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Figure 1. Remeshing of a 3D model using increasing weighthieispeed function.

Abstract. In this paper, we propose fast and accurate algorithms teskrand flat-
ten a genus-0 triangulated manifold. These methods nbtditalinto a framework
for 3D geometry modeling and processing that uses only &sdgsic computations.
These techniques are gathered and extended from clasgaalsuch as image pro-
cessing or statistical perceptual learning. Using Fast Marchingalgorithm, we
are able to recast these powerful tools in the language of ppexcessing. Thanks
to some classical geodesic-based building blocks, we dectallerive a flattening
method that exhibit a conservation of local structures efdhrface.

On large meshes (more than 500,000 vertices), our techs)gpeed up computa-
tion by over one order of magnitude in comparison to classezaeshing and param-
eterization methods. Our methods are easy to implement@ndtcheed multilevel
solvers to handle complex models that may contain poorlpath@riangles.

Keywords: Remeshing, geodesic computation, fast marching algorithesh seg-
mentation, surface parameterization, texture mappinfgra@ble models.



1. Introduction

The applications of 3D geometry processing abound nowaddnes
range from finite element computation to computer grapimcs,ding
solving all kinds of surface reconstruction problems. Thestrcom-
mon representation of 3D objects is the triangle mesh, andeled for
fast algorithms to handle this kind of geometry is obviougsSical 3D
triangulated manifold processing methods have severdiidezitified
shortcomings: mainly, their high complexity when dealinghwarge
meshes, and their numerical instabilities.

To overcome these difficulties, we propose a geometry psiogs
pipeline that relies omtrinsic information of the surface and not on
its underlying triangulation. Borrowing from well estalblexd ideas in
different fields (including image processing and percdptarning)
we are able to process very large meshes efficiently.

1.1. OVERVIEW

In section 2 we introduce some concepts we use in our geoc@sic
putations. This includes basic facts about the Fast Magcligrorithm,
and a recently proposed greedy algorithm for manifold sargpl

To flatten each patch of a segmented surface, we will recaleso
recent advances in perceptual inference learning in se8ti€ombin-
ing these techniques with our geodesic computational fnariewill
lead to an elegant solution to the flattening problem fordargeshes.

In the conclusion, we will show the two algorithms in actiamd
see how we can texture large meshes faster than currentiqaekn
would otherwise allow. We will then give a complete study bét
timings of each part of our algorithm, including a compamniseith
classical methods.

1.2. RELATED WORK

Surface Remeshing and Finite ElementsRemeshing methods roughly

fall into two categories:

e Isotropic remeshinga surface density of points is defined, and the
algorithm tries to position the new vertices to match thisgiy. For
example the algorithm oferzopoulosand Vasilescu(Terzopoulos
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and Vasilescu, 1992) uses dynamic models to perform thesteing
Remeshing is also a basic task in the computer graphics coitynun
and (Surazhsky et al., 2003) have proposed a procedure based
local parameterization.

¢ Anisotropic remeshinghe algorithm takes into account the principal
directions of the surface to align locally the newly creaigéahgles
and/or rectangles. Finite element methods make heavy usecbf
remeshing algorithms (Kunert, 2002). The algorithm prepos
(Alliez et al., 2003) uses lines of curvature to build a qudainant
mesh.

The importance of using geodesic information to perforra temesh-

ing task is emphasized in (Sifri et al., 2003).

Greedy solutions for sampling a manifold (see section 2a&keh
been used with success in other fields such as computer \(=oom
ponent grouping, (Cohen, 2001)), halftoning (void-andst#y (Ulich-
ney, 1993)) and remeshing (Delaunay refinement, (Ruppedf)19

Flattening and Parameterization The flattening problem can be
seen as a particular instance of parameterization. The wio(kEck
et al., 1995) first introduces the harmonic formulation foe teso-
lution of the mesh parameterization problem. Most of thdaesical
methods come from graph-drawing theory, and (Floater e2802)
gives a survey of these techniques. Authors of (Desbrun e2@02)
give an in-depth study of the various energies that can Betbdiatten
a mesh. The flattening algorithm of (Zigelman et al., 200®gised on
methods for finding parameters that reduce a dataset’s dioved-
ity. Such methods have been developed for the purpose oé e
learning (Tenenbaum et al., 2000; Roweis and Saul, 2000)warvdll
explain in section 3 how to exploit these methods to hande en8sh
with a large amount of vertices.

