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We present a new fast approach for segmentation of thin branching structures, like vascular trees, based
on Fast-Marching (FM) and Level Set (LS) methods. FM allows segmentation of tubular structures by
inflating a “long balloon” from a user given single point. However, when the tubular shape is rather
long, the front propagation may blow up through the boundary of the desired shape close to the starting
point. Our contribution is focused on a method to propagate only the useful part of the front while
freezing the rest of it. We demonstrate its ability to segment quickly and accurately tubular and tree-like
structures. We also develop a useful stopping criterion for the causal front propagation. We finally
derive an efficient algorithm for extracting an underlying 1D skeleton of the branching objects, with
minimal path techniques. Each branch being represented by its centerline, we automatically detect the
bifurcations, leading to the “Minimal Tree” representation. This so-called “Minimal Tree” is very
useful for visualization and quantification of the pathologies in our anatomical data sets. We illustrate
our algorithms by applying it to several arteries datasets.

Keywords: Segmentation; Fast-marching; Level set; Minimal paths; Skeletonization; 3D medical
imaging

1. Introduction

We are interested in this paper in segmentation of

branching tubular objects from 3D images, motivated by
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medical applications related to vascular trees. Much work

has been done on surface extraction since the introduction

of deformable models (see references in McInerney

and Terzopoulos 1996) and their first use for medical

images in Cohen and Cohen (1993). The recent trend in

this domain makes use of Level Set (LS) methods

(for example Malladi et al. 1993, 1995, Caselles et al.

1996, Yezzi et al. 1997).

A major drawback of the LS methods is their huge

computation time, even when using a narrow band. Fast-

Marching (FM), introduced in Sethian (1999) allows fast

surface segmentation when the evolution is always going

outward like a balloon (Cohen 1991, Malladi and Sethian

1998). Using FM as a region-growing method, we can for

example extract the surface of the colon out of a CT

scanner, starting from an initial seed point inside the object

of interest (Deschamps and Cohen 2001). An important

question is when to stop the propagation in order to get the

desired segmentation.

In Deschamps (2001)and Deschamps and Cohen

(2001), we have demonstrated that the front propagation

could be stopped on the basis of a distance traveled by the

front corresponding to the known length of the object, by

computing the length of the minimal path to the starting

point while the front is propagated. When the propagation

speed is almost constant inside the tubular structure, this

length is almost the geodesic distance to the starting point

inside the tubular object. Figure 1 illustrates this idea by

showing iterations of this front propagation in a 3D image

with a speed chosen in order to segment the colon.

However, classical segmentation problems do not provide

an excellent contrast like the air-filled colon on a CT scanner,

and the front usually flows over the boundaries of longer and

thinner objects when propagating. Our aim in this article is to

show how the FM surface segmentation can be specifically

optimized for this target. If the propagation of a front could

be restricted to the part of the image occupied by those

structures, the computing time could be divided by almost
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five, since arteries in a typical MR-Angiography image do

not exceed 10% of the whole volume.

The FM algorithm is also a very powerful tool to extract

minimal paths in images, as shown in Cohen and Kimmel

(1997). Starting from the 3D implementation of the

minimal path tracking, previously used for virtual

endoscopy (Deschamps and Cohen 2001), we show that

it can be extended to automatically extract the trajectories

in each branch of a tree-like object. Finally, we explain

how to build a Minimal Tree from this trajectories. This

Minimal Tree is the underlying skeleton of our branching

tubular shapes. We show on several medical images the

gain that results in terms of visualization and quantifi-

cation of the pathologies concerned.

This paper is organized as follows: In Section 2, we

summarize the method detailed in Cohen and Kimmel

(1997) for minimal path tracking, and the application to

segmentation of the minimal path algorithm (Malladi and

Sethan 1998). In Section 3 we detail the Freezing approach: a

front propagation technique for thin and elongated shape

extraction. Finally, in Section 4 we explain how to extract

efficiently the Minimal Tree of the resulting segmented

objects, showing the improvement brought to the examin-

ation of anatomical objects and their pathologies.

2. Minimal paths, FM and surface segmentation

2.1 Minimal paths extraction

2.1.1 Global minimum for active contours energy. We

present in this section the basic ideas of the minimal path

method introduced by Cohen and Kimmel (1997) to find

a curve in a 2D or 3D image that reaches the global

minimum of the active contour energy. The energy to

minimize is similar to classical deformable models (Kass

et al. 1988) where the curve is evolving under the influence

of both smoothing and image features attraction terms:

EðCÞ ¼

ð
V

{w1kC
0ðsÞk

2
þ w2kC

00ðsÞk
2

þ PðCðsÞÞ}ds: ð1Þ

where C(s) represents a curve drawn on a 2D or 3D image,

V its domain of definition, and P the potential function or

penalty image term, being small where the curve should be

attracted. Authors Cohen and Kimmel (1997) avoided the

energy minimization problem of getting stuck at local

minima by considering a simplified energy model leading

to a global minimum solution. Dismissing the second

derivative term and using the arc-length s parametrization

in the energy leads to the expression

EðCÞ ¼

ð
V

{wþ PðCðsÞÞ}ds: ð2Þ

where V ¼ [0,L ], and L is the length of the curve. We now

have an expression in which the internal forces are included

in the external image term and where the regularization is

now achieved by the constant w . 0. In Cohen and Kimmel

(1997), this problem is related to the paradigm of the LS

formulation, by showing that its Euler equation is equivalent

to the geodesic active contours (Caselles et al. 1997).

Given a potential P . 0 that takes lower values near

desired features, and two end points x 0 and x1, we are

looking for paths along which the integral of ~P ¼ Pþ w is

minimal among all paths that join x 0 and x1{. In order to

Figure 1. Segmenting the colon volume (orthogonal CT slices above) with FM: the user locates a starting point at one particular recognizable part of the
colon, then a front is propagated from this seed point until a maximum path length is reached (below).

{This means that Cð0Þ ¼ x 0 and CðLÞ ¼ x1.

GCMB 232719—26/4/2007—SATHYA—272570

L. D. Cohen and T. Deschamps2

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220



find a curve minimizing this energy, the minimal action

map T(x) is defined as the minimal energy integrated along

Q1

a path starting at point x 0 and ending at point x:

TðxÞ ¼ inf
Ax 0 ;x

EðCÞ ¼ inf
Ax 0 ;x

ð
V

~PðCðsÞÞds

� �
: ð3Þ

whereAx 0;x is the set of all paths joining x 0 and x. Assuming

T(x) has been computed over the image domain, a minimal

path between x 0 and any point x1 in the image can be easily

built out of this minimal action map: the potential P being

always positive, the minimal action map will have only one

local minimum which is the starting point x 0. The minimal

path indicating the smallest weighted length trajectory to go

from x 0 to x1, it will be built by a simple back-propagation on

the image domain, following the gradient descent of the

energy T(x) from x1 to x 0 (see Ardon et al. 2007 for proof).

