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Absfrucf- The use of energy-minimizing curves, known as 
“snakes” to extract features of interest in images has been in- 
troduced by Kass, Witkin and Tenopoulos [W]. A balloon model 
was introduced in [12] as a way to generalize and solve some 
of the problems encountered with the original method. A 3-D 
generalization of the balloon model as a 3-D deformable surface, 
which evolves in 3-D images, is presented. It is deformed under 
the action of internal and external forces attracting the surface 
toward detected edgels by means of an attraction potential. We 
also show properties of energy-minimizing surfaces concerning 
their relationship with 3-D edge points. To solve the minimization 
problem for a surface, two simplified approaches are shown first, 
defining a 3-D surface as a series of 2-D planar curves. Then, after 
comparing finite-element method and finite-difference method in 
the 2-D problem, we solve the 3-D model using the finite-element 
method yielding greater stability and faster convergence. This 
model is applied for segmenting magnetic resonance images. 

Index rem-Active contour models, attraction potential, de- 
formable models, feature extraction, finite difference method, 
finite element method, regularization, segmentation, surface re- 
construction 

I. INTRODUCTION 
E STUDY segmentation of medical 2-D and 3-D W images by making use of “deformable models” [29], 

[32] In order to achieve robust segmentation, we introduce a 
number of enhancements and modifications to the formulation 
of deformable models. In particular, we define new forces to 
control the evolution of the deformable model, we formulate 
the models for true 3-D data, and we develop a finite-element 
implementation. 

The class of “deformable models” originates with the 
method of “snakes” introduced by Kass et al. [23], which 
are used to locate smooth curves in 2-D imagery. Since then, 
deformable models have been used for many applications in 
2;-D and 3-D by Terzopoulos, Witkin and Kass [31], [32] 
where the deformable surface is constrained to encourage axial 
symmetry and is evolving under the forces determined from 
a 2-D image or a pair of 2-D images. We also make use of 
deformable surfaces, but the data providing information about 
the force comes from true 3-D data sets. We further extend 
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enhancements of the model introduced in [12] for curves to 
the surface model applications given here. 

In [12], we introduced a modification, using “balloons,’’ in 
order to apply the method of deformable models to stacks 
of images comprising a 3-D data set for an application in 
segmentation. Our use of deformable models in [12] was 
limited to the extraction of 2-D curves, which were then used 
to build up a 3-D structure. In this paper, we further refine 
and present the “balloon model,” formulating and applying it 
to true 3-D data. For this purpose, we study the use of finite- 
element methods for implementing the solution of the partial 
differential equations satisfied by the deformable surface. Our 
application is for the segmentation of 3-D magnetic resonance 
images of crania and heart regions. 

We compare different schemes using finite-difference and 
finite-element methods to generalize the balloon model intro- 
duced in [ 121 to a 3-D cylindrical surface or rectangular patch. 
In general, these methods are used to reliably extract surfaces 
in 3-D images. 

Three-dimensional imagery is often represented as a set 
of intensity voxels (volume elements). A 3-D edge detector, 
after a local image analysis [36], [24], provides a set of 3-D 
edgels (edge elements). However, the edgels do not constitute 
a segmentation. One approach to 3-D segmentation involves 
the integration of 2-D segmentation results along slices of the 
3-D imagery. In this paper, however, we wish to combine 
information from a 3-D edge detector with the method of 
deformable models applied directly to the solid data. 

We are confronted simultaneously with a segmentation 
problem and a surface reconstruction problem: 

1) we wish to locate edgels belonging to the surface of a 
single object; this is the segmentation problem; and 

2) we must represent the surface, together with its differ- 
ential structure, for subsequent interpretation [ 11. 

Deformable models offer a reasonable approach to solving 
these problems, due to their stability, controllability, and their 
property of regularizing data gathered over regions of the 
image. Regularization techniques, or penalized optimization, 
are used for many applications in vision (see for example [21], 
[28], [27] ,  [30] and references there). 

In our application, we recover surfaces in 3-D medical 
data, locating surface boundaries of organs and structures, 
and providing an approximating differentiable description (see 
Section VI). The differential description may be used for 
measurements, recognition, visualization, and other purposes 

There are two basic approaches to segmentation and image 
PI, [io], ~ 3 1 .  
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Classic: + 1 sparse feature e x G Z J  + interpolative reconstruction1 + achieve sufficient precision so as not to miss too much 
2 1  - - -2 

information, since the external forces are applied at the 
grid of points. This typically yields large systems of 
linear equations. Conversely, with the FEM, we work 
with continuous functions whatever the size of the grid. 

Snakes + optimization in image domain 1 + 

Our model + F&e extraction j + 1 optimization , + 

r- 
Fig. 1 .  Comparison of reconstruction approaches. Constraints are explicit in 

the first model, implicit in the others. 

labeling (see Fig. 1). In the classical approach, features are 
extracted from the image, and a sparse collection of locations 
and data are obtained; then reconstruction methods are used 
to interpolate the sparse data to form a representation (and 
possible segmentation) of the original data. In more recent 
approaches, such as the method of snakes [23], an initial esti- 
mate (such as a curve or surface) is provided, and optimization 
methods are used to refine the initial estimate based on image 
data restricted to the region of the evolving estimate. The 
second approach has the advantage that the feature extraction 
and representation phases are integrated into a single process, 
whereas the first approach may make use of prior finely-tuned 
feature extraction procedures. 

In our work, we modify the second approach by incorpo- 
rating aspects of the first, namely, the evolution of the initial 
estimate depends not only on local data, but also potentially 
on the data provided by a distributed sparse collection of 
feature points such as edgels from a surface edge extractor. 
Our method, which can make use of a “inflation” or “weight” 
force, is particularly well suited to noisy data with missing 
parts such as magnetic resonance images in both two and 
three dimensions. 

Our method is derived from the original formulation of 
deformable models [23, 291, but incorporates a number of 
significant modifications and new features. 

particular, the contributions of our work are the follow- 

We incorporate the use of edge points extracted by a 
local edge detector. This allows us to combine the qual- 
ities of a good local edge detector, e.g., a Canny-Deriche 
edge extractor [7], [17], [24], with a global active model. 
This is accomplished by means of an attraction potential 
generated by convolving a binary edge image with a 
Gaussian impulse response. The attraction potential can 
also be defined through the use of a Chamfer distance 
to edge points. 
We introduce an internal pressure force by regarding 
our curve or surface as a balloon which is inflated. 
We add to the previous internal and external forces a 
pressure force pushing out the boundary as if we were 
introducing air inside. Separately, we make use of a 
“weight” force which simulates gravity. This allows us 
to be less demanding of the initialization and to give a 
simpler initial curve or surface. 

Therefore, the function under consideration is known 
everywhere in the image, independently of the chosen 
discretization. This yields a lower algorithmic complex- 
ity and better numerical stability, in our application. 

4) We deal with true 3-D medical data and use deformable 
surfaces to extract the surface boundary of organs. We 
first give a fast approach to solve the 3-D problem based 
on the simultaneous evolution of 2-D curves and then 
give the 3-D formulation using the FEM. 

We regard the application of deformable-contour models 
as a method to extract smooth shapes in a given region of 
the image. The philosophy of the approach is to introduce 
an elastic curve (or surface) in the image, and let it evolve 
from an initial position under the action of both internal forces 
(smoothness constraints, and pressure forces) and external 
forces (attraction towards local edgels and weight forces). 

The paper is organized as follows. After recalling the 
basic principles of “snakes” (Section 11-A) and “balloons,” 
we present enhancements and details about the use of edge 
data to generate an attraction potential (Section 11-B). We also 
briefly survey the literature. We then define 3-D deformable 
models (Section 11-C) and give a relationship with 3-D edge 
points (Section 11-D). We show two simplified 3-D approaches 
(Section 111) and then finally solve this minimization problem 
in both 2-D and 3-D by a finite-element method (Section IV). 

We illustrate our technique in the application of the au- 
tomatic segmentation of medical images. The power of the 
approach to segment 3-D images is demonstrated by a set of 
experimental results on various complex medical 3-D images 
(Section V). 

11. ENERGY MINIMIZING CURVES AND SURFACES 

We first recall some definitions and formulate the mathemat- 
ical problem. In the following, we will call the active contour 
model or energy-minimizing curve “the 2-D problem” and the 
active surface model or energy-minimizing surface “the 3-D 
problem.” 

A.  2 - 0  Active Contour Model 

I )  Definition: Snakes are a special case of deformable 
models as presented in [29]. The deformable contour model 
is a mapping: 

R = [O, 11 4 R2 
s H .(s) = (x(s) ,y(s)) .  