2. Geodesic Remeshing

2.1. FAST MARCHING ALGORITHM

The classical Fast Marching algorithm is presented in (8e}/1999),
and a similar algorithm was also proposed in (Tsitsiklis99)9 This
algorithm is used intensively in computer vision, for imsta it has



4

been applied to solve global minimization problems for defable
models (Cohen and Kimmel, 1997).

This algorithm is formulated as follows. Suppose we are mgiae
metric P(s)ds on some manifold” such that® > 0. If we have two
pointsxg, X; € ., the weighted geodesic distance betwggandx;
is defined as

dve,x) Zmin( [V O1POO)), @

wherey is a piecewise regular curve with(0) = xo and y(1) = x;.
WhenP =1, the integral in (1) corresponds to the length of the curve
y andd is the classical geodesic distance. To compute the distance

def.

functionU (x) = d(Xo, X) with an accurate and fast algorithm, this min-

def.

imization can be reformulated as follows. The level set ewy =
{x\ U(x) =t} propagates following the evolution equati@ﬁ(x) =
ﬁﬁ;, whereny is the exterior unit vector normal to the curvexat
and the functiotJ satisfies the nonline&ikonalequation:

IBU ()] = P(x). (2)

The functionF = 1/P > 0 can be interpreted as the propagation speed
of the front%;.

The Fast Marching algorithm on an orthogonal grid makes dise o
an upwind finite difference scheme to compute the valwé U at a
given pointx; j of a grid:

max(u—U (x_1j), u—U(X41,j),0)?
+max(u—U (xj_1), u—U(x,j11),0)? = h2P(x )2

This is a second order equation that is solved as detaileexiample
in (Cohen, 2001). An optimal ordering of the grid points is &0 so
that the whole computation only tak€¥Nlog(N)), whereN is the
number of points.

In (Kimmel and Sethian, 1998), a generalization to an abyttri-
angulation is proposed. This allows performing front piggdaons on
a triangulated manifold, and computing geodesic distandisa fast
and accurate algorithm. The only issue arises when thegtrlation
contains obtuse angles. The numerical scheme presentee shaot
monotone anymore, which can lead to numerical instalslifile solve
this problem, we follow (Kimmel and Sethian, 1998) who pre@do



Figure 2. Front Propagation (on the left), level sets of the distansetion and
geodesic path (on the right).

Second point

First point j
Third point 20 points later

Figure 3. An overview of the greedy sampling algorithm.

“unfold” the triangles in a zone where we are sure that theatgdtep
will work. Figure 2 shows the calculation of a geodesic patmputed
using a gradient descent of the distance function.

2.2. A GREEDY ALGORITHM FORUNIFORMLY SAMPLING A
MANIFOLD

A new method for sampling a 3D mesh was recently proposed in
(Peye and Cohen, 2003) that follows a farthest point strategycase
on the weighted distance obtained through Fast Marchingemttial
triangulation. This is related to the method introduce in{@g 2001).
A similar approach was proposed independently and simediasly in
(Moenning and Dodgson, 2003). It follows tferthest pointstrategy,
introduced with success for image processing in (Eldar.etl807)
and related to the remeshing procedure of (Chew, 1993).

This approach iteratively adds new vertices based on thdagso
distance on the surface. Figure 3 shows the first steps oflgoritiam
on a square. The result of the algorithm gives a set of vertice-
formly distributed on the surface according to the geodeisiance.



Figure 4. Geodesic remeshing with an increasing number of points.