More than simplifying the minimization process, this

method even reduces the initialization to the selection of the

two extremities of the path, rather than a whole curve for

active contours.

2.1.2 Fast-marching resolution. In order to compute

minimal action map T in equation (3), we solve the related

front-propagation equation ðð›CÞ=ð›tÞÞ ¼ ð1= ~PÞ~n, where ~n

is the normal vector to C, and the speed is inverse

proportional to the potential. It evolves a front starting

from an infinitesimal circle shape around x 0 until each

point inside the image domain has been visited by the

front. T(x) being the time t at which the front passes over

the point x, it represents the minimal cost to go from x 0 to

x, i.e. the energy of the minimal path between x and the

start point x 0.

The FM algorithm, introduced by Sethian (1999), was

used by Cohen and Kimmel (1997) noticing that the map T

in equation (3) satisfies the Eikonal equation:

k7Tk ¼ ~P; Tðx 0Þ ¼ 0: ð4Þ

One way to solve equation (4) is to use upwind finite

difference schemes and iterate the solution in time. In

other words, the scheme relies on one-sided differences

that looks in the upwind direction of the moving front,

thereby picking the correct viscosity solution. In order to

solve equation (4) in a 3D image (Deschamps and Cohen

2001), we write that at each voxel ði; j; kÞ, the unknown T

satisfies the quadratic equation:

max{T 2 Ti21;j;k; T 2 Tiþ1;j;k; 0}

Dx

� �2

þ
max{T 2 Ti;j21;k; T 2 Ti;jþ1;k; 0}

Dy

� �2

þ
max{T 2 Ti;j;k21; T 2 Ti;j;kþ1; 0}

Dz

� �2

¼ ~P
2

i;j;k:

ð5Þ

giving the correct viscosity-solution t for Ti;j;k, with Dx,

Dy and Dz being the pixel anisotropy.

The improvement made by the FM proposed by Sethian

(1999) is to solve this equation rapidly by introducing

order in the selection of the grid points. This order is based

on the fact that information is propagating outward,

because the minimal action T can only grow due to the

quadratic equation (5).

The algorithm is detailed in table 1.

The FM selects at each iteration the Trial point with

minimum energy. This technique of considering at each

step only the necessary set of grid points was originally

introduced for the construction of minimum length paths

in a graph between two given nodes in the A* algorithm

(Dijkstra 1959).

Thus it needs only one pass over the entire image. To

perform efficiently these operations in minimum time, the

Trial points are stored in a min-heap data structure (see

details in Sethian 1999). Since the complexity of the

operation of changing the value of one element of the heap

is bounded by a worst-case bottom-to-top proceeding of

the tree in Oðlog2NÞ, the total work is about OðN log2NÞ

for the FM algorithm on a N points grid.

Once the front has been propagated, we can back-track a

minimal path inside the image. The minimal path between

any point x and the start point x 0 is found by sliding back the

map T until it reaches to x 0. It can be achieved by a simple

steepest gradient descent with a pre-defined descent step on

the minimal action map T, choosing

xnþ1 ¼ xn 2 step £ 7TðxnÞ: ð6Þ

More accurate gradient descent methods like Runge–Kutta

midpoint algorithm or Heun’s method can be used for this

back-tracking.

2.1.3 Calculation of the length of the minimal path.

The length of the minimal path between x 0 and x is a very

valuable indication. It is the Euclidean distance traveled

by the front from our starting point x 0 to reach x, and it is

Table 1. Algorithm for 3D Fast-Marching.

† Definitions:
– Alive set: grid points at which the values of T have been reached

and will not be changed;
– Trial set: next grid points (6-connectedness neighbors) to be

examined. An estimate T has been computed using discretized
equation (5) from Alive points only;

– Far set: all other grid points, there is not yet an estimate for T;
† Initialization:

– Alive set: start point x0, Tðx0Þ ¼ 0;
– Trial set: reduced to the six neighbors x of x0 with initial value

TðxÞ ¼ ~PðxÞ;
– Far set: all other grid points, with T ¼ 1;

† Loop:
– Let xmin be the Trial point with smallest T;
– Move it from the Trial to the Alive set;
– For each neighbor x of xmin:

*If x is Far, add it to the Trial set and compute a first estimate of
TðxÞ, solving equation (5);

*If x is Trial, update TðxÞ, solving equation (5).
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something we would like to use while we are propagating

a front in an image.

Once the path is extracted by gradient descent (6), we can

easily compute its length. But this is a very time consuming

process to systematically do this at each point visited.

Therefore, we propose to compute on-the-fly an

approximation of the distance traveled by the front,

while it is propagating according to the Eikonal equation

(4), with a method originally introduced in Deschamps

and Cohen (2001).

Notice first that when ;x;PðxÞ ¼ 1, energy E is

proportional to the length of the path, a minimal path is a

shortest path, and if we call d the minimal action defined

by (3), it is proportional to the distance to the starting

point, and it can be obtained by solving

k7dk ¼ 1 dðx0Þ ¼ 0: ð7Þ

This means that when propagating a front with a constant

speed equal to 1, the minimal energy obtained at each point

represent the Euclidean distance d to the starting point.

Now, in the general case for P, in order to compute the

Euclidean length D of the minimal path at each point, at the

same time we make the FM to compute T, we can compute

an estimate by solving locally equation (7), using the same

neighbors involved for solving T in equation (5). As detailed

for example in Cohen (2005), equation (5) is solved at each

grid point as a quadratic equation involving at most three of

the six neighbors that appear in equation (5). This comes

from the fact that for each of the three frame directions i; j; k,

only the neighbor reaching the max is involved, or none if

that max is 0. Let us denote i0; j0; k0 such that i 2 1 # i0 #

iþ 1; j 2 1 # j0 # jþ 1; k 2 1 # k0 # k þ 1 the indexes

which reach the max in each direction, with the convention

that if i ¼ i0 that term is void, and the same for j ¼ j0 or

k ¼ k0. We then solve in the FM for T and D the quadratic

equations:

T2Ti0 ;j;k

Dx

� �2

þ
T2Ti;j0 ;k

Dy

� �2

þ
T2Ti;j;k0

Dz

� �2

¼ ~P
2

i;j;k:

D2Di0 ;j;k

Dx

� �2

þ
D2Di;j0 ;k

Dy

� �2

þ
D2Di;j;k0

Dz

� �2

¼ 1:

8>><
>>: ð8Þ

The corresponding algorithm is described in table 2.