3) We replace the finite-difference method of [121, [231, 
[301 by a finite-element r ~ ~ t h o d  With finite 
differences, we only have howledge of the functions 
at discrete points of a subdivision, and have no in- 
formation between these points. Therefore, the distance 
between successive points must be made very small to 

w e  define a deformable model as a space of admissible 
deformations A and a functional E .  This functional represents 
the energy of the model which will be minimized and has the 
following form: 

E : A + R  
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where w‘ and w” denote derivatives of 11 and where P is the 
potential associated to the external forces. The potential is 
computed as a function of the image data according to the 
desired goal. If we want the snake to be attracted to edge 
points, the potential should depend on the gradient of the 
image. In the following, the space of admissible deformations 
A is restricted by the boundary conditions u ( O ) ,  ~ ’ ( o ) ,  v(1)  
and ~ ’ ( 1 )  being given. We can also use periodic curves or 
other types of boundary conditions. 

The mechanical properties of the model are controlled by 
the functions wJ. Their choice determines the elasticity and 
rigidity of the model. 

If w is a local minimum for E ,  it satisfies the associated 
Euler-Lagrange equation: 

(1) 
-(7U1W’)’ f (W2V”)” + vp(71) = 0 { t ~ ( o ) , ? ~ ’ ( O ) , w ( l )  and ~ ’ ( 1 )  given. 

In this formulation, each term appears as a force applied 
to the curve. A solution can be viewed either as realizing 
the equilibrium of the forces in the equation or reaching the 
minimum of the energy. 

Thus, the curve is under control of two types of forces 
The internal forces (the first two terms) which impose the 
regularity of the curve. The constants url and w 2  impose 
the elasticity and rigidity of the curve. 
The image force (the potential term) pushes the curve 
to the significant lines which correspond to the de- 
sired attributes. It is defined by a potential of the form 
Ji P(w(s))ds  where 

P(71) = -JJVI(v)J12. 

Here, I denotes the image. The curve is then attracted 
by the local minima of the potential, which means the 
local maxima of the gradient, i.e. edges (see [19] for 
a more complete discussion of the relationship between 
minimizing the energy and locating contours). 

Other forces can be added to impose constraints defined by 
the user. We will make use of additional forces. 

2) Finite-Difference Solution: We first formulate the dis- 
cretization of the equation by finite differences following [23] 
in a more succinct fashion. Setting F ( v )  = ( F ~ ( I I ) ,  F2(71)) = 
-VI‘(?)) +Father, the sum of image and other external forces, 
the equation 

- (wid ) ’  + (w2d’)’’ = F ( v ) .  ( 2 )  

becomes a linear system after applying finite differences in 
space: 

AV = F. 

Here, A is pentadiagonal and V and F denote the vectors 
of positions wi = w(ih) and forces at these points F ( v , )  
respectively. 

Since the energy is not convex, there may be many local 
minima of E.  

Finding the global minimum of the energy does not nec- 
essarily have a meaning. Indeed, if II,,, is a point of the 
plane where P has a global minimum, then the constant curve 
7 i ( s )  = ‘u7rL is a global minimum for the energy with periodic 
boundary conditions. 

But we are interested in finding a good contour in a given 
area. We suppose in fact that we have a rough estimate of the 
curve. We impose the condition to be “close” to this initial 
data by solving the associated evolution equation 

az. - (111111’)’ + (?lJ27,”’)’’ = F(?1). 

(3)  
v (0 ,  s) = ? 1 ” ( S ) .  

7i(t. 0) f jo (0 ) .  U(t .  1) = ?10(1),  { d ( t ,  at 0) = ,7!6(0). d ( t .  1 )  ?&(l). 

where ‘or denotes differentiation with respect to s. A solution 
to the static problem ( 2 )  is achieved when the solution 7 1 ( t )  

stabilizes. This is because the term 2 tends to 0 (generally) 
and the dynamic system (3) reduces to ( 2 )  at infinity. 

After formulating the evolution problem using finite differ- 
ences with time step T and space step h we obtain a system 
of the form 

(Z + r A ) 1 1 *  = (,U-’ + T F ( , ( ] ~ - ’ ) ) .  (4) 

where Z denotes the identity matrix. Thus, we obtain a 
linear system and we have to solve a pentadiagonal banded 
symmetric positive system. We compute the solution using a 
LU decomposition of (1 + T A ) .  The decomposition needs be 
computed only once if the i i i i  remain constant through time. 
We stop iterating when the difference between two successive 
iterations is sufficiently small. After each iteration we test 
Ilut - i ) t - l l l  and stop if i t  is lower than a given threshold. 
Of course, the lower the threshold, the better we can be sure 
it is a real equilibrium. 

Moreover, the linear system above is such that each row 
of the matrix (Z $- T A )  is obtained by circularly shifting the 
previous one. The product of a matrix of this form and a vector 
can be viewed as the convolution of a row of the matrix with 
the vector. Since derivatives are at most of the fourth order, 
this corresponds to a convolution of the discretized curve i i i  by 
a kernel of length five. This smoothing can in fact be viewed 
as a 1-D low-pass filter on the curve. 

Note that in (4), ‘of has two components :rt and yt, and 
we can write separately the two equations satisfied by the 
vectors :rt and y’. These equations are independent except for 
the term ( F ~ ( V ) .  F ~ ( u ) )  where :I‘ and y cannot be separated. 
However, as we will see later, in all the iterative schemes we 
use in this paper, the term F ( v )  is explicit. This means that 
at each iteration it  may be considered as a constant vector 
and the two equations satisfied by .c and :y can be computed 
separately. Accordingly, we sometimes consider the equation 
for the unknown ‘v as a scalar function, instead of a two- or 
three-component vector equation. 

The finite difference formulation of the problem makes 
the curve behave like a set of masses linked by springs of 
zero length (when fully contracted). Consequently, if there is 
no image force ( F  = U), then either the curve shrinks and 
vanishes to a point, or i t  straightens out to become a line 
depending on the boundary conditions. 
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If the spatial discretization step h along the curve is more 
than two pixels, the curve can either jump across edges or fail 
to be attracted to edges. This means that the number of nodes 
must be of the order of the length of the curve. 

The coefficients of elasticity and rigidity have a great effect 
on the behavior of the evolution of the curve along time 
iterations. If w1 and w2 are close to unity, the internal energy 
Eint has a major influence and the image forces have small 
effect. In this case the initial curve is merely smoothed due to 
the regularization action. We are currently studying the effect 
of these coefficients in simple cases to evaluate the ability of 
the model to detect corners. 

A correct choice for parameters is guided by numerical 
analysis considerations. We want the coefficients within the 
rigidity matrix A to have similar orders of magnitude. We 
obtain good results when the parameters are of the order of h2 
for w1 and h4 for w2, where h is the space discretization step. 

B. Improving the Model-The Balloon Model 

The potential P is such that the force F(7i) = -VP(ii) 
generates the attraction of the curve or surface to the image 
regions that we seek to extract. Our main goal is the extraction 
of “good” edge points (i.e., to be able to remove spurious edge 
points, while insuring connected contours). 

The formulation described in the previous section leads to 
certain difficulties, for which one of us proposed a variation 
(in [12]) by defining new forces and a potential function. In 
the following sections, we will extend in a natural way these 
revised forces for use with the finite-element method for both 
2-D curves and 3-D surfaces. In the subsection immediately 
following, we summarize the main points developed in 2-D in 
[ 121, elaborating on certain important details. All these points 
are identical for a surface evolving in a 3-D image. 

1) Normalization of the Force: The external forces based 
on image data applied to the curve to push it to the high 
gradient regions are modified to give more stable results. 
Indeed, it is not possible to choose a uniform time step T 

suitable for all points of the contour. If T is too large, some 
points on the curve may move too quickly, and jump across 
the desired minimum and never come back. If T is too small, 
very few high gradient points will attract the curve. 

So instead of modifying the time step, we modify the force 
by normalizing it, taking F = -k&. This simulates a local 
time step which makes the curve evolve at the same speed 
everywhere. 

2) The Balloon Model. The Weight Force: To make the 
snake find its way, an initial guess of the contour has to 
be provided manually. This has many consequences on the 
evolution of the curve (or surface). 

If the curve is not close enough to an edge, it is not 

If the curve is not subjected to any counterbalancing 

Accordingly, we introduce an internal pressure by consid- 
ering our curve as a balloon which is inflated. The pressure 
force is added to the internal and external forces to push the 
curve outward, as if we were introducing air inside. The curve 

attracted to it. 

forces, it tends to shrink on itself. 

Fig. 2. Plots of the two basis functions 6 and *for the 2-D FEM 

both expands and is attracted to edges as before. But if the 
edge is too small or too weak with respect to the pressure 
force, the curve passes over the edge, growing outward. 

The internal pressure force prevents the curve from being 
“trapped” by spurious isolated edge points, and makes the final 
result much less sensitive to the initial conditions. 