Once we have found enough points, we can link them together to
form a geodesic Delaunay triangulatiofhis is done incrementally
during the algorithm, and leads to a powerful remeshing oteth

Figure 4 shows progressive remeshing of the bunny and thelDav
In order to have a valid triangulation, the sampling of thenifwdd
must be dense enough (for example 100 points is not enougdypto ¢
ture the geometry of the ears of the bunny). A theoreticabiob the
validity of geodesic Delaunay triangulation can be foundLiaibon
and Letscher, 2000), and more precise bound on the numbeirdatp
is derived in (Onishi and Itoh, 2003). Note that our algontivorks
with manifolds with boundaries, of arbitrary genus, andhwitultiple
connected components.

2.3. ADAPTIVE REMESHING

In the algorithm presented in sections 2.2, the fronts pyapaat a
constant speed which results in uniformly spaced mesh. ffodace
some adaptivity in the sampling performed by this algoritive use
a speed functiofr = 1/P (which is the right hand side of the Eikonal
equation (2)) that is not constant across the surface. &i§wshows



Second point

- =l

Figure 5. Iterative insertion of points in a square.

Third point 100 points later

the progressive sampling of a square using a speed functtbriwo
different values. The colors show the level sets of the destdunction
U to the set of points.

When a mesh is obtained from range scanning, a pidturfethe
model can be mapped onto the 3D mesh. Using a fundtiai the
form F(x) = (1+ u|0O(1(x))|) "%, wherep is a user-defined constant,
one can refine regions with high variations in intensity. Qurfée 1,
one can see a 3D head remeshed with varjouanging fromu =0
(uniform) to u = 20/ max(|d(1(x))|) (highly adaptive).

The local density of vertices can also reflect some geommtnjoer-
ties of the surface. The most natural choice is to adapt tishimerder
to be finer in regions where the local curvature is larger. &\fsuation
of the curvature tensor is a vast topic. We used a robust misin
proposed recently in (Cohen-Steiner and Morvan, 2003). & elemote

by T(x) = |A1|+|A2| the total curvature at a given poof the surface,

whereA; are the eigenvalues of the second fundamental form. We can
def. def. 1

introduce two speed functiofg(x) = 1+ €1(x) andF(x) = TruTe0”
wheree andyu are two user-defined parameters. Figure 6 (a) shows that
by using functionF;, we avoid putting more vertices in regions of the
surface with high curvature. The speed functigrcan be interpreted

as an “edge repulsive” function. On the other hand, funcigoould

be called “edge attractive” function, since it forces thephng to put
vertices in region with high curvature such as mesh cornetedges.
Figure 6 (b) shows that this speed function leads to very gesdlts

for the remeshing of a surface with sharp features, whiclovsonisly

not the case for the “edge repulsive” speed function (figuia 6



(b) SpeedF2

Figure 6. Uniform versus curvature-based sampling and remeshing.

3. Fast Geodesic Parameterization

The flattening problem can be seen as a particular instartbe afiore
generic problem of mesh parameterization. Given a genuiss@gu-
lated manifold¥”” homeomorphic to a disc, it consists in finding a map
f:. — %,whereZ C R?is a planar domain.

3.1. GEODESICFLATTENING AND ISOMAP

Recently, some nonlinear algorithms for dimensionalitymn have
appeared in the community of perceptual manifold learniig most
notable ardsoMap(Tenenbaum et al., 2000) ahdcally Linear Em-
bedding(LLE) (Roweis and Saul, 2000).

Interestingly, the only echo of these techniques in the aderp
graphics community seems to be the multidimensional sgaliproach
to flattening of (Zigelman et al., 2002). This method is clpselated
to IsoMap, and we will see that it shares its main drawbacks.

We start with a given set of points,..., Xy} on our manifold,
and we seeK (x) = % € R? such that the mapping minimizes some
measure of distortion. The most natural constraint is totarkeep
the same distance between points, which is exactly what dgold
doing by requiring thatl(x;, Xj) ~ ||X — Xj||, whered stands for (some
approximation of) the geodesic distance on the manifole fiethod
of (Zigelman et al., 2002) is very close to this approacheesim uses
the geodesic distanag computed via the Fast Marching algorithm
presented in section 2.1.

