$w_{i} - \Delta w = f(u_{\lambda}^{m}) - g_{n}^{m}(\mu)^{\gamma} f(u_{1}^{m-1}) \quad \text{on} \quad E_{\mu}^{m},$$

$$w \ge g_{n+1}^{m}(\mu) u_{1}^{m} - g_{n}^{m}(\mu)^{\gamma} u_{1}^{m} + \lambda (g_{n}^{m}(\mu)^{\gamma} - g_{n+1}^{m}(\mu)) \Phi \quad \text{in} \quad E_{\mu}^{m}$$

we deduce from (2.3),

$$g_{\mu}^{m}(\mu) \ge \lambda > 1$$
 for all $\mu \ge 1$ (2.4)

and from (h):

$$f(u_{\lambda}^{n}) \geq f(g_{n}^{m}(\mu) u_{1}^{m}) \geq g_{n}^{m}(\mu)^{\gamma} f(u_{1}^{m}) \quad \text{in} \quad E_{\mu}^{m}.$$

We obtain with (2.3)

$$w_t - \Delta w \ge 0$$
 on E^m_{μ} .

Since $u_1^m = \mu \Phi$ on $\partial E_{\mu}^m \setminus (\Omega \times \{T\})$, we have

 $w \ge 0$ on $\partial E_u^m \setminus (\Omega \times \{T\}).$

we deduce from the maximum principle that $w \ge 0$ in E_{μ}^{m} .

For $\mu' \ge \mu$ we have $E_{\mu'}^m \subset E_{\mu}^m$ and

$$\Phi(x, t) < (1/\mu') u_1^m(x, t)$$
 for all (x, t) in $E_{\mu'}^m$.

 $w \ge 0$ on E^m_{μ} then implies:

$$g_{n+1}^m(\mu') \ge g_n^m(\mu)^\gamma - (g_n^m(\mu)^\gamma - g_{n+1}^m(\mu)) \mu/\mu'.$$

For all μ , *m* such that $E_{\mu}^{m} \neq \emptyset$, $\{g_{n}^{m}(\mu)\}_{n \in \mathbb{N}}$ is a nondecreasing sequence bounded by $\inf_{E_{\mu}^{m}} U_{\lambda}/u_{\lambda}^{m}$ which is finite because $T = T^{*}(\lambda)$. Its limit $g^{m}(\mu)$ satisfies:

$$g^{m}(\mu') \geq g^{m}(\mu)^{\gamma} - (g^{m}(\mu)^{\gamma} - g^{m}(\mu)) \mu/\mu',$$

hence,

$$\frac{g^m(\mu') - g^m(\mu)}{g^m(\mu)^{\gamma} - g^m(\mu)} \ge \frac{\mu' - \mu}{\mu'} \quad \text{for all } \mu' \ge \mu > 1,$$

so

$$\operatorname{Log}(\mu/\mu_0) \leq \int_{g(\mu_0)}^{\infty} \frac{d\sigma}{\sigma^{\gamma} - \sigma} \quad \text{for all } \mu \geq \mu_0 > 1.$$

Since (2.4) implies $g^{m}(\mu_{0}) \ge \lambda$, we obtain that if μ satisfies

$$\mu > \frac{\lambda}{(\lambda^{\gamma-1}-1)^{1.(\gamma-1)}}.$$

then necessarily $E^{m}(\mu) = \emptyset$. Thus

$$u_1^{m_1}(x, t) \leq \frac{\lambda}{(\lambda^{\gamma-1}-1)^{1/(\gamma-1)}} \Phi(x, t)$$
 for all (x, t) in $\Omega \times (0, T)$.

Taking the limit in (2.3), we obtain

$$\lim_{m\to\infty} u_{\lambda}^m \leqslant U_{\lambda}$$

However, by using the monotone convergence Theorem, $\lim_{m} u_{\lambda}^{m}$ is an integral solution of (P_{λ}) , so we have $U_{\lambda} = \lim_{k \to \infty} u_{\lambda}^{m}$ whatever $\lambda \ge 1$ (Proposition 2.1 (i)). We deduce $U = \lim_{m \to \infty} u_{1}^{m}$, we have proved (2.1) when $u_{\lambda} \in \mathscr{C}(\overline{\Omega})$.

When u_0 is a nonnegative bounded measure on Ω , we easily verify that (2.3) holds. Taking the limit in the second inequality, we obtain: $\lambda U \leq U_{\lambda}$ on $\Omega \times (0, T)$ for $\lambda \geq 1$.

Take the origin at $t = \varepsilon > 0$ and the initial data u_{ε} equal to $S(\varepsilon) u_0$. We have $u_{\varepsilon} \in \mathscr{C}(\overline{\Omega})$ and we deduce from the above inequality that

$$u_t - \Delta u = f(u) \qquad \text{on} \quad \Omega \times (\varepsilon, T)$$
$$u = 0 \qquad \text{on} \quad \partial \Omega \times (\varepsilon, T) \qquad (\mathbf{P}_{\varepsilon,\lambda})$$
$$u(x, \varepsilon) = \lambda u_{\varepsilon}(x) \qquad \text{for all } x \in \Omega$$

has an integral solution $U_{\lambda}^{\varepsilon} \leq U_{\lambda}$. By applying the lemma we obtain:

$$U^{\varepsilon}(x, t) \leq \frac{\lambda}{(\lambda^{\gamma-1}-1)^{1/(\gamma-1)}} \left(S(t-\varepsilon)(S(\varepsilon) u_0)(x) + a \right)$$

for all (x, t) in $\Omega \times (\varepsilon, T^*(\lambda))$,

where U^{ϵ} is the least integral solution of $(\mathbf{P}_{\epsilon,1})$. Observe that

$$\mathcal{O}^{\varepsilon}(x, \varepsilon' - \varepsilon) \ge (S(\varepsilon') u_0)(x) \quad \text{for} \quad \varepsilon' > \varepsilon \quad \text{and} \quad x \text{ in } \Omega.$$

156

Thus

$$U^{\varepsilon}(x, t) \ge U^{\varepsilon}(x, t)$$
 for $\varepsilon' > \varepsilon$ and (x, t) in $\Omega \times (\varepsilon', \infty)$

We deduce that $\lim_{\epsilon \downarrow 0} U^{\epsilon} = U$ and, taking the limit, we obtain Lemma 2.1.

