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Abstract

We introduce a novel implicit approach for single object segmentation in

3D images. The boundary surface of this object is assumed to contain two

known curves (the constraining curves), given by an expert. The aim of our

method is to find the wanted surface by exploiting as much as possible the

information given in the supplied curves and in the image. As for active sur-

faces, we use a cost potential which penalizes image regions of low interest

(most likely areas of low gradient or too far from the surface to be extracted).

In order to avoid local minima, we introduce a new partial differential equa-

tion and use its solution for segmentation. We show that the zero level set of

this solution contains the constraining curves as well as a set of paths joining

them. We present a fast implementation which has been successfully applied

to 3D medical and synthetic images.

keywords: Image segmentation, Active contours, Minimal Paths, Level Set
method, Stationary Transport Equation.

1 Introduction

The common use of deformable models, introduced by Kass et al. [12], in 2D and

3D image segmentation consists in introducing an initial object in the image and

deforming it until it reaches a desired target. In [10], Cohen and Kimmel present
a segmentation approach in 2D where the final state of the active curve stands for

the global minimum of an image dependent energy. Their model only requires

two points located on the boundary to be segmented as additional information.

Unfortunately their approach cannot be extended to find the global minimum for

an active surface in a 3D image.
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In this work, we focus on a novel approach for 3D single object segmentation

where the resulting surface globally minimizes a given energy. Our aim is to gener-

ate a surface that contains a couple of ‘constraining’ curves (Γ1 and Γ2) and which

is also a segmentation of a target object. Γ1 and Γ2 are supposed to be traced by an

expert on the surface to be segmented. Our approach is based on implicitly gener-

ating a surface that contains the set of paths globally minimizing an image energy

and connecting Γ1 and Γ2. Moreover, the constraining curves are the only input for

the initialization of our model. The paths linking Γ1 and Γ2 are globally minimal

with respect to an energy of the form
∫

Γ
P . If the incremental cost P is chosen to

take lower values on the contours of the 3D image, in particular on the surface of

the object to be extracted, global minimal paths will help finding the boundary of

the object (see [10]). This fact has been exploited in previous work [3], where a

network of a finite number of minimal paths was computed between the two con-
straining curves and then extended, by means of interpolation, to a segmentation

surface of the object.

Although this approach gave good results, particularly in ultrasound 3D images,

the topology of the network was often problematic (paths tend to merge and only

few points of Γ1 are to be reached, see figure 1.d) considerably complicating the

generation of the segmenting surface and in the worst cases leading to bad segmen-

tations (figure 6.b).

Although based on similar ideas, our model is more than an extension of the

network approach. The surface generated by our algorithm is completely composed
of globally minimal paths, and in particular, it contains all the minimal paths of the
network introduced in [3] (no explicit computation of minimal paths is needed nor

any interpolation method). Indeed, by solving a stationary transport equation of

the form: ∇Ψ · ∇U + G(Ψ) = 0, where G is a function such that G(0) = 0, Ψ is
the unknown, and U is the action map defined by Eqn. (15). We show in section 3
that Ψ is such that: any minimal path between the constraining curves is contained
in its zero level set (further noted Ψ−1({0})). More generally, we prove that this
set is only composed of minimal paths: if a point belongs to Ψ−1({0}) then the
globally minimal path joining this point to Γ1 is contained as well in Ψ−1({0}).
This property is the key point explaining the good performance of our algorithm.

In section 4 we give some results obtained by our method on synthetic and real

data.

As an illustration of our problem, we give in figures 1 an example of the user input

to our algorithm. Background on active contours, minimal paths in 2D and 3D

images and the path network can be found in [12, 10, 3].
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Figure 1: 3D ultrasound volume of a left ventricle: (a) and (b) show the two parallel slices
where the user given curves Γ1 and Γ2 are drawn. (c) shows a slice perpendicular to the

curves in order to show their position with respect to the ventricle. Finally (d) shows the

surface containing the constraint curves obtained with our approach. In the upper position

we have shown the intersection of the zero level set ofΨ with a vertical plane. In the lower
position we have traced some minimal paths between the two constraining curves and a 3D

representation of the zero level set, the minimal paths are traced on this surface.

2 Minimal Paths

2.1 Global minimal paths between two points

Cohen and Kimmel give in [10] a method to find the global minimal path, connect-

ing two points p1 and p2, with respect to a given cost function P > 0, also called
potential function. In other words, they find the global minimum of the geodesic

active contour’s energy

E(C) =

∫ L

0
P(C(s))ds (1)

when imposing to the curve its two end points. L is the length of the curve and
s is the arclength. The potential function P is defined on the image domain and
corresponds to the features we want the curve to follow. For example, if I is the
image, with P = I , the curve will follow dark structures. With P = 1

1+‖∇I‖2 ,

the curve will extract high values of the gradient, and that corresponds to contours.
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Notice that in the special case where P is a constant, the energy is proportional to
the length of the curve, and we are looking for minimal geodesics.
Authors of [10] show that a globally minimal curve for equation (1) is obtained

by following the opposite gradient direction on the minimal action map Up1
, de-

fined by

Up1
(q) = inf

C(0)=p1,C(L)=q

{

∫ L

0

P(C(s)ds

}

. (2)