The force F now becomes 

(5) 

where G(s)  is the unit vector normal to the curve at point 
~ ( s )  and k l  is the amplitude of this force. The coefficients k.1 

and k are chosen such that they are of the same order, which 
is smaller than a pixel size (the length unit), with k slightly 
larger than k l ,  so an edge point can stop the inflation force. 

Remark that this force can also be interpreted as the gradient 
of an extra energy term. This would be a surface term E,,,, = 
-kl dA, measuring the area inside the region delimited by 
the curve. Minimizing this energy corresponds to have the 
inside region as large as possible, which is obtained by a force 
pushing in the direction of the external normal. 

Note that E depends on not only the position ~ ( s ) ,  but 
also of the normal at this position. In the iterative methods 
presented in this paper, we solve problems formulated under 
the assumption that F depends on the position U, but not on 
derivatives. This assumption is made possible by using as an 
approximation to 7it at step t the previously computed value 
U-1. 

Suppose we have an image of a black rectangle on a white 
background, and a curve is placed inside the rectangle. Without 
the inflation force, even if we have perfect edge detection, 
the curve will shrink and vanish. Starting from the same 
small curve, but using the inflation force, we obtain the entire 
rectangle (see Fig. 4). When the balloon reaches equilibrium, 
the points that are attracted to image edges are slightly outside 
of the real contour. We thus reduce the inflation force to 
localize the final position of the curve. 

As another example, we apply the technique to a slice 
from a 3-D image of the region of the heart obtained with 
magnetic resonance imaging (MRI). We wish to extract the 
left ventricle. We use here the 3-D edge detector [24] obtained 
by generalization of the 2-D Canny-Deriche filter. In Fig. 7, 
we show the result of the application of balloons to detect the 
ventricle. The initial curve was neither close in shape nor in 
position to the actual ventricle. 

One aspect of the increased complexity of the method is a 
large variation of the length of the curve between the initial 
data and the final limit curve. As we remarked above, the 



COHEN AND COHEN: FINITE-ELEMENT METHODS FOR ACTIVE CONTOUR MODELS AND BALLOONS 1135 

Fig. 3 .  Surface plots of the four basis functions ;. I+’ ,  and C for the 
3-D FEM. 

Fig. 4. Advantage of the balloon model: the initial curve (in black, on the 
left) neither collapses nor gets trapped by spurious isolated edge points. It 
robustly converges toward the desired rectangle shape (on the right). The 
background image is the attraction potential generated by hand-drawn contours 
(see Fig. 5). 

number of nodes along the curve should be approximately 
equal to the length of the curve. Thus we must change 
the discretization during the iteration process. To do this, 
we periodically reparametrize the curve, and resample node 
points. This means that we construct a new parametrization 
using the existing curve by sampling at a one pixel distance 
between nodes. This also prevents nodes from clustering at 
high gradient points and from separating, creating a large space 
between some nodes. 

Since the length changes, we must change the matrix A 
during the iteration process. Accordingly, our algorithm incor- 
porating internal pressure takes more time to converge, since 
we must compute matrix inverses at each reparametrization 
and also since we begin with a curve very far from the solution. 
The added computation time is a price we must pay for the 
simplicity of specifying a coarse initial curve. 

In the same spirit as the balloon model, we will also incorpo- 
rate a “weight force” into the 3-D reconstruction models. The 
weight force allows us to take a very simple initial surface 
placed on the border of the image. The surface then “falls” 
under the influence of the “gravity,” to catch an object which 
might be far from the border. If we instead attempt to locate 

Fig. 5. Attraction potential surface generated by convolution of a Gaussian 
and the edge contours defined by hand shown in Fig. 4. The surface is shown 
upside down for sake of clarity. The curve is attracted to minima of the 
potential, which are maxima as seen in the figure. The potential around isolated 
points shows the shape of theGaussian used. The attraction force is small 
outside a neighborhood of an edge point. 

Fig. 6. Surface of distances to the nearest edgepoint. The negative of this 
surface, as the previous one, may be used as a potential. 

a surface by surrounding the outside of the object by the 
deformable model and then use a “deflation” force (identical to 
the inflation force, but with a negative k l ) ,  instability can result 
since the surface may then self-intersect after a few iterations. 

The “weight force”js uniform on the surface in direction 
and intensity: F = k l Z .  The initial syrface is typically a plane 
on one side of the 3-D image, and 2 is defined to be normal 
to this plane. As with the inflation force, if the weight force is 
not turned off at the end of the process, equilibrium is reached 
with the surface slightly shifted from the desired solution. In 
the weight force case, however, we eliminate the force locally 
at a point when an area of large variation of the gradient is 
reached instead of once global convergence is obtained for 
the pressure force. This modification improves the progression 
to the solution. As a result, we may use larger values of k1 

and thus move faster without missing the solution. As with 
the balloon model (see [12]), the surface is not stopped by 
isolated spurious points. The effect of the weight force will be 
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Fig. 7. An MRI image. Evolution of the balloon curve to detect the left 
ventricle. Here, we give illustration of the robustness of the balloon model: 
The final result can be achieved from almost any initial curve given within 
the interior of the ventricle (see also Fig. 11). 

demonstrated in Figs. 15 and 16. 
3) Accounting for Prior Local Edge Detection:Attraction Po- 
tential: We make use of edgepoints extracted prior to the use 
of the deformable model by a local edge detector. In 2-D, edge 
points tend to lie along curves, and in 3-D they are located on 
surfaces. Accordingly, we are able to combine the qualities 
of a good local edge detector, such as the Canny-Deriche 
edge extractor [7], [17], [24], with a global active model. 
We must define the attraction forces through the use of a 
potential function. The potential may be defined by convolving 
the binary edge image with a Gaussian impulse response. An 
example is shown in Fig. 5, plotting the potential surface 
generated by the rectangle image of the previous section (Fig. 

We also used in [13] a Chamfer distance that approximates 
the Euclidian distance to the nearest edgels [5], or a Euclidean 
distance image (as defined in [15]). Fig. 6 shows a potential 
based on the latter distance map for the same rectangle image 
as before. These approximate distance metrics are of interest 
because they can be obtained by a fast algorithm, requiring 
only two-passes through the binary image. 

We denote by d(w) the distance between a point 1)  and 
the nearest edge. In general, a large class of potentials may 
be formulated as P(w) = g ( d ( w ) ) ,  i.e., as a function of the 
distance to the closest contour. For instance, 

4). 

P(?))  = 

produces a potential that is similar to the Gaussian convolution 
method discussed above, except that only the closest edge 
point has an effect at a position W. The potential 

-1 
d ( v )  ‘ 

P(w) = - ( P  -1 if d ( v ( s . r ) )  < 1). 

where the unit distance is the pixel size, produces a faster con- 
vergence since this potential decays more slowly, producing 
larger forces at points distant from the edges. 

Remark that if the potential is defined by P(w) = g ( d ( v ) ) ,  
the force becomes F ( v )  = -VP(w) = -g’(d(w))Vd(w). 
When this force is normalized as suggested in Section II-B- 
1, we have F = -k&. The formula does not depend on 
function g but the numerical result may be different because of 
machine accuracy. So, when we normalize the force, we could 
take any function g easy to compute, for example g(d )  = d, 
but the distance function is not differentiable everywhere. This 
is why g usually behaves like d2 for small d to avoid problems 
at points where d = 0. In general, g is also used to regularize 
the distance function d. 

However, in the case of a potential defined from a distance 
function, it may be better when the force is not normalized 
and the norm of F depends on g’(d) and IlOd(w)ll. Using the 
triangular inequality, we can see that IlOd(w)II 5 1 (this is in 
fact equal a.e.). So, a good choice of g permits to control the 
norm of the attraction force when d is small or large. This will 
be discussed in the following. 

The attraction forces derived from the potential may be used 
either as the only image forces, or may be combined with an 
intensity-gradient image to enhance the detected edges. The 
latter approach is useful when the detected edges are broken 
into small disconnected segments. 

The methods of convolving edges with a Gaussian and 
defining a function of d(w) were used by us in [11]-[13]. 
However, the attraction potential defined by Weiss [34], and 
the weak-continuity method of Blake and Zisserman [4], are 
closely related. The attraction potential and weak-continuity 
methods are applied to sparse isolated points, our set of edge 
points are extracted by a local edge detector, and thus may 
contain full curves (or surfaces in 3-D). Moreover, in these 
methods, the model tries to match the whole data, while we are 
doing segmentation at the same time. Our deformable model 
has to find out which parts of the data to stick to. Also, the 
goals are different. The property of the varying mesh model 
is to define automatically an optimal mesh to deal better with 
corner reconstruction, using an extra potential term. In our 
model, the inflation force is a powerful tool to make the 
model converge to the solution being less demanding of the 
initialization. These two tools could be associated together to 
obtain both properties. 