The major bottleneck of this method is that it needs to compilt
pairwise distanced(x;, Xj). To overcome this difficulty, the authors of
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(Zigelman et al., 2002) proposed to restrict the computatto a small
set of points, which gives rise to three questions:

¢ What should be done to speed up computation?

e How should we choose this small set of base points?

e How should we extend the mdpfrom this small set of points to the
rest of the mesh?

In the next subsection, we will show how the LLE algorithm &aimg

a important speed improvement that answers the first queestioe

answer to the two last questions will be given in subsect®Bsand

3.4 respectively, with an extension of LLE to triangulateamfolds.

3.2. SPEEDINGUP COMPUTATION WITH LLE

The LLE algorithm is explained in detail in (Roweis and Sadi0@).
The goal of the algorithm is to find a low dimensional embegddiriR¢

of a set of pointgXxy, ..., Xn} in R, s> d. The only parameter of this
algorithm is an integeK that measures the size of the neighborhood
of each point. We will denote bl the K-neighborhood ok;, that is

to sayN; = {Xm(1), - -» Xm(k) }» WhereXnj is the i closest point to
x; for the Euclidean metric. We will briefly recall the two maitegs
of the procedure:

Step 1:First, for each poink;, we are looking for some weightg,
that locally best reconstruct the manifold, from the Betonly, by

minimizing

By ({wij}) = % — Y wi x> (3)
J

We further enforce thaw; j = 0 if x; ¢ N;, and thaty jwi j = 1. This
imposes that the reconstruction is both local and invauader affine
transformations. In a Euclidean setting, the minimiza(@nrequires
the introduction of the Gram matr@(x) defined by

(CX))i.j = (X—Xm(iys X— Xm(})) (4)

The solution of the minimization (3) is then

5 (C(%) Mg

q

> (C(%)H)pg

p.q

wi.j = Ini (X))

,  Where  Xj = Xp)-
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The value ofly (x) is equal to 1 ifx € N, and O otherwise.
Step 2:To reconstruct the manifold in low dimension (here in 2D), we
want to solve a global minimization procedure, e R?:

minimize Ex;({X}) = IzH% — %Wjjj)’q 2.

subject toy X = 0 andy |[X||> = 1 to avoid a degenerate solution. To

solve this problem, we need to form the mathix (W — Id)T (W —
Id), whereW is a sparse matrix containing all the weights. The eigen-
vector of M with lowest eigenvalue it the constant vectbwhich
should be discarded. Thefollowing eigenvectors give us the coor-
dinates of our embedding & for each point.

The fact that we only need to perform computations on spaese m
trices allows an improvement of one order of magnitude osrsd
procedures such as in (Zigelman et al., 2002).

3.3. GEODESICLLE

In the previous section we saw the classical LLE algorithma iBu-
clidean setting. To solve the flattening problem for a meshneed
to extend these computations to the manifold setting. THewng
modifications allow such an extension.

Modification 1: The points{x,..., X} should be sampled as uni-
formly as possible ons. That is why we use the greedy sampling
algorithm of section 2.2 to select these points. To get aptagasam-
pling, one could use a varying speed function, as shown imdig.2
(see also (Pegrand Cohen, 2003) for a curvature-based adaptation).
Modification 2: TheK-neighborhoodN; of each point should be com-
puted using the geodesic distance and not the EuclideaTbisecan
be done very quickly using a local front propagation.

Modification 3: The matrixC(x) of equation (4) can not be com-
puted anymore using dot products. Instead, following (Revaeid
Saul, 2000) (pairwise LLE), we propose the following foraul

o, 1 K
—2C(¥)i.j = d0miys Xm())* — 12 . A0y X))
k=1
1K , 1 K ,
—szld(xm(k)’xm(n) +@k 71d(xm(k)axm(l)) :
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that only uses geodesic distance information. This fornsikquiva-
lent to (4) in the Euclidean setting.