The minimal path between p2 and p1 is thus obtained by solving the problem:

dC

ds
(s) = −∇Up1

(C(s)) with C(0) = p2. (3)

A proof of this will be given in Theorem 4. In order to compute Up1
, Cohen and

Kimmel [10] use the fact that this map is solution of the Eikonal equation ([5]):

‖∇Up1
‖ = P and Up1

(p1) = 0. (4)

A rigorous proof can be found in [5, 14]. Let us however give some ideas to

understand this equation. First, notice that when P = 1, Up1
(p) is the minimal

length of a path between p and p1. Thus Up1
is equal to the distance to p1, and

this is known that a distance map satisfies ‖∇Up1
‖ = 1. In the general case, Up1

can be seen as a weighted distance to p1. Second, let us consider the level sets

of Up1
, and call L(t) the curve(s) on which Up1

= t. Now assume δ is a small
positive number, and p is a point on L(t + δ). A minimal path between p1 and p
will cross L(t) at some point q. By definition of the two level sets, the energy of
the whole path t + δ is equal to the energy of the path between p1 and q, which
is t, plus the energy of the small path between p and q. Admitting that when δ
gets very small, this small path will be close to a segment of length l, and normal
to both level sets, that is in the direction of ∇Up1

, we have T + δ = t + lP(p).
This means that the local distance l between the two level sets is equal to δ

P(p) .

From these remarks, we can understand that the curves L(t) satisfy the evolution

equation
∂L(s,t)

∂t = 1
P ~n(s, t), where ~n(s, t) is the unit normal vector to the curve

L(., t). The last idea is that by differentiation of the identity Up1
(L(s, t)) = t with

respect to t, we have∇Up1
· ∂L(s,t)

∂t = 1. Replacing ∂L(s,t)
∂t by 1

P~n(s, t) and noticing

that the normal to level sets of Up1
is the normalized gradient vector

∇Up1

‖∇Up1
‖ , we

have ∇Up1
· 1
P

∇Up1

‖∇Up1
‖ = 1, which leads to ‖∇Up1

‖ = P.

Equation (3) can be numerically solved by simple ordinary differential equa-

tions techniques like Newton’s or Runge-Kutta’s. To numerically solve equation

(4), classic finite differences schemes tend to be unstable. In [19], Tsitsiklis intro-

duced a new method that was independently reformulated by Sethian in [17]. It
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relies on a one-sided derivative looking in the up-wind direction of the front, and it

gives the correct viscosity solution. This algorithm is known as the Fast Marching

algorithm and is now widely used. It was used in [10] to solve equation (4) and

find globally minimizing contours in images. More details on its background and

implementation can be found in [18, 9]. It is important to highlight a major advan-

tage of this algorithm. After a simple initialization of Up1
over the grid domain,

setting Up1
(p1) = 0 and Up1

(p) = ∞ for all other points p, only one pass over
the grid is needed. By using a min-heap data structure, an O(N log N) complexity
can be ensured on a grid of N nodes.

2.2 Euler-Lagrange and Eikonal equations

We are now working in a 3D space. The definition of the geodesic active energy

related to curves remains the same when considering a curve traced in 3D. Hence-

forth, E will then denote this curve energy. We are now interested in the relation
between the critical curves of energy E (definition given below) and the Eikonal
equation solution Up1

(viscosity solution).

We use the following usual definitions, the unit tangent vector of curve C at point
C(t) is ~T = C ′(t)/ ‖C ′(t)‖. If s is the arclength parameterization of C , the curva-

ture κ relative to C is defined by κ =
∥
∥
∥

d2C
ds2

∥
∥
∥, and its normal vector by ~n = 1

κ
d2C
ds2 .

The binormal vector of C is defined by~b = ~T ∧~n. From these definitions it is easy
to see that the derivation of the tangent vector with respect to any parameterization

t gives ~T ′ = κ ‖C ′‖~n. Using this definition we can now obtain the Euler-Lagrange
equation of the energy E in 3D.

Theorem 1 (Euler-Lagrange of E in 3D) Any curve C traced in IR3, closed or
having fixed extremities, which is a local minimum of energy E is a solution of

∇P(C) · ~n = P(C)κ and ∇P(C) ·~b = 0 (5)

Vectors ~n and ~b are the normal and the binormal vectors of C and κ its curvature
(see [6] for more details on curves in 3D).