 $T^*(\lambda)$ is a nonincreasing function. Let $T^*(\lambda^+)$ (resp. $T^*(\lambda^-)$) be the right limit (resp. left limit) of $T^*(\lambda)$. We can easily see that

$$T^*(\lambda) = T^*(\lambda^-) \ge T^*(\lambda^+).$$

When u_0 belongs to $L^{\infty}(\Omega)$, we define $T_{\max}(\lambda)$ as the maximal time of existence of the classical¹ solution of (P_{λ}) . We have $T_{\max}(\lambda) \leq T^*(\lambda)$. We see later that $T_{\max}(\lambda) = T^*(\lambda^+)$. However, we can already deduce from Lemma 2.1 the following remarks:

Remark 2.1. Suppose u_0 is a bounded nonnegative measure then

$$U \in \mathscr{C}^{2,1}(\overline{\Omega} \times (0, T^*(1^+))).$$

Proof. For every $T < T^*(1^+)$, we can find λ_0 such that $T^*(\lambda_0) \in (T, T^*(1^+))$ and $\lambda_0 > 1$. By applying (2.1), we deduce that U belongs to $L^{\infty}_{loc}((0, T) \times L^{\infty}(\Omega))$ and so with standard bootstrap argument, U belongs to $\mathscr{C}^{2,1}(\overline{\Omega} \times (0, T^*(1^+)))$.

Remark 2.2. Suppose u_0 in $L^{\infty}(\Omega) \ u_0 \ge 0$, we deduce from Remark 2.1 that $T_{\max} = T_{\max}(1) \ge T^*(1^+)$ and that U, the least integral solution, is the classical solution on $(0, T^*(1^+))$ (see Proposition 2.1 (iii) before).

Remark 2.3. Suppose u_0 in $L^1_{loc}(\Omega)$, $u_0 \ge 0$. Then U is the limit of an increasing sequence of classical solutions on $(0, T^*(1))$ of the problem (P).

Proof. Take $u_{0_n} = (1 - 1/n) \inf(u_0, n)$ and call U_n the least integral solution of (P) with initial data u_{0_n} . We deduce from Lemma 2.1 and a bootstrap argument as in Remark 2.1 that U_n is a classical solution on $(0, T^*(1))$. We deduce from Proposition 2.1 that $U(x, t) = \lim_{n \to \infty} U_n(x, t)$ for all (x, t) in $\Omega \times [0, T^*(1)]$.

Remark 2.4. Suppose that (P) has a global solution for all nonnegative function u_0 such that $\sup(|u_0|_{\infty}, |u_0|_1)$ is small enough and a = 0 in (h) if Ω is unbounded. Then if a bounded nonnegative measure u_0 is such that (P) has a local integral solution (i.e., $T^*(1) > 0$) there exists $\lambda > 0$ such that (P_{λ}) has a global solution.

Proof. Choose $\lambda_0 < 1$, we deduce from Lemma 2.1 that $U_{\lambda_0}(x, t) \leq (1/(1-\lambda_0^{\gamma-1}))^{1/(\gamma-1)}((S(t)u_0)(x)+a)$ for all (x, t) in $\Omega \times (0, T^*(1))$. By

¹ When $u_0 \in L^{\infty}(\Omega)$, *u* is the classical solution of (P) on (0, T) if $u \in \mathscr{C}^{2,1}(\overline{\Omega} \times (0, T)) \cap L^{\infty}(\Omega \times (0, T))$ and $\lim_{t \to 0} u(x, t) = u_0(x)$ for a.e. $x \in \Omega$.

using the same construction as in (2.3) of Lemma 2.1, we see that for $\lambda \leq \lambda_0$, $U_{\lambda} \leq (\lambda/\lambda_0) U_{\lambda_0}$ on $\Omega \times (0, \infty)$. Choose $t_0 \in (0, T^*(1))$, we deduce from these two inequalities the existence of $\lambda > 0$ such that $\sup(|U_{\lambda}(\cdot, t_0)|_{+\infty}, |U_{\lambda}(\cdot, t_0)|_1)$ is small enough.

Remark 2.5. Lemma 2.1 is valid for all u_0 nonnegative measure (not necessar ly bounded). Indeed, if K_n is a sequence of compact subsets of Ω increasing to Ω , we can apply (2.1) with $u_0\chi_{Kn}$ and take the limit.

Let f^* be the conjugate function of f, that is

$$f^*(r) = \sup_{\alpha \ge 0} (r\alpha - f(\alpha)).$$

We can improve the necessary condition for the existence of an integral solution of (P) given in [5].

LEMMA 2.2. Suppose that f satisfies (h). Let u_0 be a nonnegative measure on Ω . If (P) has an integral solution U such that $T^*(U) \ge T$ then

$$\int_{\Omega} \xi(0) \, u_0 \leqslant \int_{\Omega \times (0, T)} f^*(h/\xi) \, \xi \chi_{(h>0)} \, dx \, dt \tag{2.5}$$

for all (i, ξ) such that

$$h \in L^{1}(\Omega \times (0, T)) \qquad h \ge 0 \quad \text{on} \quad \Omega \times (0, T),$$

$$-\xi_{t} - \Delta \xi = h \qquad \text{in} \quad \Omega \times (0, T),$$

$$\xi = 0 \qquad \text{on} \quad \partial \Omega \times (0, T), \qquad (2.6)$$

$$\xi(T) = 0 \qquad \text{in} \quad \Omega,$$

where $\chi_E(x, t) = 0$ if $(x, t) \notin E$, $\chi_E(x, t) = 1$ if $(x, t) \in E$. Let us recall that (2.6) is equivalent to

$$\xi(x, t) = \int_{\Omega \times \{0, T\}} G(s - t, y, x) h(y, s) \, dy \, ds.$$
 (2.6 bis)

Prooj. Suppose first u_0 in $L^1_{loc}(\Omega)$. Let u_n be the sequence given by Remark 2.3. Multiply by ξ and integrate the equation satisfied by u_n , we obtain

$$\int_{\Omega \times (0,T)} u_n h = \int_{\Omega \times (0,T)} f(u_n) \,\xi + \int_{\Omega} u_{0n} \xi(0).$$

Hence

$$\int_{\Omega} u_{0n} \xi(0) \leq \int_{\Omega \times (0,T)} \left(u_n(h/\xi) - f(u_n) \right) \xi \chi_{\{h>0\}}$$
$$\leq \int_{\Omega \times (0,T)} f^*(h/\xi) \xi \chi_{\{h>0\}}.$$

Take the limit to obtain (2.5).

If u_0 is a nonnegative measure, for $\varepsilon > 0$, $U(\cdot, \varepsilon)$ belongs to $L^1_{loc}(\Omega)$ and we can apply (2.5) on $\Omega \times (\varepsilon, T)$:

$$\int_{\Omega} \xi(x,\varepsilon) U(x,\varepsilon) dx \leq \int_{\Omega \times (\varepsilon,T)} f^*(h/\xi) \xi \chi_{\{h>0\}},$$

but

$$\int_{\Omega} U(x,\varepsilon) \,\xi(x,\varepsilon) \,dx = \int_{\Omega} U(x,\varepsilon) \left(\int_{\varepsilon}^{T} S(s-\varepsilon) \,h(s) \,ds \right)(x) \,dx$$
$$\geq \int_{\Omega} \left(S(\varepsilon) \,u_0(x) \left(\int_{\varepsilon} S(s-\varepsilon) \,h(s) \,ds \right)(x) \,dx$$
$$\geq \int_{\varepsilon} \int_{\Omega} \left(S(s) \,u_0(x) \,h(x,s) \,dx \,ds. \right) \,dx$$

We then deduce, taking the limit:

$$\int_{\Omega \times (0,T)} h(x,s)(S(s) u_0)(x) dx ds \leq \int_{\Omega \times (0,T)} f^*(h/\xi) \xi \chi_{\{h>0\}}$$

which is equivalent to (2.5).