In the next section we survey more closely the definition of 
attraction potential in the reconstruction literature. 
4) A Survey of Attraction Potential Used in Reconstruction 
Methods: The general formulation of the problem as pre- 
sented in [34] uses Tikhonov regularization [33] to approx- 
imate data 9 by a smooth function f, in order to reconstruct 
a curve or a surface. We use a second-order regularization 
scheme to insure a C1 continuity of the solution. Two terms 
are minimized: 

a criteria of the faithfulness to the data; and 
a regularizing term containing derivatives of the function. 
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The energy functional can be written in the form: 

E ( f , g )  = / V ( f ( s ) , g ( s ) ) d s  + / S ( f ( s ) ) d s ,  (6) 

where V is a measure of the distance between the function f 
and the data g, and S(f) measures the smoothness of the 
reconstruction f. Similar to our potential P ,  the attraction 
force is obtained from the gradient of V ,  Fv = - 0 V .  

Let us consider the case of a curve f(s)  = (x(s),y(s)) and 
discuss the different approaches to reconstruction. We also 
give an interpretation of the forces by means of zero-length 
spring attraction forces. All of our discussion generalizes 
naturally to surfaces in 3-D data. 

Least-Squares-Explicit Constraints: The most classic 
problem is least-square fitting given the position of the curve 
at a collection of points fi = f(si) = (xi, yi) at known values 
of the parameter si. We use as an attraction potential 

(see, e.g., [28], [25] and their references). The case of a carte- 
sian curve is especially simple since z2 = s, = .( s % ) ,  .(.?) = s 
and V ( f )  = C,(y(s,) - yZ)’; this is the case treated in [25]. 

The attraction force obtained by differentiation of the poten- 
tial is proportional to the distance between a data point f ,  and 
the value of f at s,. We can interpret this force physically as 
a spring (which contracts to zero length) connecting a point of 
the curve (or surface) f(s,) and the given point fi = ( T , ,  y,). 
Each node of the curve is connected by a spring to one explicit 
data point. Thus each data point (x2, y,) influences the force 
at only one point of the curve. The curve is constrained to best 
fit to all the data. Moreover, the data points must be sorted 
in a natural order. This is the case for a Cartesian curve (or 
surface), where values s, correspond to positions along an axis 
(two axes for a surface). For a general curve, given a collection 
of (x,, y,) data, the natural order of the points may not be so 
apparent. 

Position-Independent4mplicit Constraints: When the s, 
are not given and the curve has to best fit the set of points 
f2, a simple extension of the previous idea would define an 
attraction potential simulating a zero-length spring for each 
data point of the plane which has effect for any point of the 
curve. At a point h of the plane, the potential is the sum of the 
contributions of all the f2: V ( h )  = c, llh-f,112. The potential 
V thus may be viewed as a convolution of the sum of Dirac 
masses 6jz at the data points f, with the function \Jh)I2: 

i 

This potential has the advantage of being convex, but does 
not work out well since a point of the curve will be attracted 
with the strongest force by the most remote data point. Indeed 
the only minimum is a curve reduced to a point located at the 
mean value of the fi’s. 

Our approach convolves a binary image of edge points with 
a function of the form -e-1lh11*, while Weiss in [34] convolves 
a set of sparse data points with a similar function of the form 

. We chose a negative Gaussian function since it - a e - l l h l l z l b 2  

l+cllhll 

behaves like Cf IJh1(2 for small h (where C is a constant) and 
has a zero limit at infinity. Thus, the attraction force behaves 
like a zero-length spring when h is small, and when h becomes 
large the force decreases to zero. So the curve is most attracted 
by the points close to it, and distant points have no attraction 
force. 

Blake and Zisserman’s functions ga,x and g:,x of  [4, fig. 
7.11 are likewise similar in structure. However, their forces are 
used to define the internal attraction between two successive 
points in a discretized curve. The idea of the weak continuity 
is that if the variation is too large at some point of the curve, 
then it is better to break the reconstruction curve there and 
introduce a discontinuity. The weak continuity makes springs 
defining the internal attraction force (see Section 11-A-2) break 
if they get too long. The attraction force based on the image 
data that we use here is thus similar to the internal attraction 
force in the weak continuity model of [4]. 

Note that the attraction force for the convolution-based 
potential allows the curve (or surface) to choose among the 
data points the ones to fit. Each point of the curve is attracted 
by all the data points close enough to it. 

When we define the potential by P ( u )  = - e -d (v )2  using 
the Chamfer distance [13], each point is attracted only by 
the closest edge point. The curve behaves as though each 
point is linked by a weak spring (which breaks if too long) 
to the closest data point. The constraints in this part are 
not known explicitly like in the “classic” reconstruction but 
defined implicitly by the relative position of a node to the data. 

Snakes: In some cases, the data is not known explicitly. 
For example, the potential introduced with the snakes in [23] 
is based on the property of edge points to have a large image- 
gradient value. The potential defined as a function of the 
image-gradient results in the curve being attracted to the high 
gradient points without explicit knowledge of these points. The 
constraints are also implicit in this case. In the snake approach, 
the data points are located directly by the curve through the 
minimization of the potential (see Section 11-A). Moreover, all 
the points of the curve are influenced by the attraction forces 
from the image. 

Mixed Version: Recently a combination of the previous 
approaches was proposed in [16]. Two potentials are defined. 
A “data energy” term is used to represent an attraction of 
the surface to the closest data point, which yields a force 
that is linear when close to the data and decreases to zero 
when far from the point. The data energy is the same as 
our potential using the Chamfer distance. A “feature energy” 
term represents an attraction to feature points. Though the 
function of convolution is slightly different in form, it has 
similar properties to the “weak spring” model discussed above. 
The main difference is that this “feature potential” is modified 
with iterations. The threshold at which the spring breaks 
decreases from a reference distance when t = 0 to zero when 
t = To. Therefore, the influence of features decreases during 
the evolution. 

In this section, we presented the enhancements of our model, 
normalizing the force to get more stability, adding an inflation 
or weight force to push the model more quickly to the solution, 
and defining an attraction potential making use of edge points 
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extracted prior to the application of the model. For this last 
point, we gave a survey of the related attraction potential found 
in the literature. 

We will make use, in this paper, of all the features presented 
so far for 2-D curves as well as 3-D surfaces. 

C. 3-0  Active Surface Model 

The 3-D model is obtained by generalizing the formulations 
given in the previous sections. A surface S is defined by a 
mapping U: 

21 : R = [O, 11 x [O, 11 + R3 

(3, 4% = (Vl(S ,  r ) ,  v2(s,  TI, v3(s ,  r ) )  

and the associated energy E is defined on an admissible class 
A of mappings w, and has form: 

E : A - + W  

where P(v ( s ,  r ) )  = -IIVI(v(s, r))l12 is the potential asso- 
ciated with the external forces. The internal forces acting 
on the shape of the surface depend on the coefficients wij  
such that the elasticity is determined by (WIO, wol), the 
rigidity by ( ~ 2 0 ,  W O ~ ) ,  and the resistance to twist by ( ~ 1 1 ) .  

That is, the coefficients determine the mechanical properties 
of the surface. We can also constrain the surface structure 
by adjusting boundary conditions (for instance, to create a 
cylinder or a torus). This model, restricted to its first-order 
derivative terms, may be interpreted physically as a membrane, 
and with inclusion of second-order derivative terms may be 
interpreted as a thin plate. 

A local minimum of E satisfies the associated Euler- 
Lagrange equation: 

subject to boundary conditions. The Euler-Lagrange equation 
is a necessary condition for a minimum. As with (5),  F 
denotes the sum of forces: F = Fimage + Fballoon, Fimage 
is the force obtained after normalization from the gradient 
of the attraction potential, and Fballoon is either the inflation 
or weight force. Since the energy function is not convex, 
there may be many local minima of E. The Euler-Lagrange 
equation (8) is satisfied at any such local minimum. But as 
we are interested in finding a 3-D contour in a given area, we 
assume in fact that we have a rough prior estimation of the 
surface. This estimate is used as initial data for the associated 
evolution equation, in which we add a temporal parameter t:  

and where boundary conditions may have to be imposed 
(additionally). A solution to the static problem is found when 
the solution w ( t ,  s, r )  converges as t tends to infinity. Assum- 
ing sufficient uniform convergence is achieved, the term 2 
vanishes, thus providing a solution of the static problem. 

With this formulation, and with the potential as given above, 
the resulting surface will accurately locate the 3-D edge points. 

Before describing the numerical solutions of the 3-D recon- 
struction we give in the next section a mathematical result 
showing how the surface locates on the Canny’s 3-D edge 
surfaces. 