Proof:
We are looking for a necessary condition for a curve to be a minimum of the

geodesic energy E. We consider then an open curve C parameterized on [0, 1]
and we suppose this curve to be a local minimum of E. We compute the first vari-
ation of E around C .
Let γ be a differential curve also parameterized on [0, 1], such that γ(0) = γ(1) =
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0 (we assume the extremities of C are fixed). The first variation of E in the direc-
tion of γ, around C is obtained by dγE(C) = lim

λ→0

E(C+λγ)−E(C)
λ . Then, defining

the real function F : λ → E(C + λγ), we have dγE(C) = F ′(0).We now use the
definition of E =

∫
P(C(s))ds and so we have

F ′(0) =
dF

dλ

∣
∣
∣
∣
λ=0

=

∫ 1

0

d
(
P(C + λγ)

)

dλ

∣
∣
∣
∣
∣
λ=0

︸ ︷︷ ︸

A

∥
∥C ′

∥
∥ dt+

∫ 1

0
P(C)

d(‖C ′ + λγ′‖)

dλ

∣
∣
∣
∣
λ=0

︸ ︷︷ ︸

B

dt.

(6)

Then, by chain rule derivation we obtain,

A = ∇P(C) · γ and B =
C ′

‖C ′‖
· γ′ = ~T · γ′. (7)

By integration by parts, we modify the form of the second term of (6), note that the

values at 0 and 1 of γ are null, hence we have

∫ 1

0
P(C)~T · γ′dt = −

∫ 1

0

[

(∇P(C) · C ′)~T + P(C)~T ′
]

· γdt. (8)

At last, by replacing ~T ′ in equation (8), and by using the expression A of equa-

tion (7), we obtain the new form of (6): dγE(C) =

∫
(
∇P(C) − (∇P · ~T )~T −

P(C)κ~n
)
·γ

∥
∥C ′

∥
∥ dt. However, since we suppose that curve C is a local minimum

of E, the first variation of this energy around this curve is zero, and this is true for
all direction γ. We thus deduce the Euler-Lagrange equation:

∇P(C) − (∇P · ~T )~T −P(C)κ~n = 0. (9)

Let us project this equation onto the Frenet basis
{

~T , ~n,~b
}

so that we get at last

equation (5).

Notice that since C ′(s) = ~T and C ′′(s) = κ~n, equation (9) can be rewritten as

∇P(C) = (P(C)C ′)′. (10)

Strictly speaking, the converse of the Euler-Lagrange condition is false. Not

all solutions of this equation are local minima. This is why we give the following

definition

Definition 2 (Critical curves) We say that C is a critical curve of the energy E if
C is a solution of the Euler-Lagrange equation (5).
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We now study the link between critical curves and the viscosity solution, Up1
,

of the Eikonal equation. To that end we introduce

Definition 3 (field lines) We will say that C is a field line of ∇Up1
if it is the solu-

tion of the ordinary differential equation
{

dC(t)

dt
= −∇Up1

(

C(t)
)

C(0) = p.
(11)

where p is a point of the image domain.

And we have the following property:

Theorem 4 (Field Lines and Euler-Lagrange equation) If Up1
is solution to the

problem ‖∇Up1
‖ = P with Up1

(p1) = 0, every line field of ∇Up1
is a critical

curve of the geodesic energy E.

Proof:
Let p be a point in the image domain such that, in p, the viscosity solution of the

Eikonal equation Up1
is of class C2 ( p is such that equation (11) has only one

solution). We can then compute the derivative of the two members of the squared

Eikonal equation ‖∇Up1
‖2 = P2 at point p, which drives us to

∇2Up1
(p)∇Up1

(p) = P∇P (12)

Consider now a field line of∇Up1
. After a reparameterization C1(s) = C(L−

s) in order to change the sign of the first equality of (11), if s is the arclength
parameterization of C1, we can write:

dC1(s)

ds
=

−C ′(t)

‖C ′(t)‖
=

∇Up1

(
C(t))

∥
∥∇Up1

(
C(t))

∥
∥

=
∇Up1

(
C1(s))

∥
∥∇Up1

(
C1(s))

∥
∥

=
∇Up1

(
C1(s)

)

P(C1(s))
.

(13)

sinceUp1
satisfies the Eikonal equation. We thus haveP

(
C1(s)

)dC1(s)
ds = ∇Up1

(
C1(s)

)
.

The computation of the derivative of this last equation with respect to s gives
d
ds

[

P
(
C1(s)

)dC1(s)
ds

]

= ∇2Up1
(C1(s))

dC1(s)
ds =

∇2Up1
(C1(s))∇Up1

(C1(s))

P
(
C1(s))

= ∇P(C1(s))

using equation (12), and this is exactly the Euler Lagrange equation of energy E
as written in (10).

Note that Kimmel et al. presented a similar proof in the two dimensional case
in [13]. Our proof is valid for any dimension (in particular in 3D). On the other

hand, we know that the action map Up1
is the unique viscosity solution bounded

from below of the Eikonal equation (see [14]). In the present case, where the
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boundary condition is only Up1
(p1) = 0, the regularity of Up1

only depends on the

regularity of the potential function P. In this paper we do not consider the problem
concerning points where the action map is not regular enough for its gradient to

be defined. In practice, numerical approximations can solve the problem when the

only goal is to compute a minimal path between two points. As a matter of fact,

one of the main interests of theorems 1 and 4 is that they allow us to consider

efficient numerical approaches in order to compute minimal paths to point p1 from

any point in the image domain. An extension to 3D of Fast Marching and minimal

paths is straightforward. The authors of [11] used it to find centerlines in 3D tubular

structures. After the computation of the action map by this extension, the minimal

path is obtained by gradient descent, solving equation (3), like in the 2D case. We

now present our first extension of minimal paths to surface segmentation.