The necessary condition (2.5) leads us to define:

$$X = \{h \in L^1(\Omega \times (0, T)), h \ge 0, f^*(h/\xi) \xi \chi_{\{h>0\}} \in L^1(\Omega \times (0, T)),$$

where ξ is given by (2.6) $\}.$

and for a nonnegative measure u_0 :

$$|u_0|_T = \sup_{\substack{h \in \mathcal{X} \\ h \neq 0}} \left\{ \int_{\Omega} \xi(0) \, u_0 \middle| \int_{\Omega \times (0,T)} f^*(h/\xi) \, \xi \chi_{\{h>0\}} \right\}.$$

Equation (2.5) becomes $|u_0|_T \leq 1$. It is also a sufficient condition which ensures the existence of an integral solution U of (P) such that $T^*(U) \ge T$. Indeed, we have

THEOREM 2.1. Suppose that f satisfies (h). Let u_0 be a nonnegative measure on Ω and T > 0. (P) has an integral solution U such that $T^*(U) \ge T$ if and orly if

$$|u_0|_T \leqslant 1 \tag{2.7}$$

Proof. We have proved the necessity in Lemma 2.2. First, observe that (h) implies the existence of two constants c_1 , c_2 such that

$$f^*(r) \leqslant c_1 r^{\gamma'} + c_2 r, \qquad \forall r \ge 0, \tag{2.8}$$

where 1'y' + 1/y = 1.

We apply Theorem 2.1 of [5]. Equation (2.5) implies the condition (11) of [5], so we have to prove that the solution provided by this Theorem is an integral solution U of (P) such that $T^*(U) \ge T$. To do this, we deduce from (2.8) as in Section III (2°) of [5] that whatever $K \in \Omega$ and $0 < T_1 < T$, the space \hat{X} of [5] contains a function which is positive on $K \times (0, T)$. We know that $U \cdot h \in L^1(\Omega \times (0, T))$ for all h in \hat{X} , so we obtain that U belongs to $L^1_{loc}(.2 \times (0, T))$, hence $T^*(U) \ge T$.

COROLLARY 2.1. Suppose that f satisfies (h). Let u_0 be a nonnegative bounded measure on Ω , then

- (i) $T \rightarrow |u_0|_T$ is a nondecreasing continuous function,
- (ii) $|u_0|_T = 1 \Leftrightarrow T \in [T^*(1^+), T^*(1^-)].$

Prooj. (i) $T \rightarrow |u_0|_T$ nondecreasing is a consequence of the definition of $|u_0|_T$. Let λ_+ be defined by

$$1/\lambda_{+} = \lim_{T \downarrow T_{0}} |u_{0}|_{T}, \qquad 1/\lambda_{-} = \lim_{T \uparrow T_{0}} |u_{0}|_{T},$$

we have to prove that $\lambda_{+} = \hat{\lambda}_{-}$.

First. observe that $\lambda_{-} |u_0|_T \leq 1$ for all $T < T_0$, Theorem 2.1 implies that $(P_{\lambda_{-}})$ has an integral solution $U_{\lambda_{-}}$ such that $T^*(U_{\lambda_{-}}) \geq T$ for all $T < T_0$, so we have $T^*(U_{\lambda_{-}}) \geq T_0$. Thus, there exists an integral solution U_{λ} such that $T^*(U_{\lambda}) \geq T_0$ for all $\lambda \in [\lambda_{+}, \lambda_{-}]$. Suppose $\lambda_{+} < \lambda_{-}$ and let λ_0 be such that $\lambda_{+} < \lambda_{\zeta} < \lambda_{-}$. We deduce from Lemma 2.1 that U_{λ_0} belongs to $L^{\infty}(\Omega > (T_0/2, T_0))$ and so can be extended on $(0, T_1)$ for some $T_1 > T_0$ hence $|\lambda_0 u_0|_{T_1} \leq 1$, but

$$|\lambda_0 u_0|_{T_1} \ge \lambda_0 \lim_{T \downarrow T_0} |u_0|_T \ge \lambda_0 / \lambda_+ > 1$$

we obtain a contradiction.

To prove (ii), first observe that

$$T \leqslant T^*(1^-) = T^*(1) \Leftrightarrow |u_0|_T \leqslant 1.$$

Let λ , T be such that $\lambda > 1$, $T > T^*(\lambda)$, we obtain

$$|\lambda u_0|_T > 1$$

and thus, for $T > T^*(1^+)$ we have $|u_0|_T \ge 1$; and so, for $T > T^*(1^+)$ we have $|u_0|_T \ge 1$.

We obtain that $T \in (T^*(1^+), T^*(1^-))$ implies $|u_0|_T = 1$. By using the continuity of $T \to |u_0|_T$, we obtain that $T \in [T^*(1^+), T^*(1^-)]$ implies $|u_0|_T = 1$.

Suppose now $|u_0|_T = 1$. We have immediately $T \le T^*(1)$ and for $\lambda > 1$ $|u_0|_{T^*(\lambda)} = 1/\lambda < 1$ implies $T > T^*(\lambda)$ and thus $T \ge T^*(1^+)$.

COROLLARY 2.2. (i) Let u_0 be a nonnegative bounded measure such that $u_0 \neq 0$, and T > 0, then there exists $\lambda > 0$ such that $T^*(\lambda) \leq T$.

(ii) Let $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$ and T > 0, then there exists $\lambda > 0$ such that $T_{\max}(\lambda) \le T$.

This corollary implies that there does not exist any nonnegative initial data such that (P_{λ}) has a global solution for all $\lambda > 0$ (classical or integral).

Proof. (i) implies (ii) because $T_{\max}(\lambda) \leq T^*(\lambda)$. We have $|\lambda u_0|_T = \lambda |u_0|_T$ and so for $\lambda > 1/|u_0|_T$. Theorem 2.1 implies that $T^*(\lambda) < T$.