This algorithm was already used for reducing user-

intervention in the Virtual Endoscopy process (Deschamps

and Cohen 2000). If we evolve a front inside a tubular

object (like the colon) and compute at the same time the

Euclidean distance travelled with the algorithm detailed in

table 2, the first improvement is that the propagation can

be automatically stopped when a chosen length has been

traveled. The second improvement is that we can

automatically pick the furthest visited point as extremity

to extract a minimal path between this point and the

starting point inside a tubular structure. Therefore, the user

interaction is limited to locating the start point in the

dataset, and it is very important when studying such a

complicated object as the colon or a brain vessel

(Deschamps and Cohen 2001).

2.2 Segmentation with the Eikonal equation

Many approaches are possible to segment the external

surface of an object starting from inside, like a balloon

model (Cohen 1991) or its LS implementation (Malladi

et al. 1995, Tek and Kimia 1995). FM can be used as well

to perform this kind of monotone surface evolution

(Malladi and Sethian 1998). When computing the minimal

energy from a starting point, the Trial points correspond to

the boundary of the visited points (a contour in 2D or a

surface in 3D). If the potential ~P is much larger on the

external surface of the object than inside it, then, since its

speed is inverse proportional to P, the front moves slowly

when it reaches the boundary, and that surface acts as a

barrier for the front propagation. In this case, the Trial

points define a surface segmenting the object, and

satisfying the front propagation equation ð›C=›tÞ ¼

ð1= ~PÞ~n as mentioned in previous section.

Let us see the relation with LS methods and consider the

usually solved evolution equation of an interface (2D

curve or 3D surface):

›C
›t
ðxÞ ¼ F~n;

Cðx; 0Þ ¼ C0ðxÞ;

(
ð9Þ

If we assume that the speed of the interface F ¼ 1= ~P is

strictly positive, the front moves always outside, in the

normal direction ~n like an inflating balloon (Cohen 1991),

but with a non constant speed. The idea of the LS method

is to solve the evolution equation

ft þ Fk7fk ¼ 0: ð10Þ

where CðtÞ identifies§ with the zero LS of f.

Table 2. Algorithm for computing the euclidean distance traveled by
the front.

Notations
† A starting point x0 manually set;
† The minimal action map T, a min-heapHT and a potential image P

as defined in equation (4);
† A distance map D to compute the Euclidean minimal path length;

Initialization
† Initialize the front propagation method, by setting Tðx0Þ ¼

Dðx0Þ ¼ 0 and storing x0 in min-heap HT;
Loop: at each iteration, consider xmin be the Trial point with smallest T

† Move it to Alive set, and remove it from HT

† For each neighbor x of xmin:
– Proceed according to the classical FM algorithm: update TðxÞ

and re-balance HT;
– Update DðxÞ according to equation (8) using the same

neighbors of x that were involved in updating TðxÞ

§The relation between equations (9) and (10), detailed in Sethian (1999), can be understood from the fact that the normal ~n to the LS of f is in the
direction of 7f, used in a way similar to equation (11) below.
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A different way to find the location of the interface is to

compute the arrival time TðxÞ of the curve C when it

reaches each point of the image. This map T is

characterized by the fact that for all points of Cð:; tÞ; the

curve position at time t, we have T ¼ t (Cð:; tÞ corresponds

to the t LS of T). Using simple derivation with respect to t

and the classical property that the gradient of a function

is normal to its LS, and thus ~n ¼ ð7T=k7TkÞ, the

following equations are obtained from the evolution of C

in equation (9):

TðCðx; tÞÞ ¼ t ) 7T ·Ct ¼ 1

) 7T ·ðF~nÞ ¼ 7T F
7T

k7Tk

� �
¼ 1

) F·k7Tk ¼ 1

ð11Þ

where we find again the same Eikonal equation as above in

equation (4). This equation was used in (Malladi and

Sethian 1998) for surface segmentation since it has the

same advantages as the LS method, but can be

implemented much faster. Discretized with an upwind

scheme, it is then solved using the FM algorithm (table 1),

given an initial starting point x 0. In practice the front is

propagated until a given time is reached. This corresponds

to the set of Trial points when reaching a given energy

since each new alive point has larger value of T than all

previous ones, that set correspond to a LS.

Figure 1 shows iterations of this front propagation in a

3D image with an image term defined in order to segment

the colon. Evolution is stopped when a given geodesic

length has been traveled by the front, as described in

Subsection 2.1.3.

As refinement process, the front is evolved to sub-pixel

accuracy, using a more complicated scheme, as in Caselles

et al. (1997) or Caselles et al. (1996):

ft þ ð1 2 1kÞFsk7fk2 b7g·7f ¼ 0 ð12Þ

where the equation contains the following terms:

. an inflating force, analogous to the balloon force (Cohen

1991), here defined by FsðxÞ ¼ 1=ð1þ k7IsðxÞkÞwhere

Is is the image convolved with a Gaussian kernel of size

s; this inflating force vanishes to zero in region of high

gradients (i.e. near object boundaries);

. a curvature term 2Fs1k which controls the

smoothness of the iso-contours of fð·; tÞ, as originally

introduced in Caselles et al. (1993) and Malladi et al.

(1993);

. an external force, similar to the snake image force (Cohen

1991, Kass et al. 1988), which role is to attract the surface

toward the boundary of the object of interest. This term is

a vector flow which denotes a projection of an attractive

force vector on the surface normal. The image term can

be defined as gðxÞ ¼ 2k7IsðxÞk or gðxÞ ¼ FsðxÞ:

3. Design of a segmentation method for tubular objects

Setting up a framework for the segmentation, visualization

and quantification of thin tubular structures, based on the

use of the FM as an initialization step, we show in this

section how this method, which is not tuned for this kind

of thin and long objects, can be specifically optimized for

this target.

3.1 The overflowing problem

Segmentation problems do not always provide as an

excellent contrast as the air-filled colon on a CT scanner of

figure 1. In more complex cases, the propagation leaks

through the object walls, as it is illustrated in figure 2. The

front flows over the boundaries of the object and floods the

background image. The resulting surface cannot be used

as an initialization for a refined segmentation, as it is done

in the previous section when combining FM and LS

methods (Malladi and Sethian 1998).

When the front propagates in a thin structure, there is

only a small part of the front, which we could call the

“head”, that really moves. Most of the front that is located

close to the boundary of the structure or to the starting

point (the “tail” of the front) moves very slowly. However,

since the structure may be very long, in order for the

“head” front to reach the end of the structure, the “tail”

voxels may flow out of the boundary since their speed is

always positive, and integrated over a long time. This is

illustrated in figure 2, where we applied FM in the dataset

shown in figure 2-top with a potential based on the gray

level with contrast enhancement. The resulting front

propagation (figure 2-bottom) leaks through the object

walls and does not give a valuable surface description.