2.3 Minimal paths between two curves

We now seek to extract a surface that contains two constraining curves Γ1 and Γ2

using the method of minimal paths outlined in the previous section, that is we look

for an extension to 3D surface of the minimal path segmentation. Intuitively, we

see that, if potential P is correctly tailored, every minimal path between a point
p1 ∈ Γ1 and a point p2 ∈ Γ2 should belong (or at least be close enough) to the

surface we wish to extract. A naive approach for the generation of a ‘surface’ is to

build minimal paths between all the points of Γ1 and Γ2 (Note that the Hopf-Rinow
theorem (see section 5-3 of [6]) ensures the existence of a minimal path between

any two points in the metric space induced by potential P). Hence, each point of
Γ1 would be associated to every point of Γ2. Clearly, from a computational point

of view, this would be expensive (at least n action maps to build and n×n gradient
descents, if n is the number of points of the discretized versions of Γ1 and Γ2),

and many of these numerous associations would not be relevant. We thus propose

to exploit the set of minimal paths between each point of curve Γ2 and curve Γ1

considered as a whole. We then have to work with paths between points and curves.

Definition 5 (Path between a point and a curve) We call path between a point p
and a curve Γ, a curve γ such that γ(0) = p and γ(1) ∈ Γ (γ is parameterized in
[0, 1]) .

Expecting a result similar to theorem 4, it is natural to introduce an action map

with respect to one of the curves given by the user.

Definition 6 (Curve’s Minimal action map) We call minimal action map with re-
spect to curve Γ and potential P, the function UΓ with real values, that associates
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to any point p of the image domain, the value

UΓ(p) = min
γ between

p and Γ

{E(γ)} = min
γ between

p and Γ

{
∫ 1

0

P(γ(t)) ‖γ′(t)‖ dt

}

. (14)

Notice that the minimal path between p and Γ is the path having the mini-
mal geodesic energy among all curves between a point q ∈ Γ and p. Function

UΓ is a distance function from Γ in the Riemannian space induced by P and thus
UΓ = min

q∈Γ
{Uq} . This equality anticipates the following result, for which a rigor-

ous proof can be found in the work of Mantegazza and Mennucci in [14].

Theorem 7 The action map UΓ is the only viscosity solution bounded from below
of the Eikonal equation

‖∇UΓ‖ = P, and ∀p ∈ Γ, UΓ(p) = 0. (15)

Notice that if there exists only one point q0 of Γ such that UΓ(p) = min
q∈Γ

{Uq(p)} =

Uq0
(p), then we have ‖∇UΓ(p)‖ = ‖∇Uq0

(p)‖ = P(p). The difficulty is that
the uniqueness of point q0 is not always satisfied.

Again, a major interest of this last property, is the fact that the Fast Marching al-

gorithm can also be used to rapidly compute a numerical approximation of UΓ,

the only difference is that we have a different boundary condition. The following

property will then provide us a tool for rapidly computing minimal paths between

a point and a curve.

Theorem 8 (Field Lines of UΓ) If C is a field line of ∇UΓ, containing point p,
then C is a critical curve of the geodesic energy E between point p and curve Γ.

Concerning this property, mathematically speaking, we are not ensured that UΓ

is regular enough to define its gradient. As Mennucci shows in [15], the regularity
of UΓ depends upon the regularity of P but also on the regularity of Γ. Notice also
that whatever the shape of curve Γ is, even if the potential P is C∞, there always

exist points where UΓ is not C
1. The interesting fact is that the set of these points

has a zeroH3 −measure (Hausdorff measure of third degree), so that in practice,
ambiguities in the determination of the gradient can easily be solved.

2.4 Minimal path set between two curves Γ1 and Γ2

Let us now define our minimal path set. Curves Γ1 and Γ2 are exploited as the

initialization of the model and as incorporated user information. The approach is
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based on considering a network of paths that globally minimizes an energy asso-

ciated to the image. This network is used to generate a surface that contains the

constraining curves and provides a segmentation of the object lying between them.

A curve γq
Γ1
is a path between a point q and curve Γ1 if γ

q
Γ1

(0) = q and γq
Γ1

(L) ∈

Γ1. A path network N Γ2

Γ1
, between the points of Γ2 and curve Γ1, is the set

N Γ2

Γ1
=

{

γq
Γ1

}

q∈Γ2

, where it is supposed that every point q of Γ2 is visited only

once. Globally minimal path between the points of Γ2 and curve Γ1 are easily

found. Using theorem 8, a minimal path between Γ1 and a point q (further noted
Cq

Γ1
), with respect to the energy E =

∫ L
0 P(C(s))ds, is found as a field line of

∇UΓ1
:

dCq
Γ1

dt
(t) = −∇UΓ1

(
Cq

Γ1
(t)

)
with Cq

Γ1
(0) = q. (16)

By solving equation (16), using each point of Γ2 as part of the initial condi-

tion (Cq
Γ1

(0) = q), we globally minimize the energy, producing a minimal energy

network:

Definition 9 We call minimal path set between Γ1 and the set of points of Γ2, with
respect to potential P, the set

SΓ2

Γ1
=







C
p

Γ1
∈ C1([0, 1], IR3)

∣

∣

∣

∣

∣

∣

∃p ∈ Γ2, C
p

Γ1
(0) = p

∀t ∈ [0, 1]
dC

p

Γ1

dt
(t) = −∇UΓ1

(Cp

Γ1
(t))







.