If $|u_0|_T = 1$, the question which arises is does there exist a $h \neq 0$ which realizes the equality in (2.5)? We have the following result:

THEOREM 2.2. Suppose (h), Ω bounded. Let $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$, and T be such that $|u_0|_T = 1$. Let U be the least integral solution of (P). There exists ξ^* such that:

(i)
$$\xi^* \ge 0$$
 in $\Omega \times (0, T), \ \xi^* \neq 0,$

- (ii) $f'(U) \xi^*$ and $Uf'(U) \xi^*$ belong to $L^1(\Omega \times (0, T))$,
- (iii)

$$\begin{aligned} -\xi_t^* - \Delta \xi^* &= f'(U) \xi^* \quad on \quad \Omega \times (0, T), \\ \xi^* &= 0 \quad on \quad \partial \Omega \times (0, T), \\ \xi^*(T) &= 0 \quad on \quad \Omega, \end{aligned} \tag{2.9}$$

and

(iv)
$$\int_{\Omega} u_0 \xi^*(0) = \int_{\Omega \times (0,T)} f^*(h^*/\xi^*) \xi^* \chi_{\{h^*>0\}} = 1,$$

where $h^* = f'(U) \xi^*.$

To prove this theorem, we need some lemmas. For $g \in L^1_{loc}(\Omega \times (0, T))$, $g \ge 0$, we set

$$\|g\|_{T} = \sup_{\substack{h \in \mathcal{X} \\ h \neq 0 \\ (\xi,h) \text{ verifying } (2.6)}} \left(\left(\int_{\Omega \times (0,T)} gh \right) \right) / \int_{\Omega \times (0,T)} f^{*}(h/\xi) \xi \chi_{\{h>0\}} \right),$$

hence $||S(t)u_0||_T = |u_0|_T$.

LEMNA 2.3. For T > 0, we have

(i) for all $\varepsilon > 0$, there exists $\eta > 0$ such that

A measurable subset of $\Omega \times (0, T)$ meas $(A) < \eta$ $\Rightarrow \|\chi_A\|_T < \varepsilon$

(ii) $\|\chi_{\Omega\times(0,T)}\|_T < \infty$.

Proo^{*c*}. Let A be a measurable subset of $\Omega \times (0, T)$. For $\varepsilon > 0$, consider the problem

$$u(x, t) = \int_0^t G(t-s, x, y) f(u(y, s)) \, dy \, ds + 1/\varepsilon \chi_A(x, t). \tag{P}_{\varepsilon}$$

A necessary condition for the existence of a nonnegative bounded solution of (\mathbf{P}_{i}) is

$$\|\chi_A\|_T \leqslant \varepsilon. \tag{2.10}$$

Indeed, let h be a function of X and ξ the solution of (2.6). Multiply (P_{ε}) by h and integrate, we obtain

$$\int_{\Omega \times (0,T)} wh = \int_{\Omega \times (0,T)} h(x,t) \int_0^t \int_{\Omega} G(t-s,x,y) f(u(y,s)) \, dy \, ds \, dx \, dt$$
$$+ 1/\varepsilon \int_{\Omega \times (0,T)} \chi_A h.$$

Hence by Fubini Theorem, we have

$$\int_{\Omega \times (0,T)} h(x,t) \int_0 G(t-s,x,y) f(u(y,s)) \, dy \, ds \, dx \, dt$$
$$= \int_{\Omega \times (0,T)} f(u)(y,s) \, \xi(y,s) \, dy \, ds$$

162

and so

$$(1/\varepsilon)\int_{\Omega\times(0,T)}\chi_A h = \int_{\Omega\times(0,T)} uh - f(u)\,\xi \leqslant \int_{\Omega\times(0,T)} f^*(h/\xi)\,\xi\chi_{\{h>0\}}.$$

To prove that (2.10) holds as soon as A is suitable, we show that (P_{ε}) has a bounded solution. To do this, it is sufficient to find a bounded upper solution of (P_{ε}) on $\Omega \times (0, T)$.

Let C_0 be such that

$$C_0 > 0, \qquad \int_{2C_0}^{+\infty} (1/f(\sigma)) \, d\sigma > T.$$

Let C(t) be the solution of:

$$C'(t) = 1/2f(2C(t)), \qquad C(0) = C_0.$$
 (2.11)

Verify that $w(x, t) = (1/\varepsilon) \chi_A(x, t) + C(t)$ is a bounded upper solution of (P_{ε}) . Since F is convex, we have

$$\int_{0}^{t} \int_{\Omega} G(t-s, x, y) f(w(y, s)) \, dy \, ds + (1/\varepsilon) \, \chi_{A}$$

$$\leq 1/2 \int_{0}^{t} \int_{\Omega} G(t-s, x, y) f((2/\varepsilon) \, \chi_{A}(y, s)) \, dy \, ds$$

$$+ 1/2 \int_{0}^{t} \int_{\Omega} G(t-s, x, y) f(2C(s)) \, ds \, dy + w(x, t) - C(t).$$

We have

$$\int_0^t \int_\Omega G(t-s, x, y) f(2C(s)) \, ds \, dy \leq \int_0^t f(2C(s)) \, ds$$

and

$$\int_{0}^{t} \int_{\Omega} G(t-s, x, y) f((2/\varepsilon) \chi_{A}(y, s)) \, dy \, ds$$
$$= f(2/\varepsilon) \int_{0}^{t} \int_{\Omega} G(t-s, x, y) \chi_{A}(y, s)) \, dy \, ds$$

w is an upper solution if

$$1/2 f(2/\varepsilon) \int_0^t \int_\Omega G(t-s, x, y) \chi_A(y, s) dy ds + 1/2 \int_0^t f(2C(s)) ds \leq C(t)$$

with (2.1), we obtain

$$\int_{0}^{t} \int_{\Omega} G(t-s, x, y) \,\chi_{A}(y, s)) \, dy \, ds \leq (2C_{0}/f(2/\varepsilon)).$$
(2.12)

To prove (ii), choose $A = \Omega \times (0, T)$. The left-hand side of (2.12) is bounded on $\Omega \times (0, T)$ and for ε large enough, (2.12) will be satisfied on $\Omega \times (0, T)$.

To prove (i), observe that (2.12) is equivalent to

$$\int_{A} \left(\int_{s}^{T} \int_{\Omega} G(t-s, x, y) \, \varphi(x, t) \, dx \, dt \right) dy \, ds \leq (2C_0/f(2/\varepsilon))$$

for all $\varphi \in L^1(\Omega \times (0, T)), \varphi \ge 0$ and $\int_{\Omega \times (0, T)} \varphi(x, t) dx dt = 1$.

By Dunford-Pettis Theorem, (i) is then equivalent to the relative weak compactness in $L^1(\Omega \times (0, T))$ of the subset:

$$\begin{cases} g(y,s) = \int_{1}^{T} \int_{\Omega} G(t-s, x, y) \, \varphi(x, t) \, dx \, dt, \, \varphi \in L^{1}(\Omega \times (0, T)), \\ \varphi \ge 0 \text{ and } \int_{\Omega \times (0,T)} \varphi = 1 \end{cases}$$

which is a consequence of the compactness of the operator $\varphi \rightarrow g$,

	$-g_t - \Delta g = \varphi$	on	$\Omega \times (0, T),$
where g is the solution of	g = 0	on	$\partial \Omega \times (0, T),$
	g(x, T) = 0	for all x in Ω ,	

from $L^1(\Omega \times (0, T))$ to $L^1(\Omega \times (0, T))$.