3.2 Propagation freezing for thin structures

From the description of the overflowing process above, it

appears inefficient to use all of the voxels in the

computation of the arrival time in Eikonal equation. The

idea we introduced is that some of them located in the tail

could be considered as walls, thus blocking the leakage

that occurs. This Freezing process can be done by setting

their speed to zero, and has been first proposed in

Deschamps and Cohen (2002)) and used in Lin (2003).

Freezing points during propagation means that we

consider the front has reached the object boundaries when

it visits them. The question is now to design the

appropriate criterion to choose these points. We illustrate

this method on a synthetic branching structure in 2D and

then propose two criteria.

3.2.1 Synthetic test problem. We would like to extract in

a very fast process the multiple branches of the synthetic

example of a tree structure shown in figure 3. The left

binary image represents both the data image and the

potential (i.e. P is small on the object and large in the
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background). Setting an initial seed point at the left corner

point, the front propagates quickly in the three branches

and much slower in the background. Figure 3-right shows

the action map computed with the classical FM algorithm

applied until the whole object has been flooded. The LS of

the action map are visible on the white background of the

image domain which has not yet been visited by the front.

The shape of the set of points visited is a whole “blob-

like” structure that does not delineate the correct

boundaries of the tree and cannot be of any use. It

emphasizes the limited use of this method, without a clear

constraint on the domain of points visited.

3.2.2 Time based Freezing. The first idea is to freeze the

points of the front that are spending a long time in the

propagating front, i.e. points that remain Trial (table 1) for

a given number of iterations. Unfortunately, the results of

this criterion are non-predictable, as illustrated in figure 4.

The reason might be that the time spent in the front for a

point is related to the local potential value at this point and

not its location in the object that we are trying to segment.

What we want is to differentiate the tail of the front from

its head, in order to prevent propagation leakage in non-

desired areas of the data.

3.2.3 Distance based freezing. We now propose a

criterion based on the Euclidean Distance DðxÞ traveled

by the front from the starting point x 0 to any point, point x,

using the principle detailed in Section 2.1.3, based on

equation (8).

It seems far more “natural” to use the distance relatively

to the starting point or to the head of the front. Actually

this information is now related to the geometry of a tube-

shaped object where the diameter should be small

compared to the length. And we can use the algorithm

detailed in Section 2.1.3 for computing this Euclidean path

Figure 2. 3D contrast enhanced MR image of the aorta (above) and front propagation (below): these three images represent different steps of the
propagation inside the aorta MR dataset using Eikonal equation with a potential given as a simple function of the gray levels either linear or non-linear.
Compare to figure 6 to see what should be correct.

Figure 3. Synthetic test problem: the left image is the medium where a
front has been propagated, starting at the root of the three branches, and
stopping when a maximum distance criterion of 300 has been reached;
right image is the corresponding action map for time T [ ½0;Tmax� with
Tmax user defined.

Figure 4. Instability of the time criterion for Freezing: Left image is the
action map T obtained with a maximum time criterion of 100 iterations;
Other images are freezing maps (white pixels) with respectively from left
to right 100, 80 and 60 iterations as maximum time spent in the front.
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length DðxÞ, that was already very helpful in a virtual

endoscopy application (Deschamps and Cohen 2001).

We can easily define several Freezing criteria based on

the current maximum distance value dmax computed. For

example, we can decide that a point x of the propagating

front (i.e. Trial points) should be frozen (i.e. set as Alive

point) if its path length distance is small relatively to the

largest value dmax:

DðxÞ , maxðdmax 2 ~d; 0Þ; with ~d . 0 chosen ð13Þ

The results are now predictable (see the 2D example on

the synthetic test shown in figure 5). The Euclidean

distance to the starting point is a measure which contains

information about the geometry of the surface extracted,

and in particular its length. This is less related to the local

potential at each point, and more to the location of this

point in the object. The strict inequality in (13) ensures

that no point is frozen till one point on the front has

traveled at least the Euclidean distance ~d.

At each time step, we can now discriminates the front

tail points, by comparing their distance to the maximum

distance which has been traveled by the front head. If the

distances satisfy our distance criterion (13), we “freeze”

those points by setting their speed artificially to zero. It

enables to stay inside the object when it is long and thin

like a tubular structure, as shown in figure 5. The domain

visited by our algorithm is slightly smaller than the

previous one (figure 4-right) and this domain shortens

with the distance criterion (13), when we compare left and

middle images in figure 5. Figure 5-right clearly

demonstrates that the FM with Freezing, that we denote

FFM algorithm in the following, discriminates the points

located far (depicted in black) from the propagating front.

3.2.4 Algorithmic implementation for distance based

freezing. Just like we were ordering the energy values in

the FM algorithm (table 1), we are going to use an

additional heap where the ordering key is the computed

distance. It means that the element at the top of this second

heap will be the Trial point that is the closest to the starting

point. Thus knowing dmax at each iteration, we are able to

remove all the points who satisfy our criterion (13).

In table 3 is detailed an implementation of the FFM. The

same algorithm can be used with any other distance-based

or time-based Freezing method.

3.2.5 Illustration on the vascular tree extraction

problem. Using the method explained previously, we

segment a vascular tree very quickly, starting from a seed

point at the top of the tree hierarchy. Figure 6 displays the

successful result of this algorithm on the data of figure 2

where FM previously failed. The distance threshold ~d is a

parameter which is not very sensitive, and we usually

choose a value related to the a priori dimensions of the

object. Since it represents the portion of the branches that

are not surrounded by frozen points, it is important to have

some kind of understanding about when the front does

leak through the object. The only important condition is

that ~d should be larger than the expected maximum section

of the object, otherwise the algorithm will wrongly freeze

points inside objects.

3.3 Suitable stopping criterion

Having designed an adequate algorithm to prevent the

front tail from “overflowing”, we now explain our strategy

to automatically stop the propagation whatever the

number of branches, based on the same FFM method.k

Table 3. FFM algorithm.

Notations
† A starting point x0, located at the root of the tree structure;
† The usual action map T, a min-heap HT and a potential image P

used in table 1
† The distance map D, and another min-heapHD, where the ordering

key for any point x is the value of DðxÞ (the first element of this
heap will be the Trial point with smallest D);

† Several counters dmax, ~d, dstop

Initialization
† Initialize the front propagation method, by setting Tðx0Þ ¼

Dðx0Þ ¼ 0 and storing x0 in both min-heaps HT and HD;
† dmax ¼ 0
† ~d and dstop are parameters for tuning the algorithm (user defined).