D. Minimizing Surfaces and 3-0  Image Edge Points 

We comment on the relationship between the surface min- 
imizing the energy of external forces Eimage and 3-D edge 
points. A similar formulation for planar curves is given by Fua 
and Leclerc [19]. Recall that the external energy is given by 

Eimage = P(w(s ,  r ) )dsdr .  JJ 
We use the following definition of the 3-D edges, as proposed 
by Canny 171. 

Definition I: A 3-D edge is a surface S whose points have 
a minimal potential in the direction normal to the surface. All 
points along the surface S satisfy: 

D N ( v ( ~ , r ) ) ~ ( v ( s ,  r ) )  = 0, (10) 

where N(w(s,  r ) )  is the normal to the surface S parametrized 
by v(s,  r ) ,  DN is the directional derivative in the direction N ,  
and P is the potential to be minimized. 

When the potential is defined in terms of the image gradient 
V I  (where typically, I is replaced with a Gaussian-convolved 
version of the image), the former definition is the same as 
Canny’s edge points. 

Definition 2: A 3-D Canny edge is a surface S whose points 
have a maximal gradient magnitude in the direction normal to 
the surface. All points along the surface S (called Canny’s 
edge points) satisfy: 

DN(V(S,T-))IIVI(~(S, .))I1 = 0 (11) 

where V I  is the gradient magnitude. 
To explore the relation between the energy minimizing 

surfaces and this definition, let us define the energy associated 
to the external forces as 

E P ( s )  = f_ IS1 / J ~ ( v ( s , r ) ) d ~ ,  ( 1 4  

where IS1 = j 
d m d s d r  is the standard surface area measure. 

Ep, with respect to infinitesimal deformation, i f  

llvs A v,lldsdr is the surface area and d A  = 

In [14], we show that a surface S is a local minimum of 

where E ( s ,  r ) ,  G(s, r ) ,  F(s, r ) ,  e(s, r ) ,  f ( s ,  r )  and g(s, r )  are 
the coefficients of the first and second fundamental forms in 
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the basis {zs,z,. N }  (using the same notation as in [IS]). A 
remarkable result is that the quotient eGii<F$E is simply 
the mean curvature of the surface S. 

Equation (13) shows that there exists two interesting special 
cases: 

1) if a minimizer of Ep is a minimal surface (i.e., a surface 
with a mean-curvature which is everywhere zero), then 
it is automatically a 3-D edge; 

2) if the minimizing surface is composed of edgels with 
constant Potential, then the term within parentheses in 
(13) vanishes, and the surface is again a 3-D edge. 

In general, these are interesting but exceptional academic 
situations, and the deformable model simply converges to a 
solution which is a balance between the applied external forces 
(corresponding to the energy E P )  and the internal forces, 
parametrized by the elasticity coefficients w , ~ .  The directional 
derivative will satisfy (13), but not in general be zero. But in 
practical implementation, this is approximately the case when 
the surface is smooth or when the potential has small variation 
along the surface. 

111. SIMPLIFIED 3-D MODEL 

The main difficulty in passing from modeling curves in 2-D 
to modeling surfaces in 3-D is the very significant growth of 
the computation time due to the size of the system to solve. In 
this section, we describe a much-simplified 3-D surface model, 
with the aim of minimizing the computational requirements. 

A 3-D image is viewed as a sequence of 2-D images which 
we call slices or cross sections. In this section, we first present 
a 3-D reconstruction method based on successive solutions 
of 2-D problems, then show how the 3-D deformable model 
may be simplified to a simultaneous solution of 2-D problems 
interacting to yield a fast algorithm. 

A .  3-0  Reconstruction from a Sequence of 2-0  Contour Models 

In [12], we reported initial experiments with 3-D reconstruc- 
tion using a method that directly extends the 2-D method. In 
this work, we extracted the contour slice by slice. For each 
slice, a 2-D model is applied. In order to improve the speed 
of the algorithm, the result of the previous slice is used for 
solving the successive slices. Assuming that the variations are 
small from one slice to the next, this works well, in the same 
way that snakes are used for temporal tracking in [22], [23]. 

In order to reconstruct the entire 3-D surface, we initialize 
the process using a curve obtained from the balloon model in  
an intermediate cross section, and then propagate the result 
to neighboring cross-sections. In [l], a related approach was 
taken, but successive curves were extracted by hand from 
each slice, using an edge image from each slice. Note that 
the inflation force is necessary only for the first slice, to have 
a good solution on that slice, beginning with a bad initial 
data. But in the following slices, the inflation force is not used 
since the solution of the previous slice is already close to the 
solution of the current slice. 

Fig. 8 shows a reconstruction of the left and right ventricles 
using data from a 3-D magnetic resonance image of the heart 
region. This reconstruction is nearly automatic, although when 
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Fig. 8. 3-D reconstruction from a sequence of 2-D contour models: two 
views of the reconstructed inside cavity of the left and right ventricles. 

the contour undergoes a large change from one slice to the 
next, the initial curve in that slice may have to be redefined 
in order to obtain a good contour. This problem can be 
ameliorated by adding interpolation slices when necessary. We 
note that the problem never occurs in practice when the image 
resolution is the same in the three axes. 

The entire 3-D surface represented as a sequence of contours 
of the slices. We use the NUAGES software package (see [l]) 
to display the results, which also has the capability to define 
a 3-D surface from planar curves. 

The main issues of that approach are that first, there is no 
interaction between slices and second, the surface has to be 
cylindrical. The first point is solved in next section while the 
second will need the general model of Section IV. 

B. Fast Solution of the 3-0 Constrained Problem 

We next describe a fast approach to solve the 3-D problem 
based on the simultaneous evolution of 2-D curves. 

The 3-D deformable model is obtained by minimizing 
the energy term (7) defined in Section 11-C which uses 
parametrized surfaces V ( J )  = u(.$.r) = ( o l ( s ,  r ) ,  w ~ ( s , T ) , v ~  

In order to keep the model simple, we limit degrees of 
freedom of the deformation to two components instead of three 
by constraining the third component 113, which corresponds to 
the slice level, to depend only on r .  In this case, the third 
component of the external force is zero. 

Thus, the surface that we seek is represented as a sequence 
of planar curves, with the second parameter T being the index 
of the slice. We have ? I ( s .  r )  = ( ? i l ( s .  r ) >  4(s ,  T ) ,  r )  so that for 
each fixed value of the parameter r ,  there corresponds a closed 
curve parametrized by s lying in a slice of the 3-D image. 

( s ,  r ) ) .  
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Fig. 9. Edge image of the frustum after erasing some parts. The cross 
sections with a "?" were modified. The sequence of cross sections is ordered 
from left to right and from top to bottom. The square shrinks to an intermediate 
size, and then increases back to the original size. 

The consequences of constraining the surface as a sequence 

First, the curves of the representation are necessarily 
separated, and undesirable deformations which would 
require a new parametrization of the surface are avoided. 
Although this imposes a restriction on the surfaces that 
we can reconstruct, the representation involves distinct 
curves, one per slice. As a result, if a contour is missing 
in a slice, the surface nonetheless bridges the neighboring 
contours, creating a smooth surface. 
Second, the extraction of information within a slice is 
simplified, both during the iterative construction as well 
as for the final result, since the surface is represented by 
slices. In the more general case, where nodes can move 
between slices, it is nontrivial to compute the contours 
resulting from the intersection of the surface and a slice. 
In the approach we present at the end of the paper for 
the general 3-D model, we in fact make use of such a 
computation for visualization of information on slices. 

The main difference between the slice-by-slice approach 
of the previous section and the constrained 3-D approach of 
this section is first, that an interaction is permitted between 
neighboring slices and also their simultaneous evolution. If 
edges are missing in a particular slice, then the previous 
method will fail, whereas using W ( S , T )  opens the possibility 
that edges missing from a sequence of slices will be filled 
in. We can see in Figs. 9 and 10 how such missing edges 
are retrieved. This is illustrated by the bottom middle slice in 
Fig. 10 where a 2-D deformable model would not reconstruct 
the missing edges. It would only smooth the data and give a 
small rectangle corresponding to the available edges. With the 
simplified 3-D model, the curve on one slice is also attracted 
by the edge data of the neighboring slices, and this helps to 
reconstruct the whole curve (a square in the example). 

We recall that the solution is obtained by minimizing the 
energy of (7). A minimum ii of the energy satisfies the Euler 

of plane curves entails two advantageous simplifications. 

Fig. 10. The simplified 3-D model: results for the frustum on six slices. 
They are ordered from left to right and from top to bottom. The two cross 
sections on the far right correspond to complete contours, the other ones had 
some parts erased. 