(17)

UΓ1
being the solution to the Eikonal equation ‖∇UΓ1

‖ = P, ∀p ∈ Γ1, UΓ1
(p) =

0.

The minimal network is thus the set of all solutions of the ordinary differential

equation (16) when varying its initial condition along Γ2. Up to a reparameteri-

zation, assume every minimal path (respectively curve Γ2) is parameterized on an

interval J (respectively I). SΓ2

Γ1
can then be considered as a mapping (since min-

imal paths cannot cross without merging) from I × J to Ω, such that for all pair

(u, v) ∈ I × J , SΓ2

Γ1
(u, v) = C

Γ2(u)
Γ1

(v). Using this map for segmentation follows

the same intuition as in [3], where the hypothesis is made that each path of SΓ2

Γ1
is

within a small distance from the surface to extract.

If potential P is correctly chosen, the set of curves SΓ2

Γ1
should be near the surface

that we wish to extract. In order to illustrate this fact, consider the synthetic ex-

ample given in figure 2. There we show some curves belonging to SΓ2

Γ1
when the

potential is obtained from a binary synthetic image of a vase.

Unfortunately, as can be understood from [14], and illustrated in figure 6-

middle, in the general case the map SΓ2

Γ1
(·, ·) lacks the fundamental property of
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Γ

Γ

Γ  

Γ 

Γ  

(a) (b) (c)

Figure 2: (a) represents the original surface from which we generated the synthetic

image. In (b) we show three orthogonal slices of the 3D potential obtained by

filtering the binary image and taking a decreasing function of its gradient norm. (c)

Shows some minimal paths computed between the two user given curves.

continuity. For that reason, it is insufficient for segmentation. In order to cope with

this difficulty, two different solution were proposed in [3]. However, they still have

some constraints and therefore we introduce in the next section a novel approach

for the generation of a surface using the minimal path network. This surface shall

be defined as the zero level set of a function Ψ which solves a certain transport
equation.

3 Implicit defi nition of a surface containing the minimal
path set

In order to simplify our description, Γ1 and Γ2 are assumed to be two non-intersecting

planar, closed curves. We look for a real function Ψ, defined on the image domain
Ω, such that SΓ2

Γ1
is contained in its zero level set (further notedΨ−1({0})). Having

no a priori knowledge on the properties Ψ should satisfy, we shall suppose that Ψ
is continuously differentiable and we first look for a necessary condition based on

our knowledge of the minimal path network. Further, this condition is exploited to

formulate a sufficient condition and finally give a consistent description of function

Ψ.
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∇UΓ1

UΓ1 =  cte.

∇Ψ

Ψ
 =

 0. 

C
q

Γ

Figure 3: Along a minimal path the gradient ofΨ should be perpendicular to the gradient
of the action map.

3.1 Searching for an implicit function

As in section 2.4, we denote by Cq
Γ1
a minimal path from a point q ∈ Ω to

curve Γ1, and we suppose that J is its parameterization interval. The minimal
path set SΓ2

Γ1
can also be considered as a subset of Ω, p ∈ SΓ2

Γ1
means that p

is a point belonging to a minimal path (joining a point of Γ2 and Γ1). Let us

first assume that Ψ is a continuously differentiable function, defined on Ω such
that SΓ2

Γ1
⊂ Ψ−1({0}). This means that for all minimal path Cq

Γ1
we have ∀s ∈

J,Ψ
(
Cq

Γ1
(s)

)
= 0. From the derivative with respect to s of this relation we obtain

∀s ∈ J,∇Ψ
(
Cq

Γ1
(s)

)
·
dCq

Γ1

ds (s) = 0. Using relation (16) we deduce the following
proposition:

Theorem 10 (Necessary condition) For any real C 1 function Ψ, defined on Ω,
and such that SΓ2

Γ1
⊂ Ψ−1({0}), we have for every point p of SΓ2

Γ1
:

∇Ψ(p) · ∇UΓ1
(p) = 0. (18)

The perpendicularity of the two gradient vector fields is only necessary on the

points of the minimal path network. Hardening this condition and demanding that

Ψ satisfies a relation similar to (18) everywhere in Ω, should lead to a sufficient
relation for the minimal paths to be contained in Ψ−1({0}).
It is interesting to note that we only want to act on the zero level set ofΨ; this gives
the opportunity to introduce a regularization term in the previous equation. For this

purpose we introduce a regular (at least continuously differentiable) real function

G that satisfies G(0) = 0. We have the following proposition :

Theorem 11 (Sufficient condition) If Ψ is C1 satisfying :
{

(C1) ∀p ∈ Ω,∇Ψ(p) · ∇UΓ1
(p) + G ◦ Ψ(p) = 0

(C2) ∀q ∈ Γ2,Ψ(q) = 0
(19)
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then the minimal path network SΓ2

Γ1
is contained in the zero level set of Ψ.