3.4. EXTENDING THE MAP

The three modifications proposed in the previous secti@mwalls to
find the location of = f(x) = (f1(x), fz(xi))T € R? for each base
pointx;. To compute the whole mafy we need to interpolate the loca-
tion of f(x) = (f1(x), f2(x))" for each pointx € .7, using the known
locationsf (x;).

This problem has been addressed very recently in (Bengia,et al
2003), by recasting it into a unified framework of eigenvetgarning,
common to many dimensionality reduction methods.

To extendf, we use the fact that vectof$; (x;) }i; and{ fa(xi) }/_;

are eigenvectors of the symmetric matx= (W — Id)" (W —Id) (with
eigenvalued\; andAy). In the continuous setting, this matrix becomes
a symmetric kerneM(x, y) for each poink, y in .. Matrix multipli-
cation byM is then replaced by

¢ — Mo (x) = //¢<y)l\ﬁ(x, y)dy, (5)

where¢ is any mapping from¥” to R. Using this remark, it is natural
to suppose that the continuous mdpandf; are eigenfunctions of the
operator defined by equation (5) for the same eigenvaluesd A».
This implies that we can compute them using a Nystilike formula

f1<x>=A—11/ AN Y)dy~ - ;fl Mios,y),  (6)

and similarly forfs.

Since thefy(x) are known, we just need to setup our keriel
The only constraint is that for alf € .7, M(x., y) should be easy to
compute, e.g. it should only involve already computed dista such
asd(xj, y) for x; € Ni. This can be done in a straightforward manner
by first setting the weights for.

3 5 (C(x) kg

W(Xiay) =1 |(y) . Wlth y:Xm )
3 (6
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Flatten Texture

Figure 7. The original model, texture on the flattened domain, and er8i mesh.

5 base points 10 base points 20 base points 100 base points

Figure 8. Influence of the number of base points. The original modehg on
the left of figure 7

and then defining the kernel:
M(x,y) = W0 Y) WY, ) = 3 Wik W04 V),

We can check that for base points, we retrieve the originadirap to
a substraction of the identity, i.81(x;, Xj) = & j — M; j. This shift is
only here to avoid a singularity along the diagonal and do¢snodify
the computation.

This shows that we can extend the mapo a new pointx using
only some local distance information betweeand its neighborhood
in {X1,..., X }. Furthermore, most of the time, this information is al-
ready available from previous front propagations perfatmiteflatten
{X1,...,%n}

Figure 7 shows the flattening of one half of a human head. Even
with a large patch that contains holes, our method gives gend
results (no face flip) with only 100 base vertices.

Figure 8 shows the influence of the number of base points on the
flattening. Even with only 20 points, the resulting embeddginearly
smooth except at the border of the mesh, and with 100 poirgget
a perfectly smooth flattening.



13

Figure 9. Texturing of the David.

4. Results and Discussion

Texturing of a Complex Model To perform texture mapping on a
complex 3D mesh, a segmentation step is required to firsheuhbdel
into disk-shaped charts. Although the study of this steputside the
scope of this paper, we note that the notion of Voronoi csllsften
to perform mesh partition, as introduced in (Eck et al., 299%e
choose to use a scheme based on a weighted geodesic diftagée (
and Cohen, 2004), since its continous nature is clearlyaeltd our
flattening approach.

On figure 9 one can see the whole pipeline in action. This dedu
first a centroidal tessellation of the mesh, then the extmaend flat-
tening of each cell, and lastly the texturing of the model.

Computation Times For our tests of the flattening procedure, we
have chosen to use a fixed number of points (200 points), sirece
geometric complexity of the meshes was almost constantpdtame-
terization of (Desbrun et al., 2002) is implemented usirgabundary-
free formulation (Neumann condition).