Fig. 11.  Using the FEM. Evolution (from left to right) of the balloon curve 
to detect the left ventricle (see also Fig. 12). 

equation (8), and a solution to the static problem is found when 
the solution ~ ( t )  of nine stabilizes. In fact, since IQ(.$, T )  = T ,  

only the first two components of Eqns. 8 and 9 are nonzero. 
Solving this equation with finite differences, we obtain a 2-D 
linear system of the form: 

where V f  is the vector whose components are the values of 
( ? I ~ ( S ,  rj. 712(s, 7 . ) )  at the nodes of the discretization at iteration 
f .  The first unknown vector V" is given by the initial data. 
Assuming V'-l calculated, we solve Eqn. 14 with respect to 
Vi. 

The unknown V t  appears in the three terms of (14). We 
say that the scheme is totally implicit. I t  is difficult to solve 
since the force F has a complicated form. We can approximate 
V' by Vt-' in the term F(V') ,  like in the 2-D case (4). 
We then say that we solve a semi-implicit scheme, i.e., one 
that is explicit in the force term ( F )  and implicit for the 
matrix term A .  This will also be the case for the finite-element 
method, discussed in the following sections. Inversion of the 
3-D scheme of this section is obtained by solving the system 

VI = (Z + 7A)-l(Vt-l  + rF (Vt - l ) ) .  

It is easier, and thus faster, to solve the totally explicit scheme 
where the term AVt  is also approached by the known value 
AVtp1. The unknown Vt is then directly calculated without 
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matrix inversion by the formula: 

V t  = (Z - rA)Vt-' + .rF(Vt-l). 

Note that this explicit scheme is a first order development of 
(Z + TA)-' as (Z - TA) .  In practice, both (Z + TA)-' and 
(Z - T A )  perform a smoothing operation on the data Vt- ' .  
So, in our implementation, we first add the forces at each 
iteration, and then smooth I J  to remove singularities. This does 
not change the global behavior and gives, at each iteration, a 
better estimation for visualization of the intermediate results. 

There is a certain anisotropy introduced by the restriction 
on the third axis direction, but there is some justification for 
the choice, since the data itself possesses this structure. 

Although we solve a 3-D problem, the discretized surface 
can be represented by the set of two two-dimensional arrays 
v l ( s i r  ~ j )  and v2(sz.  r j ) ) .  Since our scheme is explicit in the 
term F ( v ) ,  we can consider separately the two components iil 
and v2 at each iteration as noted in Section 11-A-2. We now 
present the steps of the algorithm. 

Addition of the expansion force: Each boundary node 
along the curve at each slice is moved along vector 
k l Z ( s . r )  where Z ( s , r )  is the external normal to the 
planar curve of the slice at level r .  
Addition of the edge force: At each node, we add 
-k&, where the third component of the gradient is 
arbitrarily set to zero to constrain the force to lie within 
the slice plane. The potential P is obtained from the 
gradient computation ( (VI ( (  of the 3-D image data. 
Smoothing: We apply a smoothing operation by means 
of the matrix (Z - T A )  to the data V t ,  separately to 
its components and w;. It can be verified that this 
matrix is banded and that the circular shifting property 
of the matrix in the 2-D problem (see Section 11-A-2) is 
extended to our 3-D problem. The product of a matrix 
of this form and the discretized surface can be viewed 
as the convolution of a two dimensional array with the 
arrays w l (  ,sz, rJ ) and w:, (s, , r3 ). Since derivatives are at 
most of the 4th order, this corresponds to a convolution 
of the discretized surface w(zh. , j k )  by a 5 x 5 kernel. This 
smoothing can in fact be viewed as a low-pass filter. The 
strength of the filter is determined by the coefficients of 
matrix A and the time step 7. 

The third step can be made faster by decomposing the 
convolution of the surface nodes by the 5 x 5 kernel into 
a product of two 1-D low-pass filters of length 5, one in 
each direction, approximating the convolution kernel by a 
separable kernel. Although the kernel (1-TA)  is not precisely 

a separable kernel, due to the term wl1(s)ll &I1 , the 
following procedure provides an acceptable approximation. 

Smoothing in a cross section: Recall that in 711 ( s ,  r )  
and v ~ ( s ,  T ) ,  the T variable gives the slice level and s 
gives a spatial location along the curve. For each slice 
separately, the smoothing operation restricted to this slice 
is performed. That is, for a given slice T ,  the terms of the 
matrix (Z - T A )  involving data on slice r are performed. 
This is a first order approximation of the smoothing in 
the 2-D problem. 

< '2 2 

Smoothing between cross sections: Smoothing in the di- 

Figs. 9 and 10 show example applications using a simple 
shape. For 20 slices of a 3-D image, a white square on a black 
background is placed in the center of the image, to form a 
frustum: from slice to slice, the size of the square decreases 
and then increases again. 

The 3-D edge image is used to define a potential P as 
described in Section 11-B-3. The initial curves needed to start 
the process in the successive cross sections form a cylinder 
with a square cross-section centered on each slice whose size 
is smaller than that of the desired objects. 

However, for the examples just described, the stack of 2-D 
models would work just as well to find the solution. Therefore 
we delete from the edge image large parts of the edges in 
many of the cross sections (see Fig. 9). If a 2-D model were 
applied slice-by-slice in this case, the method would close 
the contours, but inaccurately track the shape. Here, the 3- 
D smoothing step restores the missing parts in each slice in 
a coherent way from the edges in the neighboring slices, as 
shown in Fig. 10. 

This method especially fast if the initial approximating 
surface is a thin tube inside the region of interest. 

rection orthogonal to the slice planes. 

Iv. NUMERICAL SOLUTION BY FINITE-ELEMENT 
METHOD (FEM) 

The main problem with the 3-D model is the very large 
number of variables, and the concomitant computation time. In 
the previous section, we described a simplified model, which 
gives satisfactory results in some cases, but generally requires 
further refinement. The simplified approach is only useful for 
tubular shapes about a single axis. To search for more general 
surfaces, we must solve a more complete problem, without 
shape constraints, except for a topological constraint defined 
by the boundary conditions. 

As a remedy to the computational costs, we use the finite- 
element method (FEM), which is able to effectively lower the 
number of discretization nodes. Initial experiments comparing 
a FEM and FDM in the 2-D problem suggests that the FEM 
has a lower complexity, which becomes more important in 3-D 
since a greater number of discretization nodes are required as 
compared to the 2-D problem (see Section IV-C). Thus, in this 
section, we first present the FEM formulation of the problem 
in 2-D, then its generalization to 3-D, and then details can be 
found in [14]. 

A. Mathematical Formulation 

We consider the evolution equation of (3): 

- g(11Jlg) + ~ ( 1 0 2 % )  a' = F ( v )  
~ ( s ,  0) = vO(s) initial curve (15) 
+ Boundary conditions. 
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In 3-D, the equation becomes: 

at av - a & l O Z )  av - a , ( ' W O l ~ )  a + 2&('Wll&) 
+ & o s )  a2 a2 + & ( w 0 2 9 )  = F(7I) 

w(0, s, r )  = wo(s, r )  initial estimation 
+ Boundary conditions. 

(16) 
I 

In this case, v = ( V I ,  vz, v3), and is a function of one time 
variable and of two spatial variables. To simplify the notation, 
we will consider Eqns. 15 and 16 only with zero-boundary 
conditions. More general cases can be handled by a simple 
change of variables. Moreover, as we noted in Section 11-A-2, 
each component of v will satisfy the same equation and may 
be computed separately. We thus limit in the following to the 
resolution of the FEM for a scalar-valued function. 

In the following subsections, we describe the different steps 
which lead to the numerical solution of the partial differential 
equation characterizing the deformable models. 

I )  Variational Problem: An approach for solving the above 
equations is to define the associated variational problem. The 
main idea can be understood by saying that the terms of (16) 
are equal in some functional space if their scalar product 
against any vector of the space are equal. This variational 
problem characterizes the solution of the partial differential 
equations by defining the space of admissible solutions and 
its norm using a bilinear form a( . ,  .) (characterizing the space 
norm) and a linear form L( . )  (characterizing the input). 

In [14], we show how to define properly the bilinear form 
a( . , . )  and the linear form L( . )  such that solving Eqn. (1) 
or more generally (8) is equivalent to solve the variational 
problem: 

Variational Problem 1: Find 71 E Hi(R) such that: 

a(W.7L) = L(U) VlL E H i ( 0 ) .  (17) 

where the space H i ( n )  is the Sobolev space of functions 71 

such that 1 IDmvI2 < +cc for m = 0 , l . Z  where Dmv is 

the mth order differential of function 71. 

The existence and uniqueness of a solution to this variational 
problem (17) are easily established [SI, since the bilinear form 
U ( . ,  .) is symmetric and coercive providing 7 1 1 ~ l ( s ,  T )  > 0. 