LEMM A 2.4. (i) $h \to (f^*(h/\xi) \xi \chi_{\{h>0\}}(x, t) \text{ where } (\xi, h) \text{ satisfies } (2.6) \text{ is a convex function from } X \text{ to } \mathbb{R}^+ \text{ for a.e. } (x, t) \text{ in } \Omega \times (0, T).$

(ii)
$$h \to \int_{\Omega \times (0,T)} f^*(h/\xi) \xi \chi_{\{h>0\}}(x,t) dx dt$$

is a lower semi continuous function on X with L^1 norm.

Proo? Let (h_i/ξ_i) i = 1, 2 be two pairs of function satisfying (2.6). Using the convexity of f^* , we obtain

$$f^{*}((h_{1} + h_{2})/(\xi_{1} + \xi_{2}))(\xi_{1} + \xi_{2})$$

= $f^{*}((h_{1}/\xi_{1})(\xi_{1}/(\xi_{1} + \xi_{2})) + f^{*}(h_{2}/\xi_{2})(\xi_{2}/(\xi_{1} + \xi_{2})))(\xi_{1} + \xi_{2})$
 $\leq f^{*}(h_{1}/\xi_{1})\xi_{1} + f^{*}(h_{2}/\xi_{2})\xi_{2}$

164

and, for $\theta > 0$ and (h, ξ) satisfying (2.6), we have

$$f^*(\theta h/\theta \xi) \theta \xi = \theta(f^*(h/\xi) \xi)$$

the convexity is established.

We deduce the lower semicontinuity from Lebesgue and Fatou Theorems.

LEMMA 2.5. Suppose (h). Then there exists K > 0, c > 1 and $b \ge 0$ such that

$$f^*(cr) \leqslant Kf^*(r) \qquad for \ all \ r \ge b. \tag{2.13}$$

Proof. Observe that (h) implies for all x > 1 and $\alpha \ge a$,

$$f(x\alpha) \geqslant x^{\gamma} f(\alpha)$$

we deduce

for all
$$r \ge 0$$
, $\alpha \ge a$, $x^{\gamma}r\alpha - f(x\alpha) \le x^{\gamma}(r\alpha - f(\alpha))$.

Put $c = x^{\gamma - 1}$, we obtain

$$f^*(cr) \leqslant c^{\gamma_1(\gamma-1)} f^*(r)$$

for all r such that $f^*(r) = r\alpha f(\alpha)$ for some $\alpha \ge a$ that is $r \ge f'(a)$. (2.13) holds with b = f(a), $K = c^{\gamma_1(\gamma - 1)}$.

Proof of Theorem 2.2. Recall that we suppose $|u_0|_T = 1$ and $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$. Because $|u_0|_T = ||S(t) u_0||_T = 1$, we can find a sequence $\{(h_n, \xi_n)\}_{n \in \mathbb{N}}$ such that (h_n, ξ_n) satisfies (2.6) and

$$\int_{\Omega \times (0,T)} f^*(h_n/\xi_n) \,\xi_n \chi_{\{h_n > 0\}} = 1,$$

$$\int_{\Omega \times (0,T)} S(t) \,u_0(x) \,h_n(x,t) \,dx \,dt \to 1 \quad \text{when} \quad n \to \infty$$

We deduce from Lemma 2.3(i) that for all $\varepsilon > 0$, there exists $\eta > 0$ such that meas $(U) < \eta$ implies $\int_U h_n < \varepsilon$ and from Lemma 2.3(ii).

$$\int_{\Omega\times(0,T)}h_n\leqslant \|\chi_{\Omega\times(0,T)}\|_T<\infty.$$

Since Ω is bounded, we may conclude from Dunford-Pettis Theorem that $\{h_n\}_{n \in \mathbb{N}}$ is weakly relatively compact in $L^1(\Omega \times (0, T))$. Let h^* be a weak limit of a subsequence.

Using the fact that u_0 is bounded, we have

$$\int_{\Omega \times (0,T)} S(t) \, u_0(x) \, h^*(x,t) \, dx \, dt = 1$$

which in plies $h^* \neq 0$. Lemma 2.4 then implies that $h^* \in X$ and

$$\int_{\Omega \times \{0,T\}} f^*(h^*/\xi^*) \xi^* \chi_{\{h^* > 0\}} \leq 1,$$

where (ζ^*, h^*) satisfies (2.6). We deduce from $||S(t) u_0||_T = 1$ that

$$\int_{\Omega \times \{0,T\}} S(t) \, u_0(x) \, h^*(x,t) \, dx \, dt = \int_{\Omega \times \{0,T\}} f^*(h^*/\xi^*) \, \xi^*\chi_{\{h>0\}} = 1.$$
(2.14)

Let U be the least integral solution of (P). We claim that Uh belongs to $L^1(\Omega \times (0, T))$ for all h in X. Indeed, we deduce from (2.13) that $f^*(c(h/\xi)) \xi \chi_{\{h>0\}}$ belongs to $L^1(\Omega \times (0, T))$ for all $h \in X$ and for some c > 1. Take U_n given by Remark 2.3, we have $U_n \in L^{\infty}(\Omega \times (0, T))$ and so for all (n, ξ) satisfying (2.6),

$$\int_{\Omega \times \{0,T\}} U_n h = \int_{\Omega \times \{0,T\}} f(U_n) \xi$$
$$+ \int_{\Omega \times \{0,T\}} S(t) u_{0n}(x) h(x,t) dx dt < \infty.$$

Thus

$$\int_{\Omega \times (0,T)} S(t) u_{0n}(x) h(x,t) dx dt + (c-1) \int_{\Omega \times (0,T)} U_n h$$

=
$$\int_{\Omega \times (0,T)} (U_n c(h/\xi) - f(U_n)) \xi \leq \int_{\Omega \times (0,T)} f^*(ch/\xi) \xi \chi_{\{h>0\}}$$

The r ght-hand side is finite as soon as $h \in X$. Taking the limit we obtain our assurtion. In particular, we have $Uh^* \in L^1(\Omega \times (0, T))$ and we can rewrite [2.14].

$$\int_{\Omega \times (0,T)} Uh^* - f(U) \,\xi^* - f^*(h^*/\xi^*) \,\xi^* \chi_{\{h^* > 0\}} = 0.$$

which proves that $Uh^* = f(U) \xi^* + f^*(h^*/\xi^*) \xi^*$ a.e. on $\Omega \times (0, T)$ from which v'e deduce

$$(h^*/\xi^*)(x, t) = f'(U(x, t))$$
 for a.e. (x, t) in $\{\xi^* > 0\}$

166

and we have established (iii). $h^* \in X$ and $h^* \neq 0$ imply (i), (ii) is an immediate consequence of h^* and $Uh^* \in L^1(\Omega \times (0, T))$ and (iv) is (2.14).