Table | shows the complexity of the algorithms mentionedhia t
paper, for a mesh of 10k vertices. The constans the number of
steps in the gradient descent for the localization of thenisic center
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Table I. Complexity of the algorithms
| [[F. MarchindGreedy samplind. Lloyd iter] Zigelman02Z][Geodesic LLE

Complexity| nlog(n) nlog(n)? Anlog(n) [Bnlog(n) +B®| nlog(n) + B?
Times 2s 10s 6s 558 28s

Table Il. Comparison of flattening algorithms

[Nbr.verticed (Zigelman et al., 2002JDesbrun et al., 2002)Geodesic LLE]

1,000 I8 3s 5s
10,000 55s 25s 28s
100,000 440s 210s 1508
700,000 216G 132G 7405

of mass, which is abouh = 8 for 10k vertices. The constaBtrep-
resent the number of base points, whicmj4.00 in our tests. This
clearly shows the speed up that Geodesic LLE can bring owdragl
methods such as (Zigelman et al., 2002). This is confirmedhby t
running times reported in table Il. For large meshes, thkilgiaof
our method is an advantage over the approaches based otinaae
system such as (Desbrun et al., 2002), for which it is diffituensure
the convergence of the conjugate gradient.

Discussion  The complete texturing of the David mesh (700,000
vertices) shown on figure 9 clearly enlights the strengtheuwsfap-
proach:

¢ The resulting flattening map is smooth, with no face flip (asteon
this model). This can be seen on the close-up of the flatteomcih.

e The whole texturing procedure takes g8A®@hich shows an important
speed up with respect to previous methods.

e Our scheme is more local than the flattening procedure ofe{Zig
man et al., 2002), but it does not reach the per-vertex raeolof
classical methods such as (Desbrun et al., 2002). This enabkh
fast computations and respect of the small scale varia{tmmaps or
noise), which is not the case of (Zigelman et al., 2002).

Notice that there is no theoretical guarantee on the valwfitthe
flattening. The only cases where face flips occurs is on patali
huge isoperimetric distortion. We believe that this is noeal issue
since such degenerate cases can be easily detected anddixes-(
ample by subdividing the region). It is important to notettblassical
methods also face similar problems. In (Levy et al., 2002u&i€
performed to accelerate the convergence of the systenutesoand
ease the parameterization in regions with a sock-like sHageactice
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Table Ill. Area and angular distortion for various schemes

| [ M [ M [ M |

(Desbrun etal., 2002)| Ec=0.9 | Ec=15| E.=25

(conformal) Ea=12| Eg=3 | Eg=104

(Desbrun etal., 2002)| Ec=14 | Ec.=30 | E.=83

(authalic) Ea=06 | Eg=11| E5=35
(Zigelman et al., 2002)| E;=0.8 The flattening

(MDS) E,=0.9 is not valid
Our scheme Ec=11| E.=17| Ec=65
(GeodesicLLE) Ea=09 | Ep=16| E;=55

however, our segmentation algorithm ensures that pattiaaeed
to be flattened do not contain high curvature variations aedahole
process performs very well with no face flip.

Distorsion Measures To support our claim that our flattening scheme
performs a trade-off between conservation of area and ceatsan of
angle, we have performed some test (see table Ill). We used)8rfi
like meshedM;, M, and M3 with increasing isoperimetric distortion.
On each faca& we compute the eigenvalués, sp) of of the Jacobian

of the parameterization map (linearly evaluated). Locatynformality

is characterized bg; = s, and conservation of area Isys, = 1. As a
conformal metric, we use

2

Eo(M)? — %\; %+%—2 AX)
and as an equi-areal metric we use
1 1 2
Ea(M)* = A > [s1(X)s2(x) + OO 2| A(x)

whereA(x) is the area of a face A s the total area.

5. Conclusion

We have described new algorithms to perform the remeshidgran
flattening of a genus-0 triangulated manifold. The main toat allows
having a fast algorithm is the fast marching on a triangdlatessh,
together with some improvements we added. We have presaifidedl
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algorithm for remeshing of a surface with a uniform or adagpdistri-
bution. This is based on iteratively choosing the farthesttpaccord-
ing to a weighted distance on the surface. We introduced dego
version of Locally Linear Embedding that is able to perfoastfcom-
putations on a given set of points, and to extend the embgddin
the rest of the mesh in a transparent manner. The resultitigriiag
is smooth and achieves a desirable trade-off between c@iser of
angle and area.
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