Loop: at each iteration, consider xmin the Trial point with smallest T
† Proceed according to the FM algorithm as in table 2, by examining

its neighbors, updating T and the min-heapHT, as well as D using
equation (8) and HD;

† Take dmax ¼ maxðdmax;DðxminÞÞ;
† Consider qmin, the first element of HD, (Trial point with the

smallest D). While DðqminÞ , maxðdmax 2 ~d; 0Þ do
– Set DðqminÞ ¼ TðqminÞ ¼ 1;
– Set qmin in the Alive set, then qmin will not be used for

computing the energy/distance at its neighbors location.
– Delete qmin in both HD and HT;

† If dmax . dstop, exit the loop.

Figure 5. Using distance for freezing: left and middle images are action
maps T with distance criterion (13) of respectively 100 and 50; right
image is a zoom on the freezing map for a distance criterion ~d ¼ 50: the
frozen points are set in black.

kPrevious strategy was to use a maximum Euclidean path length to stop propagation, like for the virtual endoscopy application. In virtual endoscopy,
the user can set both extremities of the trajectory, if he has an a priori knowledge of the anatomical objects. Extraction of tree-like structures cannot use
such an assumption: the number of branches in our structure is undefined, the only assumption being that the user can fix a point inside the structure, at
the beginning of the segmentation process.
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If we plot the maximum distance dmax visited by the

front, as a function of the number of iterations of the

algorithm detailed in table 3, we obtain the profile shown

in figure 7. We observe that the evolution of dmax can be

broken into two quasi-linear parts separated by a huge

change of the slope.

By definition of the FM method, the number of

iterations is equal to the number of points that are alive,

and is thus an estimate of the volume inside the front. If we

are propagating in a tube-shaped object with constant

section area A, then the number of points visited should be

proportional to the length of the tube. Thus the slope is the

ratio between the length and the number of points visited,

and it is inverse proportional to A. This should remain true

for anatomical branching objects in their large parts as

long as the sum of all sections areas remains constant. But

this should no longer hold in the very thin parts of the

vessels and arteries due to the fact that the front starts to

leak, and this is as though the area of the section becomes

very large. The slope becomes then much smaller.

Therefore, the slope abrupt change indicates exactly

when the the front head flows out of the object, i.e. when

front propagation should be stopped. This slope collapse

can be detected using a simple threshold, depending on the

object we want to extract, and indicate when we should

stop propagation. Notice that even in pathological cases

(aneurysms), we can assume that we do not want to extract

an object which is more than a maximum section radius

rmax. The slope being inversely proportional to the square

of the tube radius we can add to our criterion another

condition on the maximum radius.

3.4 Discussion and results

The level of accuracy of LS implementations dedicated to

tubular shape extraction (Lorigo et al. 2001, Vasilevskiy and

Siddiqi 2001), cannot be of course outperformed by the FFM

method. However, solving the Eikonal equation in

oðn logðnÞÞ is much faster than any time-dependent scheme,

since this is the stationary case of Hamilton–Jacobi equation

(Sethian 1999). This is why in this article, the aim is not to

implement dedicated algorithms based on the LS methods,

but to use them afterwards for sub-pixel accuracy results,

once preliminary results have been obtained with our fast

algorithms. Moreover, the FFM algorithm reduces the

number of points visited to a small portion of the image,

leading to accurate segmentation in a total of 10 s, for the MR

datasets shown in figure 2, on a commercial computer.

The FFM and the LS algorithms are used in four steps:

(1) the user manually initializes a seed point inside the

object of interest;

(2) the FFM algorithm (table 3) propagates a front from

this point;

(3) this evolution is stopped using our automatic

criterion (Section 3.3). First row of figure 8 shows

the surfaces of several tubular structures extracted

with the FFM algorithm; and

(4) a LS deformable model is evolved according to

equation (12) for a small number of iterations, until

the final surfaces which are shown in the second row

in figure 8.

Since our freezing method gives a very good estimate of

the surface, this step is quite fast.

4. Extracting the Minimal Tree of the branching

structures

Once the contour a tubular anatomical object is obtained

(figure 8), we can extract trajectories inside it with

minimal path techniques (see Section 2). Along a centered

trajectory, we can either quantify numerically the extent of

pathologies, or assess them visually (virtual endoscopy).

In this section we show how to obtain the Minimal Tree

of a branching structure, as a set of bifurcation points and

extremities connected by minimal trajectories, using its

shape and the user-defined seed point of the segmentation.

Our method will be illustrated on a 3D rotational

angiography (D-RA) dataset (Kemkers et al. 1998) of a

stenosed artery shown in figure 9.

4.1 Multiple trajectories extraction

We have shown in Deschamps and Cohen (2001) how to

extract a centered trajectory inside a tubular structure. In

this section, we extend this single trajectory extraction

method to the case of multiple trajectories.

The dataset displayed in figure 9-left with three

orthogonal views is a branching structure in which

pathology—a stenosis—is clearly visible on the Maxi-

mum-Intensity-Projection (MIP) view in figure 9-right.

Figure 6. Using distance for freezing in the aorta: from left-to-right, images show iterations of the segmentation process on the former examples of
figure 2; the propagating front is in red, and the frozen points are in white.
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Figure 7. Using distance for stopping propagation in the aorta: The images of the propagating fronts of figure 6 are super-imposed on the evolution of
the maximum distance reached by the front propagation across iterations; it emphasizes that the decrease in the slope is related to the “overflowing” out
of the aorta.

Figure 8. Segmentation of vascular objects: first row shows different vascular objects that have been extracted with the FFM algorithm — except the
example shown in last column on the right, where the method used was the competitive fronts algorithm; second rows is the final result of the
segmentation after 40 iterations of the LS method.

Figure 9. 3D-RA dataset of a stenosed artery: left image shows three orthogonal views of the dataset; right image is a MIP view of the same dataset.
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The complete study of this pathology involves to be able to

inspect its surface and to measure the extent of the

stenosis. This can be done with minimum interactivity

using the Minimal Tree.

In some cases the stenosis will be so important that the

artery will appear as two or more disconnected parts in the

image. In this case, we have devised a method to reconnect

those parts with minimal path techniques adapted in a

perceptual grouping perspective (Deschamps and Cohen

2002).

4.1.1 Previous work and principle of the method. The

combination of path and shape representation is a

framework already studied in Computer Graphics as well

as in Computer Vision. In Computer Graphics, cylindrical

shapes description is done by implicit surfaces (in the sense

of Bloomenthal 1997, p. 223]) defined by the convolution

of a filter kernel with a skeleton. In other words, this

distance surface is a surface that is defined using the

distance to some set of skeletal elements. But in graphics,

the target is to improve visualization and interactivity over

the representation of the object. However, it connects to

vision because it is often convenient to model a shape as a

generalized cylinder (O’Donnell et al. 1994), for

reconstruction of anatomical shapes (Terzopoulos et al.