Here, L is assumed to be independent of W. In fact, L does 
depend on v in our application, but in the iterative scheme, 
we will fix L to be constant in any given iteration (see [2O] 
for a mathematical justification). 

We give expressions for a( ., .) and L( .) for the 2-D problem. 
For the 3-D problem, details are provided in [ 141. The bilinear 
form a( . ,  .) is given by 

a( U ,  w ) = 711 1 ( s )  U /  ( S ) d  (s) ds + 7 1 ) ~  ( s )  U / /  (s)71" ( s )ds  1' 
and L = L,  is 

2)Discrete Variational Problem: A well-known approach 
for solving such a problem is Galerkin's method, which 
consists in defining a similar discrete problem, over a finite- 
dimensional subspace vh of the Sobolev space Hi(n). The 
associated discrete problem for (17) is: 

I )  Variational Problem 2: Find vh E vh such that 

A solution iih of this discrete problem is an approximation 

This discrete problem leads to a finite linear system defined 

The FEM provides an efficient tool for defining the space 

3) The Finite-Element Method: The finite-element method 
is characterized by three aspects in the construction of the 
space vh. 

(FEM 1) a tessellation is established over the parametriza- 
tion set R = [0,1] ([O. 11 x [0,1] in 3-D); 

(FEM2) the functions 'llh E vh are typically piecewise 
polynomial; and 

(FEM3) the basis of functions for the space vh are chosen 
such that they have small support. 

Hence, the FEM provides a finite dimensional space vh and 
a discrete representation of the solution vh approximating the 
solution v of the variational problem (17). 

We use a conform finite-element method which insures that 
the space Vh is a subspace of Hi(R2) and that the basis 
functions are C1 continuous. In the following we describe the 
choice of the subspace Vh in the 2-D and 3-D case. 

4) The 2 - 0  Curve Case: We consider a uniform subdivi- 
sion of R = [0,1] = U,=l[zh, (z + l )h] ,  where N is the 
number of discretization points and h = &. 

Since the variational problem 17 uses the space of ad- 
missible functions Hi([(), I]) ,  the space vh must satisfies 
vh C c1 fl Hi([O, 11) (for details see [SI). A choice for the 
subspace vh is defined by: 

of the solution 11 of the continuous variational problem. 

over the finite-dimensional space vh. 

V h  . 

N 

Vh = ( 7 1  E C'([O,l]),lll[z,, .c~+l] E P3([G,G+1])0 I i I N } ,  

where 4 ( I )  is the vector space of polynomials of degree k 
or less, restricted to the interval I c R. We use the notation 

to mean the restriction of the function 71 to the subset I .  
The space P3 has been chosen since a polynomial p E P3 is 
uniquely determined by its values and the values of its first 
derivative at two distincts points. The basis functions of vh 
are 4z and 9%, 1 5 z 5 N defined by: 

4 k ( X J )  = 6%,, 4h,) = 0 1 L j I N (19) 

@ % ( X j )  = 0, Q I ( X J )  = 62 ,  1 I j I N ,  (20) 

where: 
1. i f z = j ,  

", = { 0, otherwise. 

Analytic expressions for the 4% and 9, are given in [14]; Fig. 
2 shows plots of the functions. for the 2-D case. 
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A function V h  E v h  is completely defined by the values of 
V h  and VI, at each of the nodes x i ,  and we have the identity: 

N N 

i=l  k l  

yielding an expression for v h  in terms of a finite collection 
of unknowns. 

Using the FEM and the above choices for the implementa- 
tion in order to compute the solution to the 2-D balloon model, 
we obtain the results presented in Fig. 11. 

5) The 3-0 Surface Case: A tessellation of the domain R 
in 3-D and the construction of the subspace v h  using the 
Bogner-Fox-Schmit (BFS) elements are given in [14]. In this 
space, a function is completely determined by four values at 
each nodal point aij = ( zhs , jhr ) ,  specifically, the values for 

shown in Fig. 3. These basis functions can also be obtained 
through a tensorial product of the functions ($ and 6 (19-20). 

The tesselation of the domain R could be done with tri- 
angular patches providing an adaptive mesh and requiring 
a bigger computational complexity (see [8] for a complete 
description of the different basis functions). The choice of 
the BFS elements is due to their ability to tesselate easily 
rectangular domains and mainly to the reduced number of 
neighboring nodes and degrees of freedom (four at each nodal 
point). 

Expressing v h  E v h  in the BFS basis leads to the identity: 

V h ,  &a"h as , aT and a. The corresponding basis functions are 

which provides a C1 function defined over the set R depending 
on a finite collection of parameters. 

B. Discretization of the Problem 

Once the space is discretized and the function v is repre- 
sented as an element in a finite dimensional subspace, a linear 
system results: 

A . V = L ,  (23) 

where the matrix A is symmetric, positive definite and hep- 
tadiagonal (tridiagonal per bloc in the 3-D case) and V is 
the vector of coordinates of V h  in the chosen basis. These 
coordinates are in fact the values of V h  and its derivatives 

Having discretized the problem (15) in space, we next have 
- a,",h, %, and & at the nodes of the tessellation. 

to discretize its variational formulation: 
given vo E L2(fl) and F E L2(0, T ,  L2(fl)), 
find a function v E L2(0,  T ,  Hi(fl)) fl C1(O, T,  L2(fl)) satis- 
fying: 

We then use finite differences in time. Finite differences in time 
may be viewed as as a way to formulate the following iterative 
method. We are only interested in the final result and so do 
not need an accurate solution in time. The result is simply: 

{ E o  initial estimation, 

where T is the time step. Equation (25) can be written in a 
form similar to the finite differences formulation (4), yielding 

(25) 
+ A .  V t  = Lvt-I 

(1 + T A )  . V t  = Vt-l + 7 L v t - 1 ,  (26) 

which is the discrete version of (16). To solve the linear 
system M + V = N at each time step, for which the matrix 
M = (I+ T A )  is banded, symmetric and positive definite, we 
first note that M does not depend on t ,  and so its inverse may 
be precomputed using a Cholesky factorization. 

Note that we assume here that the coefficient functions wij 
remain constant in time. If the coefficients do change in time, 
or even if they do not, an alternative method to solve this 
linear system is by means of a Conjugate Gradient method, in 
which the solution Vt- l  is taken as an initial guess at time t. 
This approach appears to have a faster convergence than the 
Cholesky factorization method. 

Remark that when using the FEM, the solution is less 
sensitive than with FDM to deformations of the mesh. It per- 
mits apparition of larger distances between neighboring nodes 
which happen, for example, when using the balloon model. 
However, like with the FDM, we periodically reparametrize 
the curve or surface, but without adding new node points. 
For a curve in 2-D, we construct a new parametrization using 
the existing curve by sampling at a regular distance between 
nodes, with a given number of nodes. For a surface in 3-D, we 
do the same as in 2-D in both directions of the parametrization, 
one direction after the other. 

C.  Performance and Complexity Analysis 

The better complexity of the FEM was studied in 2-D and 
guided us to use it for the 3-D generalization of the model. 

The FEM has a better complexity because, as compared to 
the FDM, the step size of the spatial discretization can be 
larger with the FEM, resulting in linear systems of smaller 
size. In general, we observe with the 2-D FDM model with 
our application that: 

if the step size is more than 2 pixels, then the curves 
passes over the edges or fails to be attracted to edges; 
for the balloon model, a dynamic reparametrization is 
often required since the length of the curve increases 
significantly during the time steps; and 
the size of the linear system is of the order of the length 
of the curve, due to the reparametrization. 

While for the FDM, we follow the evolution of a set of 
points, with finite elements for the 2-D model, the curve 
which is between two points of the grid can deform, so that 
the image forces between two points are also considered. 
The computation of vector L (see Section IV-E) is made by 
numerical integration, interpolating along the interval [(z - 

,- ., l )h ,  (i + l)h] for each node s, = i h  of the subdivision: The 
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numerical integration is made at the pixel size so that no 
information is lost. 

If we compare results of FEM with those obtained using a 
finite-difference method (FDM) (as in [12]), we find out that, 
as expected, the finite-element method requires fewer points 
for the curve discretization and gives more stable results. This 
FEM gives also a faster convergence to an equilibrium. 

Since the methods lead to the linear systems (25) for FEM 
or (4) for FDM, the algorithmic complexity can be deduced 
by examining the associated linear systems. 

Let N be the number of the discretization points along the 
interval [0, 11. For the FEM, the matrix A is a 2N x 2N 
heptadiagonal array, while it is only N x N pentadiagonal for 
the FDM. In the FDM approach, the number of points N must 
be at least equal to the length 1, in pixels, of the initial guess, 
and may have to increase in size. On the other hand, for the 
finite-element method, the number of points N is typically of 
the order of 1/6. Thus, the matrix size for the FEM case is 
% by 2, which is 9 times smaller than with the FDM. 