COROLLARY 2.3. Under the hypotheses of Theorem 2.2,

(i)
$$T_{\max} = T^*(1^+).$$

(ii) There exists ξ^* satisfying (i) – (iv) of Theorem 2.2 and such that

$$\operatorname{supp} \xi^* = \Omega \times [0, T_{\max}].$$

Proof. We know that $T_{\max} \ge T^*(1^+)$ and that U is equal to the classical solution on $\Omega \times (0, T^*(1^+))$ (Remark 2.2). Suppose $T_{\max} > T^*(1^+)$. U is then bounded on $\Omega \times (0, T^*(1^+))$. Corollary 2.1 implies that we may apply Theorem 2.2 with $T = T^*(1^+)$. We obtain the existence of a nontrivial and nonnegative solution of (2.9) with $f'(U) \xi^* \in L^1(\Omega \times (0, T^*(1^+)))$ which is impossible because $f'(U) \in L^{\infty}(\Omega \times (0, T^*(1^+)))$.

By using the same argument, we see that it is impossible that supp $\xi^* \subset \Omega \times (0, T')$ with $T' < T_{max}$ when ξ^* is a solution of (2.9).

Now, we can prove Theorem 2 under the assumption (H2).

Proof of Theorem 2 under (H2). Recall that we have to prove that whatever an integral solution V of (P), we have $T^*(V) \leq T_{\max}$. Using Proposition 2.1, it is sufficient to show that $T^*(U) \leq T_{\max}$ which means with our notation $T^*(1) \leq T_{\max}$. From Corollary 2.3, we see that Theorem 2.2 is then equivalent to $T^*(1^+) = T^*(1^-)$. Suppose not and choose $\varepsilon > 0$ such that $\varepsilon < T_{\max}$ and $\varepsilon < T^*(1^-) - T^*(1^+)$. We deduce from Lemma 1.1,

$$\int_{\Omega} u_0(x) \, \xi^*(x,0) \, dx < \int_{\Omega} U(X,\varepsilon) \, \xi^*(x,0) \, dx$$

(if the equality holds, u_0 would be a stationary solution and $T_{\max} = +\infty$) where ξ^* is a solution of (i)-(iv) and supp $\xi^* = \Omega \times [0, T_{\max}]$. We deduce from the point (iv),

$$1 = |u_0|_{T \max} < |U(\varepsilon)|_{T \max}$$

But $U(t+\varepsilon)$ is an integral solution of (P) with initial data $U(\varepsilon)$ and the time of existence of this solution is more than T_{max} . Thus, we deduce from Theorem 2.1, $|U(\varepsilon)|_{T \max} \leq 1$. We obtain a contradiction.

We can deduce from Theorem 2.2 the following uniqueness result.

COROLLARY 2.4. Suppose (h), Ω bounded and $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$. Then for all integral solution of (P) such that $T^*(V) \ge T_{\max}$, we have V = u on $\Omega \times (0, T_{\max})$.

Proof. Let ξ^* be given by Corollary 2.3(ii). We easily see that for all t in $(0, T_{max})$,

$$\int_{\Omega} u(x, t) \,\xi^{*}(x, t) \,dx = \int_{t}^{T_{\max}} \int_{\Omega} f^{*}(h^{*}/\xi^{*}) \,\xi^{*} \,dx \,dt.$$

For al integral solution V of (P), we have (Proposition 2.1),

 $u \leq V$ on $\Omega \times (0, T_{\max})$.

and if $T^{*}(V) \ge T_{\max}$ we have $|V(\cdot, t)|_{T_{\max} - t} \le 1$ which implies

$$\int_{\Omega} V(x,t) \,\xi^*(x,t) \,dx \leq \int_t^{T_{\max}} \int_{\Omega} f^*(h^*/\xi^*) \,\xi^* \,dx \,dt$$

hence u = V a.e. on $\Omega \times (0, T_{\text{max}})$.

III. CASE (H3)

We begin to prove the following result where we do not suppose (H3).

THEOREM 3.1. Suppose (h), Ω bounded and $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$. Let U be the least integral solution of (P) then:

- (i) $Uf(U) \in L^2_{loc}([0, T^*); L^1(\Omega)),$
- (ii) $U \in L^4_{\text{loc}}((0, T^*); H^1_0(\Omega)) \cap L^{\infty}_{\text{loc}}([0, T^*); L^2(\Omega)),$
- (iii) $(dU/dt) \in L^2_{loc}((0, T^*); L^2(\Omega)),$

where $T^{::} = T^*(U)$.

Proof. First, we establish some a priori estimates on a classical solution of (P) on (0, T). We have (see [1]):

$$\frac{1}{2}(d/dt) |u|_{2}^{2} + |\nabla u|_{2}^{2} = \int_{\Omega} f(u) u$$
(3.1)

and

$$|(du/dt)|_{2}^{2} + (d/dt) E(u) = 0, \qquad (3.2)$$

where $E(u) = 1/2 |\nabla u|_2^2 - \int_{\Omega} F(u)$, $F(r) = \int_0^r f(s) ds$ and $|\cdot|_2$ is the norm of $L^2(\Omega)$.

(h) implies the existence of two constants c and a such that:

c > 2, $a \ge 0$, and $f(r) r \ge cF(r) - a$ for all $r \ge 0$.

Then, we deduce from (3.1)

$$\frac{1}{2}(d/dt) |u|_{2}^{2} + 2E(u) \ge (c-2) \int_{\Omega} F(u) - a |\Omega|.$$
(3.3)

We deduce from the convexity of f that $\Phi(r) = F(\sqrt{r})$ is a convex function. Using (h), we see that

$$\Phi(r) \ge c_1 r^{((r+1)/2)} \quad \text{for all } r \ge r_0 \ge 0,$$

where c_1 and r_0 suitable positive constants. We deduce from Jensen inequality,

$$\left(\int_{\Omega} u^{2}\right)^{((\gamma+1)/2)} \leq \left[\left(|\Omega|^{((\gamma+1)/2)}\right)/c_{1}\right] \boldsymbol{\Phi}\left[\left(1/|\Omega|\right)\int_{\Omega} u^{2}\right]$$
$$\leq \left[\left(|\Omega|^{((\gamma-1)/2)}\right)/c_{1}\right]\int_{\Omega} F(u)$$

for all t such that $\int_{\Omega} u^2 \ge r_0 |\Omega|$. Then (3.3) implies

$$\frac{1}{2}(d/dt) |u|_{2}^{2} \ge a |u|_{2}^{(\gamma+1)} - (2E(u) + a |\Omega|).$$
(3.4)

for all t such that: $\int_{\Omega} u^2 \ge r_0 |\Omega|$ and for $a = (c-2) c_1/|\Omega|^{((\gamma-1)/2} > 0$. Suppose

$$|u(t_0)|_2^2 \ge r_0 |\Omega|,$$

$$2E(u(t_0)) + a |\Omega| \le 0.$$
(3.5)

. .