1987) by combining the fitting of a generalized cylinder and

its symmetry axis. In those methods, the central axis

constrains the extraction, and models the tubular shape of

the final object extracted.

In our case, even if it is initialized by a minimal path

tracking method (FFM algorithm in table 3), the principle is

the opposite: the shape constrains the path, because the final

set of trajectories (i.e. the skeletal information of our object)

is built from the surface extracted by the LS method.

Our method is based on the construction of a

connectivity map of the propagating front (i.e. the Alive

points), at several chosen iterations, as shown in figure 10.

Defining a distance step dstep, each time the front travels

this distance we change the label of the visited points, and

we thus detect when a front separate at a branch into

several unconnected sets. When the whole object has been

visited, we take for each separate set the furthest point

from the starting point, according to minimal path length,

and we set it as a candidate extremity for back-tracking a

trajectory.

dstep defines at the same time the accuracy and the

computation cost of the method: if it is big, it decreases the

computation cost of keeping track of the connectivity of

the front. At the same time, it misses branches smaller than

dstep: on figure 10-right, only one of the two extremities of

region 3 will be eligible for back-tracking.

4.1.2 Multiple path tracking algorithm. The algorithm

we devised for multiple path tracking is mostly inspired

from works on skeleton extraction from binary or

scattered data. However it has one advantage over

morphological techniques: the accuracy, or scale, is an

explicit parameter that we can derive from anatomical

knowledge of the data studied. This scale is the length of

the minimal path extracted at each step.

Our framework detailed in table 4 relies on a binary

maskM that defines our object and which can be obtained

by the FM as well as the LS methods. Figure 11 illustrates

this algorithm by showing several label maps L with

different values of the scale dstep.

4.1.3 Illustration on the vascular tree extraction and

discussion. Using FFM segmentation followed by several

iterations of LS methods to build the maskMwe illustrate

the extraction of multiple trajectories inside two different

datasets in figure 12. Moreover, the computation for the

paths is constrained to a small number of points located

inside the objects of interest (usually less than 20% of the

whole volume) defined byM. Figure 13 shows the result

of the same algorithm on the dataset of figure 2. This set of

paths can lead to apply quantification techniques on the

Abdominal Aortic Aneurysm (AAA) it contains.

The advantages of our framework are numerous:

. Initialization: user input is limited to the setting of the

seed point for the segmentation.

. Adaptability: the front propagation techniques enable

any change in topology, have no constraints on the

initialization, and can segment any branching object;

. Accuracy: the surface definition is at the sub-voxel

level, thus our method increases the accuracy of both

trajectories extracted and measures of the pathologies;

. Interactivity: while the set of endpoints is manually

drawn in the original image for most of the front

propagation techniques applied for multiple path

extraction (Lavialle et al. 1999), all our trajectories

are extracted automatically;

4.2 From multiple trajectories to minimal tree

The multiple trajectories obtained previously can guide

virtual endoscopes or be used to quantify pathologies by

Figure 10. Multiple path tracking algorithm: from left to right, these are connectivity tests made on the propagation of a wave inside a segmented
object, starting from the point designated by label 0, until the whole domain is visited.
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measuring the variation of the section of the object along

one of the path extracted. But a trajectory is just the

centered minimal path between two extremities of the

branching structure without any spatial relationship

between the paths and the surface. These trajectories

cannot be used for further developments like automatic

labeling of the branches and accurate localization of

pathologies.

In order to extract the information which is relevant to

analyze the surface of the tree-shaped object extracted, we

need to transform these multiple minimal paths into a

Minimal Tree as done in figure 14. The process of building

the Minimal Tree is rather simple: during back-tracking of

the trajectories, we create branching points where couples

of them are close enough, therefore, the only parameter is

the definition of proximity between trajectories.

The initialization use the same input as the multiple

path tracking, including the final end points extracted. The

algorithm is presented in table 5. Figure 15 displays the

result obtained on the D-RA image of figure 9. From the

set of multiple trajectories, branching points are extracted,

as shown in figure 15-right.

4.3 Other methods for skeletal representation

4.3.1 Skeletonization by expansible trees. In Verroust

and Lazarus (1997), authors build a skeletal representation

of an unorganized collection of scattered data points lying

on a surface. They capture branching shapes, using a

distance step similar to ours, by computing the k LS from

the user-defined root of the tree; and for each of those LS,

they extract the centroids of connected components. In our

case it is not necessary to extract the centroids, because it

introduces uncertainty in the location of the branching

points. With a centering potential P, we aggregate the

paths that are under a user-chosen distance dpaths. This

method based on the centroid extraction can be compared

to the very interesting work of Angella et al. (1996), which

presents a deformable and expansible tree as a skeleton

extractor, where each node of the tree is a free particle that

propagates into the data, pushed by repulsive forces

coming from other particles and contours. The set of free

particles describes the tree hierarchy. In our case, the sub-

Table 4. Multiple path tracking algorithm.

Notations
† A binary maskM defines the region of interest in the image;
† A potential image P will drive the front propagation (usually

computed using the centering method Deschamps and Cohen
2001);

† A distance map D (the Euclidean length of the minimal path
computed with the method of Section 2.1.3), and a user-defined
distance step dstep controls the accuracy of the end-point
extraction;

† A counter cd records the iteration number of the loop in our
algorithm;

† A label map L labels each branch detected with a counter nL, and
an array 1 records the hierarchy of the branches detected; 1½l� is the
label of the neighbor region that was found in the tree structure
previously to region of label l.

† A starting point x0, located at the root of the tree hierarchy.
Initialization

† M(i,j,k) ¼ 1 for all point in the region of interest, elsewhere
M(i,j,k) ¼ 0;

† L(i,j,k) ¼ 21 for all point in the image domain, nL ¼ 0, and all
elements of 1½I� are set to 21;

† We initialize the usual set of data-structures for front propagation,
including an action map T, the distance map D, and a min-heap;

† We initialize a classical front propagation method, setting Tðx0Þ ¼
0 and storing x0 in the min-heap;

† The counter cd ¼ dstep.
Loop

† We propagate the front with Eikonal equation, computed with
potential P on the domain defined by the maskM;

† For each Trial point x visited in the FM algorithm,L(x) is set to the
label of its current Alive neighbor with minimal energy;

† If we visit a point x with DðxÞ $ cd:
1) We consider the set of Trial points T, that are all stored in the

min-heap, we consider t1; . . . ; tn its n subsets of connected
components (with 26-connectedness in 3D), obtained
through a simple connectivity algorithm;

2) For each subset tr ; r [ ½1; . . . ; n�
– Passing from the old label lrold

to the new label lrnew
: we set

nL ¼ nL þ 1, lrnew
¼ nL, and 1½lrnew

� ¼ lrold
;

– For all the points x [ tr , we set LðxÞ ¼ lrnew
;

3) cd ¼ 2 £ cd;
4) We stop if the whole domain defined byM is visited.