Proof: For every point q ∈ Γ2, the values taken by function Ψ along the minimal

path Cq
Γ1
are given by function fq = Ψ ◦ Cq

Γ1
. We have, for all s ∈ J :

dfq

ds
(s) =

∇Ψ
(
Cq

Γ1
(s)

)
.
dCq

Γ1

ds
(s) =

︸︷︷︸

from (16)

−∇Ψ
(
Cq

Γ1
(s)

)
·∇UΓ1

(
Cq

Γ1
(s)

)
= G

(
fq(s)

)
. Thus,

the function fq satisfies over the interval J the ordinary differential equation

dfq

ds
= G

(
fq

)
. (20)

Furthermore, recall that Cq
Γ1

(0) = q and q ∈ Γ2. Condition (C2) establishes
then that fq(0) = 0. Consequently, since G is a differentiable function such that
G(0) = 0, the unique solution to (20) is fq = 0 on J . A simple proof of this can be

obtained by denoting H(u) = G(u)
u and H(0) = G′(0). Since G is continuously

differentiable and G(0) = 0, H is well defined and continous. Denoting H1 such

that H ′
1(u) = G(u) and multiplying equation 20 by exp(−H1), we get that the

derivative of exp(−H1)fq is equal to zero. the latter function is thus constant, and

since its value at 0 is zero, we have fq = 0 on J . In other words, the unique value
taken by function Ψ along any minimal path originated on a point q of Γ2 is zero,

which is exactly SΓ2

Γ1
⊂ Ψ−1({0}).

A too quick examination of the conditions given in (19) may not be enough to

understand why this implicit approach will produce a better segmentation method

than explicitly generating a finite number of paths of SΓ2

Γ1
followed by interpolation

(as in [3]). The following proposition makes this clear by establishing that the zero

level set of the solution to (19) has a very particular structure: it is completely

composed of globally minimal paths.

Theorem 12 (Ψ−1({0}) structure) If Ψ satisfies the same conditions as in theo-
rem 11, then for all p ∈ Ψ−1({0}), the minimal path Cp

Γ1
joining p to Γ1 is also

included in this zero level set.

Proof : If Ψ satisfies the conditions of theorem 11, then for any point p of Ω,
function fp = Ψ ◦ Cp

Γ1
satisfies the ordinary differential equation (20). Thus the

values ofΨ along minimal pathCp
Γ1
only depend on the initial value fp(0) = Ψ(p).

If p is on the zero level set of Ψ then fp(0) = Ψ(p) = 0 and, as in the proof of
the previous proposition, Ψ ◦ Cp

Γ1
= 0. This means that every point of Ψ−1({0})

belongs to a minimal path.

Being minimal with respect to the geodesic energy E, these paths tend to be
traced on the object to extract (as Γ1 and Γ2). This explains the better results,

13



Π

Γ

Γ₁

ν²
η

Figure 4: Boundary conditions for the transport problem (Π1 and Π2 are not necessary

parallel).

compared to [3], obtained with our method. A good example is given in figure 6,

which demonstrates, on a synthetic image, how this approach gives good results

where clearly SΓ2

Γ1
is insufficient for segmentation.

In the next sections we explicitly give the problem to be solved in order to build

the segmentation of an object from the two constraining curves. Most likely traced

by a human user (or a 2D segmentation process), Γ1 and Γ2 will be supposed to be

planar curves.

3.2 Using minimal paths for surface segmentation

We further denote by Π1, Π2 the intersection of the planes containing Γ1 and Γ2

with the image domain (remember that this is purely a practical condition, it is not

necessary that these curves are planar but, if not, the description of the boundaries

of our problem is more complicated). The functions d1, d2 are the signed distance

functions to these curves, positive in their interior and defined on Π1 and Π2 re-

spectively. Notice that at each point q ∈ Γ2, d2(q) = 0.
Consider now the closed set V2

η = {p ∈ Π2 such that |d2(p)| ≤ η} , where η is a
real positive value (see figure 4). Inspired by theorem 11, we consider the open set

O = int(Ω)−V2
η , where int(Ω) is the interior of the image domain, and search for

Ψ as the solution to the Cauchy problem defined on Ω:






∇Ψ(p) · ∇UΓ1
(p) + G ◦ Ψ(p) = 0 if p ∈ O,

Ψ(p) = d2(p) if p ∈ V2
η ,

Ψ(p) = minp∈Π2

(
d2(p)

)
if p ∈ δΩ.