We deduce from (3.2) and (3.4) that (3.5) remains true for all $t \ge t_0$. Put $h(t) = |u|_2^2(t)$. Then (3.4) implies

$$h' \ge 2ah^{((\gamma+1)/2)}, \qquad h(t_0) = |u(t_0)|_2^2$$

and because we suppose that (P) has a classical solution on (0, T), we obtain,

$$|u(t_0)|_2^2 \leq \{a(\gamma-1)(T-t_0)\}^{(-2,(\gamma-1))} = f_T(t_0).$$

Suppose now $|u(t_0)|_2^2 \ge \operatorname{Sup}(f_T(t_0), r_0 |\Omega|)$, (3.5) is false, so we have

$$E(u(t_0)) \ge -(a/2) |\Omega|.$$

But we ceduce from (3.2),

$$|u(t_{\rm C})|_2 < |u(t)|_2 + (t_0 - t)^{1/2} (E(u(t)) - E(u(t_0)))^{1/2} \qquad \text{for all } t \le t_0$$

Hence:

$$|u(t_0)|_2^2 < 2 |u(t)|_2^2 + (t_0 - t)(2E(u(t)) + a |\Omega|).$$

If we define

$$\psi(t_0) = \inf_{0 \le t \le t_0} (2 |u(t)|_2^2 + (t_0 - t)(2E(u(t)) + a |\Omega|))$$

We have proved

$$|u(t_1)|_2^2 \leq A_T(t_0) = \max\{r_0 | \Omega|, f_T(t_0), \psi(t_0)\} \quad \text{for all } t_0 \in (0, T). (3.6)$$

By integration, we deduce from (3.3),

$$\frac{1}{2} |u(t_0)|_2^2 + \int_{t_1}^{t_0} (a |\Omega| + 2E(u)(s) \, ds \ge (c-2) \int_{t_1}^{t_0} \int_{\Omega} F(u)(s) \, ds$$

for all $T > t_0 > t_1 > 0$. Thus,

$$\int_{t_1}^{t_0} \int_{\Omega} F(u)(s) \, ds \leq (1/(c-2))(\frac{1}{2}A_T(t_0) + (t_0 - t_1)(a \mid \Omega \mid 2E(u(t_1))))$$

for all $t_1 \leq t_0 < t$. (3.7)

Multiply (3.2) by $(t_0 - t)$ and integrate by parts. This yields

$$\int_{t_1}^{t_0} (t_0 - t) |du/dt|_2^2 (t) dt = (t_0 - t_1) E(u(t_1)) - \int_{t_1}^{t_0} E(u(s)) ds,$$

so, we have

$$\int_{t_1}^{t_0} (t_0 - t) |du/dt|_2^2 (t) dt \le (t_0 - t_1) E(u(t_1)) + \int_{t_1}^{t_0} \int_{\Omega} F(u)(s) ds,$$

for all $t_1 \le t_0 < t$.

Using (3.7), we obtain

$$\int_{t_1}^{t_1} (t_0 - t) |du/dt|_2^2 (t) dt$$

$$\leq (t_0 - t_1) a |\Omega| + (c/(c-2)) E(u(t_1)) + (1/2(c-2)) A_T(t_0). \quad (3.8)$$

170

We deduce from (3.3),

$$(c-2)\int_{\Omega} F(u) \leq a |\Omega| + 2E(u) + |u|_2 |du/dt|_2.$$

and

$$(c-2)^{2} \int_{t_{1}}^{t_{0}} (t_{0}-t) \left(\int_{\Omega} F(u)(t) \right)^{2} dt$$

$$\leq (t_{0}-t_{1})(a |\Omega| + 2E(u(t_{1})))^{2}$$

$$+ 2 \sup_{(t_{1},t_{0})} (|u|_{2}^{2}) \int_{t_{1}}^{t_{0}} (t_{0}-t) |du/dt|_{2}^{2} (t) dt.$$
(3.9)

At last, we deduce from (3.2):

$$\frac{1}{2} |\nabla u(t)|_2^2 \leq \int_{\Omega} (F(u)(t) + E(u(t_1))) \quad \text{for all } t \geq t_1 \geq 0.$$
 (3.10)

Choose $t_1 \in (0, T)$ and $\varepsilon > 0$. We deduce from (3.6) and the definition of ψ ,

$$|u|_2(t) \leq C_1(|u(t_1)|_2, E(u(t_1)), \varepsilon)$$
 for all $t \in (t_1, T - \varepsilon)$.

Applying (3.8) with $t_0 = T - (\varepsilon/2)$, we obtain

$$\int_{t_1}^{T-\iota} |du/dt|_2^2 \leq C_2(|u(t_1)|_2, E(u(t_1)), \varepsilon).$$

Then (3.9) and (3.10) implies

$$\int_{t_1}^{T-\epsilon} \left(\int_{\Omega} F(u)(s) \right)^2 ds \leq C_3(|u(t_1)|_2, E(u(t_1)), \varepsilon),$$
$$\int_{t_1}^{T-\epsilon} |\nabla u(s)|_2^4 ds \leq C_4(|u(t_1)|_2, E(u(t_1)), \varepsilon),$$

where the C_i , i = 1, 2, 3, 4 are continuous functions depending on $|u(t_1)|_2$, $E(u(t_1))$ and $\varepsilon > 0$.

Let $u_0 \in L^{\infty}(\Omega)$ and U be the least integral solution of (P). We can apply the above inequalities to each term of the sequence U_n constructed in Remark 2.3. We take $t_1 \in (0, T_{\max})$ in such a way that the right handsides of the inequalities remain bounded when n tends to infinity. Because U_n is a classical solution on $(0, T^*(U))$, we may apply these estimates with $T = T^*(U)$. Theorem 3.1 follows. ((i) in a consequence of (3.1) and the above estimates).

Remark 3.1. The assumption $u_0 \in L^{\infty}(\Omega)$ can be weakened. Indeed, we use only the existence of t_1 such that $|u_n(t_1)|_2$ and $E(u_n(t_1))$ remain boun-

BARAS AND COHEN

ded to obtain the estimates on $[t_1, T^* - \varepsilon)$. We need only the following assumption: u_0 is a nonnegative measure on Ω and there exists $T_0 > 0$ such that $|u_0|_{r_0} < 1$. Indeed, we deduce that (P) has an integral solution with a true time of existence bigger that T_0 when the initial data is $(u_0/|u_0|_{T_0})$. We deduce that $T^*(1^+) \ge T_0$ and we apply Remark 2.5 and Remark 2.1 to obtain the existence of $t_1 \in (0, T_0)$. Under this hypothesis, the behavior of U near t=0 can be deduced from the estimate (2.1) which holds with $1 = (1/|u_0|_{T_0})$ and $T^*(1) = T_0$.