Termination
† We consider all LS Lp, p [ ½1; . . . ; nL� defined by the label map L

with different labels;
† We select the sets Lp such that 1½lp� – 21 and ;n . lp; 1½n� – lp;

This means that such labels have no neighbor regions that follow
them in the tree structure.

† ;Lp selected, we find the voxel ði; j; kÞ with maximum distance
Dði; j; kÞ and set it as end point for back propagation;

† We back-propagate from all final point selected and extract a set of
multiple trajectories.

Figure 11. Labeling algorithm for multiple path tracking: from left to right, the images show the label map obtained with the algorithm of table 4
applied with path steps 10, 30 and 50 respectively.
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voxel precision is very important for visualization and

measurements, and the needed number of particles for

achieving this task would lead to huge computing times.

4.3.2 Morphological skeletonization. Very similar work

can be found in Serra (2002), where the author use

wavefronts to extract morphological descriptions of binary

images, in particular binary tree structures. However,

bifurcations are detected on a projected image in 2D, then

this information is upgraded to 3D, but still the method is

applied iteratively, looking for bifurcations at each

iteration. Our method uses a scale parameter dstep, as a

distance step in our wavefront, only looking for

bifurcations every time the front has crossed a multiple

number of this distance. It reduces greatly computations,

and can be parameterized by the user, who can only look

for branches lower than a typical value dmin which is the

upper-bound of our scale parameter.

Mathematical morphological techniques (Serra 2002)

are the main tool used for tree extraction, and lots of

techniques, like thinning algorithms are already used in

medical imaging. They start from volume images so that

the traditional medial axis transform (Blum 1967) can be

applied (Pisupati et al. 1995, Naf et al. 1996). However,

the purpose of our application is to have a smooth set of

Figure 12. Complete method applied to several objects: first row is the framework applied to the stenosed artery of D-RA image of figure 9 and second
row concerns an aneurysm in a 3D-RA image — left column is the initialization given by the FFM method; middle column is the surface obtained after a
small number of iterations of the LS method; right column shows the multiple trajectories extracted with the labeling algorithm, by transparency (color
images are available through the online version).

Figure 13. Multiple trajectory extraction from only one seed point: projection on three orthogonal views of the complete set of trajectories tracked in
the aorta MR dataset which was segmented in figure 8 in the second row; the FFM algorithm has been used to extract centered trajectories.
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Figure 14. From multiple trajectories to minimal tree representation:
left image is a set of trajectories extracted in a segmented object. Right
image represents the minimal tree needed.
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multiple trajectories. This smoothness is needed for

accurate measurements and visualization along the

trajectories. Morphological techniques require post-

processing in order to remove undesirable small parts of

the skeleton. Since the distance step dstep chosen in our

algorithm is the minimum size of the trajectories detected,

it acts as a scale parameter which smooths and removes

undesirable small parts of the skeleton, similarly to

techniques shown in (Tek and Kimia 2001), where the

scale is also an input in the algorithm. To conclude with

the use of morphological techniques, the skeletal

description we are looking for corresponds to the need

of an accurate basis for observation and measurements of

pathologies. We thus need a smooth and accurate

information: a tree which describes the cylindrical

topology of the object observed. The variation of the

section of a tubular shapes leads to error in medial

axis transforms, and to the need of post-processing

techniques, to clean the skeleton obtained, that our method

does not need.

4.4 Application to vascular quantification

4.4.1 Previous work. Important work on vascular

quantification among others can be found in the PhD

thesis of Frangi (2001). He developed a very interesting

method based on path and shape extraction (Frangi et al.

1999):

. he first set the two extremities of a path on an iso-

surface extracted;

. the minimal path is extracted on the representation of

the surface, using a technique similar to Kimmel and

Sethian (1998);

. a centering force, based on multi-scale enhancement

filtering (Frangi et al. 1998) drives the minimal path in

the center of the tube-shaped object;

. a circular cross section approximating the artery is

swept along the central axis extracted previously

(swept surface), and creates a deformable cylinder; and

. this cylinder initiates a tensor product B-spline surface

(Piegl and Tiller 1996), that fits the boundaries of the

artery.

Using both path and shape representations in the same

framework, Frangi et al. (2001) proposes an elegant

method for quantification of vessel morphology. In the

following we will demonstrate the benefits of our methods

toward Frangi’s.

Table 5. Tree extraction algorithm.

Notations
† A binary maskM defines the region of interest in the image;
† A potential image P drives the front propagation (usually

computed using the centering method Deschamps and Cohen
2001);

† The minimal action map T computed with this potential during the
initial multiple path tracking;

† The starting point x0, located at the root of the tree hierarchy;
† The set of end points el l [ ½1; Ne� where Ne is the number of end

points extracted.
† A distance dpaths which defines the maximum distance between

two trajectories (chosen bigger than the gradient descent step).
† A map L labels the points that are neighbors of a path (at a distance

smaller than dpaths);
† An array 1 to record the branches detected.

Initialization
† L(i,j,k) ¼ 21 for all point in the image domain;
† ne ¼ Ne and ;p [ ½1; ne�, 1½p� ¼ 0.

Loop: for l [ ½1; Ne�
† We back-propagate from el, on the minimal action map T using a

simple gradient descent method, as described in equation (6);
† At every path step, the position of the new path point is defined by

x ¼ ðx; y; zÞ [ IR3

† We consider the voxels n ¼ ði; j; kÞ [ IN3 that surround x which
satisfy Dðx;nÞ , dpaths, where D is the Euclidean distance;

† If, for all those vertices ði; j; kÞ [ IN3, L(i,j,k) ¼ 21, we set
L(i,j,k) ¼ l, and continue back-tracking for el;

† Else, if one of the vertices ði; j; kÞ satisfies L(i,j,k) – 2 1, a
branching point is detected, then:
– Record the label L ¼ Lði; j; kÞ;
– ne ¼ ne þ 1, ene

¼ ði; j; kÞ;
– 1½l� ¼ ene

and 1½ne� ¼ 0;
– Stop back-tracking for el;
– Continue back-tracking, this time for ene

, substituting all
L(i,j,k) ¼ L by L(i,j,k) ¼ ne, until another branching point or x0 are
detected;

† If we reach x0, then stop back-tracking for el.
Termination

† For all end point ej, j [ ½1; ne�, we can consider the couples of
endpoints ðej; e1½j�Þ as extremities of linear parts of the skeleton
(with e0 ¼ x0).