Moreover, with the FEM, the same number of nodes in the 
system is held fixed for all iterations. An initial computation of 
the inverse of the matrix A is sufficient for the whole process. 

D. Elasticity and Rigidity CoefJicients 

The elasticity and rigidity coefficients wkl play an important 
role in the convergence process of the surface toward the image 
edges. These coefficients must be chosen in a correct way 
such that the internal forces generated by terms of the energy 
E comprising the coefficients wkl have the same magnitude 
as the external forces generated by the potential P(u) .  Since 
a minimum of the energy E will involve a trade-off between 
the internal and external energy, the solution surface should fit 
the edge points while being smooth and regular. If the internal 
energy is preponderant, then the surface will tend to collapse 
on itself without detecting image edges, whereas if the external 
energy predominates, then the surface will converge along the 
image edge without any degree of smoothing. 

To insure that both internal and external energy have the 
same order of magnitude, we have found it sufficient to choose 
the coefficients wkl such that the linear system of (16) is well- 
conditioned. For example, the following assignments result in 
a well-conditioned system: 

wlo = wol = h:h: and wzo = w11 = 11102 = hih:, 

where h, and h, are the discretization step of R. Setting 
tu10 = w01 and wzo = w11 = w02 presupposes that the 3- 
D image data is isotropic, and thus that all directions have 
equal weight. 

In [9], we propose a general approach for determining the 
regularizing parameters wij  given an error margin on the 
accuracy of the reconstructed surface. This method allows also 
surface reconstruction preserving discontinuities. 

E. The Computation of the Vector L 
The computation of L = ( L ( e l ) ,  . . . , L ( ~ N ) ) ) ~  (where 

ep  is the chosen basis of V h )  depends upon P = (x ,y)  
which is known only at pixel (or voxel in 3-D) locations. The 

integrals L(e1) = F(ut-’(s, r ) )e l ( s ,  r)dsdr represents the 
contribution of the external forces which cause the surface 
to be attracted toward the edges, and contribute to the linear 
system that we must solve at each iteration. Thus, the more 
we weight the potential P, the more closely the result tracks 
the edges and the faster is the convergence (at the expense of 
smoothness). 

Since the potential P is known only at pixel locations, we 
must compute the L(el)  with a numerical integration. Conse- 
quently we compute V P  at interpolated points (5, y, 2) E W3 
by a trilinear interpolation of the eight neighbors. 

To take into account all the contributions of the external 
forces, we modified the numerical integration formula such 
that every image point in the set ~ ( [ ( i  - l)h, ,  (i + l)h,] x 
[ ( j  - l)h,, ( j  + l)h,]) is involved in the computation of 
each term L(ep) .  This method allows us to do an “adaptive 
subdivision” of the rectangle Kij = [ih,, (i+l)h,] x [jh,, ( j +  
l)h,] without adding nodal points and, consequently, without 
increasing the size of the linear system to be solved. This 
method significantly reduces the algorithmic complexity while 
increasing the accuracy and the convergence speed. 

V. 3-D RESULTS 

Using a real 3-D deformable model to segment a 3-D image 
provides better results than the iterated application of a 2-D 
deformable model to successive 2-D cross-sections. In effect, 
the 3-D model easily bridges edge gaps in 3-D, i.e., not 
only within a cross section, but also between cross-sections, 
insuring that the result is globally a smooth surface. 

Compared to the simplified approaches of Section 111, the 
use of the full 3-D model to segment 3-D data significantly 
improves the robustness of the segmentation; for instance it is 
even possible to remove all the edges of a single cross section 
(assuming that the edges are correctly detected in other slices) 
without seriously degrading the final result. Fig. 12 shows the 
3-D reconstruction obtained by using the 3-D balloon model 
of Section 111 applied to the data of Fig. 9. The final surface 
is more accurate and smoother than that obtained with the 
simplified approach shown in Fig. 10. On a Sun Sparc station, 
the result shown in Fig. 12 takes however about ten times 
more computation time than that required for the simplified 
approach. 

Figs. 13 and 14 demonstrate another example of the 3-D 
model applied to artificial data. In this case, the initial surface 
is a cylinder (Fig. 13), where we have removed some edges 
in three successives cross sections, for comparison purposes. 
The deformable surface restores the missing edges and obtains 
a perfect reconstruction of the cylinder (Fig. 14), whereas a 
2-D model fails due to the missing edges, even if we use the 
same attraction force as for the 3-D model. 

Fig. 14 and also Figs. 17 and 18 show cross sections of the 
original 3-D image overlaid with the reconstructed surface on 
the same plane. 

For our final example, we use real data: Image data of a part 
of a human head obtained with Magnetic Resonance Imaging 
(MRI). We make use of the “weight force” described in Section 
11-B-2, which allows us to begin with a much simpler initial 
surface than in [lo]; In this case, the initial surface is a 
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Fig. 12. Representation of the 3-D reconstructed surface using the data of 
Fig. 9. 

Fig. 13. Successive cross sections of the deteriorated edges and initial surface 
(in grey) given by the user. 

Fig. 14. Here, we show how the deformable surface (in grey) can reconstruct 
deteriorated edges by maintaining 3-D homogeneity. In this example, a 2-D 
model cannot reconstruct the missing edges even if we use a 3-D potential. 

plane placed on one side of the 3-D image. The weight force 
makes the surface fall through the image until it is caught 
progressively by the shape of the face. The evolution of the 
surface is shown in Figs. 15 and 16. The final result is obtained 
after about 100 iterations. We show the final result overlaid on 
the original image data in vertical (Fig. 17) and horizontal (Fig. 
18) cross sections. Here, by vertical and horizontal slices, we 
mean with respect to the representation of Fig. 16 We remark 
the accurate localization by the surface of the 3-D edges. 

VI. CONCLUSION 

One of the goals of the regularization process in surface 
reconstruction is to obtain good estimates of partial derivatives 
of the surface in order to compute differential characteristics. 
Since the result of the deformable model reconstruction de- 
scribed here is an analytical description of class C" almost 
everywhere (except along the borders of the finite elements, 

Fig. 15. Evolution of the 3-D surface "falling" on a 3-D MRI image of a 
head. The initial surface is a plane on the border of the image. 

Fig. 16. Final result of the face. 

Fig. 17. Overlays of some vertical cross sections of the final surface obtained 
by the algorithm with the original data. 

where the representation is only of class C'), we may compute, 
for example the first and second fundamental forms of the 
surface [18]. We could then extract a curvature-based primal 
sketch of the surface (61, [26], including intrinsic features such 
as parabolic lines, extrema of curvatures, and umbilic points, 
which can be used as landmarks for 3-D image interpretation 
[2]. We are conducting such a program [lo], and will present 
results in a subsequent paper. 

Another goal of this representation is the elastic matching 
of extracted features to an atlas, which is also the problem 
discussed in [3]. For this purpose, we would deform a curve 
or surface to best match the pattern using some measure of the 
distortion, such as the area between the two curves. This was 
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Fig. 18. Overlays of some horizontal cross sections of the final surface with 
the original data. 

also studied in [35] with simple geometric shapes as templates 
which are deformed to match the image. 

In order to achieve a representation on a deformable model, 
we have presented a 3-D generalization of the balloon model 
introduced in [12] which solves some of the problems en- 
countered with the “snake” model of [23], [32]. We began 
with a survey of the use of an attraction potential generated 
by available edge data to reconstruct a curve or surface. We 
demonstrated some properties of deformable surfaces and their 
interaction with 3-D edge points. Our approach here extends 
an earlier approach, reported in [12], where we use a series 
of 2-D contours in successive cross sections to make a 3-D 
reconstruction of the surface of the ventricles. The simplified 
approach given here was implemented by defining a 3-D 
surface as a series of 2-D planar curves making a simultaneous 
and interdependent evolution, using the (9). The solution 
method used a finite-difference approach and an explicit 
scheme, which produced a fast computational algorithm. 

We then implemented a finite-element method solution strat- 
egy, to solve the full 3-D problem. The reason for choosing a 
FEM 
that: 

1) 

2) 

3) 

TG 

approach as opposed to a finite-difference method was 

the FEM approach requires fewer discretization points 
and consequently produces a smaller linear system to 
solve, thus reducing significantly the algorithmic com- 
plexity; 
the FEM approach produces more accurate results, since 
the external forces can be computed more accurately; 
the FEM approach provides an analytical representation 
of the surface. 
solve the full 3-D model of surface, we used a 

Bogner-Fox-Schmit finite rectangular element. 
This method has been tested for several applications in 

medical image analysis. We showed promising results of our 
model on MR (magnetic resonance) images, to extract features 
like the contour of a face. 
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