COROILARY 3.1. We make the hypotheses of Theorem 3.1. Then

$$\lim_{t \to T_{\max}} E(u(t)) = -\infty \qquad implies \ T_{\max} = T^*(1)$$

Proof. Suppose $T_{\max} < T^*(1)$. We deduce from Theorem (3.1) that there exists $t_0 \in (T_{\max}, T^*(1))$ such that $F(U(t_0)) \in L^1(\Omega)$. Let U_n be the sequence of Remark 2.3. We deduce from (3.2),

$$E(U_n(t)) \ge E(U_n(t_0)) \ge -\int_{\Omega} F(U_n(t_0)) \ge \int_{\Omega} F(U(t_0))$$

for all $t < t_0$. For $t \in (0, T_{max})$, we have

$$\lim_{n \to \infty} E(U_n(t)) = E(u(t))$$

so, for all $t \in (0, T_{\max}), E(u(t)) \ge -\int_{\Omega} F(U(t_0)).$

This proves the corollary.

Proof of Theorem 2 under (H3). It is proved by Y. Giga in [9] that when f satisfies (H3), we have $\lim_{t \to T_{max}} E(u(t)) = -\infty$. Observe that (H3) implies (h). Thus we can apply Corollary 3.1. We obtain $T_{max} = T^*(1)$ which is equivalent to Theorem 2 as we have already seen.

CORO_LARY 3.2. Suppose (H3). $u_0 \rightarrow T_{\max}(u_0)$ is a continuous function from $L^{\infty}(\Omega)^+$ to \mathbb{R}^+ .

Proof We easily deduce from the definition of $|u_0|_T$ and from the Lemma 2.4 (i) that $|\cdot|_T$ defines a norm on $L^{\infty}(\Omega)$ and for $u_0 \ge 0$ and T > 0, we have

$$|u_0|_T \le |\chi_{\Omega}|_T |u_0|_{\infty}. \tag{3.11}$$

 $|\chi_{\Omega}|_T$ is finite for all T > 0 because (P) has a classical solution on (0, T) when the initial data is a positive constant small enough (the best constant is just $(1/|\chi_{\Omega}|_T)$, see Theorem 2.1).

Suppose that u_{0_n} is a sequence such that:

$$T_{\max}(u_{0_n}) \to T \neq T_{\max}(u_0)$$
 and $u_{0_n} \to u_0$ in $L^{\infty}(\Omega)$.

First suppose $T > T_{\max}(u_0)$ and choose $T_0 \in (T_{\max}(u_0), T)$, we deduce from Theorem 2.1 that for *n* big enough we have $|u_{0_n}|_{T_0} \leq 1$. Inequality (3.10) implies that $u_0 \to |u_0|_{T_0}$ is continuous from $L^{\infty}(\Omega)$, hence $|u_0|_{T_0} \leq 1$. We obtain that $T^*(u_0) \ge T_0$ (see Theorem 2.1). But Theorem 2 implies $T^*(u_0) = T_{\max}(u_0)$, we have a contradiction.

Suppose now $T < T_{\max}(u_0)$ and choose $T_0 \in (T, T_{\max}(u_0))$, using the same arguments, we obtain $|u_0|_{T_0} \ge 1$ and so $|u_0|_{T_0} = |u_0|_{T_{\max}} = 1$. Then we deduce from the Corollary 2.1(ii) that $T_0 \in [T^*(1^+), T^*(1^-)]$. $T_{\max} > T_0$ contradicts the Corollary 2.3.

Remark 3.1. Observe that to prove Corollary 3.2, we use only Corollaries 2.1 and 2.3 and $T^*(1^+) = T^*(1^-)$. Thus, we have under the hypothesis (h) and for $u_0 \in L^{\infty}(\Omega)$, $u_0 \ge 0$:

 $u_0 \to T_{\max}(u_0)$ continuous on $L^{\infty}(\Omega)$ at point u_0 is equivalent to $T_{\max}(u_0) = T^*(1)$.

References

- J. M. BALL, Remarks on blow-up and nonexistence Theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. 28 (1977), 473–486.
- P. BARAS, Non unicité des solutions d'une équation d'évolution non linéaire," Annales de la Faculté des Sciences de Toulouse, Vol. V, pp. 287–302, 1983.
- P. BARAS AND L. COHEN, "Sur l'explosion total après T_{max} de la solution d'une équation semi-linéaire de la chaleur," C. R. Acad. Sci. Sér. 1 300 (10) (1985), 295-298.
- 4. P. BARAS AND J. GOLDSTEIN, The heat equation with a singular potential, Amer. Math. Soc. Trans. 284 (1) (July 1984).
- P. BARAS AND M. PIERRE, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré 2 (3) (1985), 185-212.
- 6. T. CAZENAVE AND P. L. LIONS, Solutions globales d'équations de la chaleur semi-linéaires, Comm. Partial Differential Equations 9 (1984), 955–978.
- 7. A. FRIEDMAN AND B. MACLEOD, Blow-up of positive solutions of semilinear heat equations, *Indiana Univ. Math. J.* 34 (1985), 425-447.
- B. GIDAS, W. M. NI, AND L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
- Y. GIGA, A bound for global solutions of semilinear heat equations, Commun. Math. Phys. 103 (1986), 415-421.
- Y. GIGA, AND R. V. KOHN, A symptotically self-similar blow up of semilinear heat equations. *Comm. Pure Appl. Math.* 38 (1985), 297-319.
- A. HARAUX AND F. B. WEISSLER, Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (2) (1982), 167-189.
- 12. C. W. E. MUELLER AND F. B. WEISSLER, "Single Point Blow-Up for a General Semilinear Heat Equation," Report Univ. of Minnesota.
- 13. W. M. NI AND P. SACKS, Singular Behavior in Nonlinear Parabolic Equation, to appear.

BARAS AND COHEN

- 14. W. M. NI, P. SACKS, AND T. TAVANTZIS, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120.
- 15. M. PFOTTER AND H. WEINBERGER, Maximum Principle in Differential Equations," Prentice-Hall, Englewood Cliffs, N.J., 1967.
- F. B. WEISSLER, Local existence and nonexistence for semi linear parabolic equations in L^p, Indiana Univ. Math. J. 29 (1980), 79-102.
- F. B. WEISSLER, An L^x blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38 (1985), 291-295.
- 18. F. B. 'VEISSLER, Single point blow-up for a semilinear initial value problem, J. Differential Equations, in press.
- 19. F. B. WEISSLER, L^{p} energy and blow-up for semilinear heat equation, in "Proceedings of 1983 Amer. Math. Soc., Summer Institude on nonlinear functional analysis.