† The multiple paths between couples of points ðep; e1½p�Þ; p [
½1; ne� build the skeleton of our object, at scale dstep, and distance
dpaths.

Figure 15. Obtaining a tree hierarchy from a set of trajectory: left image is the segmented artery extracted from the dataset shown in the D-RA image of
figure 9; middle image is a zoom on two bifurcations of the object, wherethe trajectories extracted are displayed; right image is the same point of view on
the translucent surface extracted with the tree extracted from the set of paths.
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4.4.2 Comparison. In order to highlight important benefits

of our method, we are going to compare our results to Frangi

method. Even if our method is not specifically dedicated to

quantification of vascular diseases in MRA images, we

propose an alternative that may overcome several limitations

of his. This method is illustrated by the figure 16.

4.4.2.1 Initialization requirements

For the initialization, we provide the measures in the

whole set of branches of our objects, setting a unique tree

root seed for segmentation and path tracking. Frangi

(2001) gives the measure between the user defined end

points (he gives also an interesting study of the variability

of the results across the user initialization). In our case,

only one point is needed.

4.4.2.2 Complexity of the object extracted

Concerning the topology of the objects observed, in

Frangi (2001) the bifurcations in carotid arteries introduce

errors in the measurements of the stenoses. With our
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Figure 16. Comparison of measurements on the tree and on a trajectory: Two different datasets are presented, each one in a column (left column dataset
present a stenosed vessel). First row (a,b) displays segmented surfaces and extracted trees. Second row (c,d) displays the sub-volume of interest in both
cases where sections are performed. Third row (e,f) shows plots of the section measured along a trajectory. Fourth row (g,h) displays the same result
using branches extracted between two bifurcations.
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method, bifurcations are localized and wrong measures

near branching points can be omitted. It enables to

reconstruct the whole set of trajectories inside the object,

but it converts this information into a tree hierarchy, where

important information can be separated from the whole.

In particular, figure 16(g) is the information contained

in the interval ½40; 60� in figure 16(e). It is the same

process for figure 16(h) which corresponds to the sub-plot

contained in the interval ½190; 250� in figure 16(e).

Therefore, the tree extraction enables to localize

accurately the information needed, as the stenosis extent

for the case presented in the left column of figure 16.

4.4.2.3 Accuracy of the model

The B-spline that extracts the vessel boundaries in

Frangi et al. (1999) is an approximation of the surface,

whereas the zero-LS embedded in ~f has sub-pixel

precision.

The computational cost of the tree extraction finds its

justification in the improvement of the measurements

along the new set of trajectories available. The tree

extraction enables to measure the section along the

necessary subset of the object, delimited by the two

branching points (this subset has been colorized in green

in figure 16(c–d)). If this information is plotted across a

trajectory in the entire object, it is not useful for two

reasons

. section information is not valuable at the branching

points; and

. the location of the region of interest along the trajectory

cannot be obtained straightforwardly.

We finally have a method which provides a sub-pixel

information of the position of the shape. Based on the

paths extracted with our fast and robust algorithm, the

quantification relies on an accurate centered position of

the path points.

4.4.3 Minimal vascular tree and virtual endoscopy.

Having obtained the Minimal Tree in the vascular

structure, it is now possible to interactively navigate

inside the object, by choosing at each bifurcation point

which branch to follow (figure 17). Measures and

visualization are thus enhanced (figure 17). Moreover,

once paths and shapes are extracted this fly-through is

real-time due to the fast rendering of the triangulation of

our implicit model.

4.4.4 Minimal vascular tree and computational fluid

dynamics. Antiga et al. (2003) presented a method to

create patient-specific models of the arteries, based on a

LS segmentation. In order to produce a relevant body-

fitted finite-element representation of a vascular object,

they smooth and correct the surface. They also extract

centerlines with a method based on Voronoi diagrams in

order to edit the branches and produce a mesh usable by

computational fluid dynamics methods.

Our method is much faster since the segmentation is

rather fast due to the FFM algorithm. However it is

necessary to convert the surface extracted (zero LS) into a

computational domain appropriate for the CFD solver,

involving the construction of a mesh on the surface and

in the 3D domain surrounding it (Cebral et al. 2004).

Fast adaptive remeshing could also be used for his task

(Peyre and Cohen 2003). But recent techniques in CFD

make easy use of the LS representation in the generation

of computational grids: the Embedded-Boundary rep-

resentations (Deschamps et al. 2004) on the Cartesian grid

enables to simulate the blood-flow in these realistic

models. The advantage of this technique is that neither a

finite-element representation is needed nor the smoothing

of the surface, since the fluid equations can be discretized

on the Cartesian grid where the signed-distance to the

surface is defined (see Deschamps et al. 2004 for details).

The process becomes then quicker and automatic.

Figure 17. Endoscopic view along one trajectory of the minimal tree: the whole set of trajectories is displayed (in yellow) simultaneously with the
surface rendering: the user does not miss any bifurcation since he can see all branches. Videos are availableonline at http://www.ceremade.dauphine.fr/
, cohen/MPEG.
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5. Conclusion

We have presented a complete framework for automatic

segmentation, labelization, quantification and visualiza-

tion of tubular tree structure in 3D medical images.

A rough estimate is found, based on the Freezing FM

algorithm and the stopping criteria of Section 3.3. The

shape is then refined by a LS method. Multiple paths are

extracted from the branching object giving a complete

description and allowing various applications.

A first improvement brought by our freezing method is

to accelerate the computation, by visiting a very small

number of points during propagation, and to segment thin

tubular structures, therefore, enabling the centering of

trajectories inside those tubular structures. The second

part of our contribution emphasizes how we extract the

Minimal Tree, starting from the segmented surface and

using the same fast technique.

This Minimal Tree is very valuable for visualization and

quantification of pathologies. The structure enables the

clinician to make accurate measurements of the extent of

pathologies, and to visually inspect them at the same time.

Those trajectories can also be the input to an endoscopic

tool (Deschamps and Cohen 2001).

The method presented here could be extended to extract

bronchial tree and other branching objects. The most

difficult aspect of this extension is in handling properly the

segmentation task.
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data”, Technical report, Unité de Recherche INRIA Rocquencourt
1997, RR 3250.

A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver and A. Tannenbaum,
“A geometric snake model for segmentation of medical imagery”,
IEEE Trans. Med. Imag., 16(2), pp. 199–209, April 1997.

GCMB 232719—26/4/2007—SATHYA—272570

3D tubular objects 17

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870