(21)

δΩ is the boundary of the image domain Ω. Notice that outside Γ2, the signed dis-

tance d2 is negative, and thus the minimum value taken in the third equation of (21)

is the largest distance to Γ2 in Π2 with a minus sign. This is a stationary transport

14



problem where the function G stands for the source term. It is beyond the scope
of this paper to present the theoretical details of the existence and uniqueness. As

a matter of fact, numerical approaches (see section 3.4) that take in consideration

the presence of possible discontinuities of the function Ψ were proposed before a
theoretical framework was established. Let us now observe the influence on our

problem of the choice of the function G.

3.3 Choice of the function G

As presented in the previous section, the function G is only required to be con-
tinuously differentiable and satisfy G(0) = 0. It is interesting to examine some
possible choices of G and to see its influence on the solution Ψ.
G = 0: With this choice, problem (21) becomes a stationary transport problem.

Equation (20) is in this case
dfq

ds = 0, so that for every point p of Ω function
Ψ ◦Cp

Γ1
is constant (Ψ is constant along any minimal path). Ψ ‘transports’ the val-

ues of the boundary V2
η ∪ δΩ along the minimal paths (the transport problem has

been studied from a theoretical point of view see for example [1] and references

within, results of existence and uniqueness have been given by Bouchut et. al. in
[4] and L. Ambrosio in [1]).

Even though this choice seems the most natural, the resulting Ψ may present dis-
continuities. By construction, every curve solution of problem (16) (a minimal

path) will join curve Γ1. If p and q are two points of V2
η such that d2(p) 6= d2(q)

then along each of the paths Cp
Γ1
and Cq

Γ1
, Ψ will take these two different values.

This supposes that the different values transported by Ψ from the boundaries will
‘collapse’ on curve Γ1 producing discontinuities.

In figure 5(a) we show a synthetic example where the surface to extract is a

cylinder-like object having a spherical protuberance, the two constraining curve

being traced on parallel planes, normal to the cylinder’s axis. We show some level

sets of function Ψ (obtained using the numerical method presented in section 3.4)
on two orthogonal planes, these level sets collapse within a short distance of curve

Γ2. This phenomenon is similar to the merging of minimal paths that caused inter-

polation problems in [3].

G ◦Ψ = αΨ: α is supposed to be a positive constant. With this choice, equa-
tion (20) becomes

dfq

ds = −αfq, whose solution is fq(s) = Ψ(q) exp(−αs). Along
minimal paths,the function Ψ is no longer constant, its value decreases in a expo-
nential manner. With this simple approach it is possible to avoid the collapsing

effect of the previous case, and have level sets of Ψ that are more regularly spaced.
This can be seen as a way to regularize our problem without the necessity of adding

smoothing term based on higher degree derivatives. In our implementation, α is
still a parameter but automatic approaches to find this constant are being studied.
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In figure 5(b) we show the effect of this regularization on the same synthetic image

as in figure 5(a).

3.4 Implementation Issues

We now describe an efficient algorithm for the numerical implementation of the

transport problem (21). Unlike [3], minimal paths are not to be computed directly

in this implicit approach. We only numerically calculate solutions to the Eikonal

and stationary transport equations.

To numerically solve the Eikonal equation (15) classic finite difference schemes

tend to be unstable. Generally it is preferable to use consistent algorithms using

upwind differences (derivative approximations are chosen looking in the direction
from which the information is flowing) as fast marching [17].

The stationary transport equation, as with most first order partial differential equa-

tions whose characteristics intersect, is difficult to solve numerically. In fact, in the

general case (P is supposed to be a bounded and continuous function), there is no
classical solution defined in all Ω, and the weak solution Ψ can present discontinu-
ities. Many implementations of the transport equation in its non-static expression

have been proposed in the modeling of geophysical phenomena. Here we will con-

centrate on a first order, fast algorithm which is less constrained since only the zero

level set of the solution matters in our approach.

In order to simplify notation, the symbol V shall be used to refer to the gradient
∇UΓ1

. One of the first numerical approaches for solving the transport equation

proposes a first order approximation of the gradient ∇Ψ that follows the direction
in which information propagates. This discretization is the upwind approach and
consists in choosing the approximation of ∂Ψ

∂δ following the sign of the components

Vδ (where δ = x, y ou z) of V . Recently, A. Yezzi and J. L. Prince used this
scheme in [20] for the numerical solution of equation ∇Ψ · T = 1 (where T was
a known vector field). At last, although this scheme is of relatively low precision

and dissipative, it gives satisfactory results in our experiments with an acceptable

convergence speed.

If Ψi,j,k is the value of the numerical approximation of Ψ at point [i; j; k] of
the discrete square grid, we shall denote the left and right approximations of the

partial derivatives by:

D−xΨ = Ψi,j,k−Ψi−1,j,k

h , D+xΨ = Ψi+1,j,k−Ψi,j,k

h

(similarly in the y and z directions) where h is the discretization step, identical in
all three spatial directions. Our scheme for solving the stationary transport problem

16



(a) Result obtained when solving the transport equation without second term.

(b) Result obtained when using a second term of the form

G(Ψ) = αΨ

Figure 5: Intersection of two planes with the level sets of the numerical solution of

our transport equation when the potential used is P = (1 + |∇I|2)−1, and I is the
binary image obtained from the synthetic volume shown in (a).
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V · ∇Ψ = −αΨ is then

V i,j,k
x

(
D−xΨi,j,k or D+xΨi,j,k

)
+ V i,j,k

y

(
D−yΨi,j,k or D+yΨi,j,k

)
+

V i,j,k
z

(
D−zΨi,j,k orD+zΨi,j,k

)
= −αΨi,j,k,

where the value of the vector V at grid point (i, j, k) is (V i,j,k
x , V i,j,k

y , V i,j,k
z ). In

our problem, the direction in which information propagates is given by the vec-

tor −V . Therefore, denoting by H the heaviside function defined by H(x) =
{

1, if x ≥ 0
0, else.

, the upwind approximation is:

V i,j,k
x

(
D−xΨi,j,kH(−V i,j,k

x ) + D+xΨi,j,kH(V i,j,k
x )

)
+

V i,j,k
y

(
D−yΨi,j,kH(−V i,j,k

y ) + D+yΨi,j,kH(V i,j,k
y )

)
+

V i,j,k
z

(
D−zΨi,j,kH(−V i,j,k

z ) + D+zΨi,j,kH(V i,j,k
z )

)
= −αΨi,j,k.

Then, denoting I = (i + 1) if Vx > 0, i− 1 otherwise, and similarly for J andK,
we have ∣

∣V i,j,k
x

∣
∣
[
ΨI,j,k − Ψi,j,k

]
+

∣
∣V i,j,k

y

∣
∣
[
Ψi,J,k − Ψi,j,k

]

+
∣
∣V i,j,k

z

∣
∣
[
Ψi,j,K − Ψi,j,k

]
= −αΨi,j,k,

which, by grouping terms with Ψi,j,k, finally leads to the update expression of our

algorithm:

Ψi,j,k =
|V i,j,k

x |ΨI,j,k + |V i,j,k
y |Ψi,J,k + |V i,j,k

z |Ψi,j,K

|V i,j,k
x | + |V i,j,k

y | + |V i,j,k
z | − α

. (22)

Thus Ψi,j,k is an expression of three of its neighbor grid points. V is assumed
to be known everywhere from the first step computing the minimal action to one

curve or to a set of curves. The Ψi,j,k are known at the beginning on the boundary

grid points. We can use a classical sweeping algorithm with this formula.

These equalities can also be exploited, as presented in [20], in a fast marching

type scheme that achieves a first order approximation of the solution to our problem

in only one grid pass and with a N log N complexity. When only two of these
neighbors are known, we use a reduced formula. For example, when the third one

is missing:

Ψi,j,k =
|V i,j,k

x |ΨI,j,k + |V i,j,k
y |Ψi,J,k

|V i,j,k
x | + |V i,j,k

y | − α
. (23)

In the same way, when only one neighbor is known, for example the first one, we

use the formula:

Ψi,j,k =
|V i,j,k

x |ΨI,j,k

|V i,j,k
x | − α

. (24)
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In the end, our algorithm consists of solving the Eikonal equation first, then

the transport equation by means of the same implementation. We thus can achieve

very rapid computing times. In the next section we give some results.

Γ

Γ₂

Γ₂

Γ₁

S
Γ

Γ

Γ Γ

Figure 6: Data is a half-sphere blended with a plane (transparent visualization) and Γ1 and

Γ2 (black segments). Middle shows some minimal paths of S
Γ2

Γ1
taking a short cut around

the sphere. On the right, superposition of Ψ−1(0) and set SΓ2

Γ1
.

4 Applications

We apply our method to some synthetic and real 3D images. In all our examples we

used a potential defined for p in the image domain as: P(p) = ρh1(|∇Iσ(p)|) +
(1 − ρ)h2(∆Iσ(p)), where h1 and h2 are two functions bounded between 0 and

1 and where Iσ is the convolution of the given image with a Gaussian kernel of

variance σ. Typically, h1(x) = 1
1+x2/λ2 , where λ is a user defined contrast factor

that can be computed as an average gradient value, and h2 is chosen to be a zero

crossing detector.

Figure 6 represents a sphere blended with a plane. The set of minimal paths SΓ2

Γ1

is unable to provide enough information for the extraction of the surface, since no

minimal path ‘climbs’ on the sphere surface. Nonetheless, the zero level set of the

corresponding Ψ function reconstructs perfectly the surface. Our implicit method
recovers more information than the minimal paths and we obtain the complete

surface.

In figure 7 we show the extraction of the surface of the left ventricle from

the 3D ultrasound image shown in figure 1. For this ultrasound image of size

256 × 256 × 256 we used a personal computer with a 1.4Ghz processor and 512
Mb of RAM. The segmentation was obtained in less than 15 seconds.

5 Conclusion

In this paper we have presented a method that generalizes globally minimal paths

for curve segmentation in 2D to surface segmentation in 3D. Our model is initial-

ized by two user-supplied curves which we maximally exploit, partly by the fact
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Γ

Γ

Ψ¹({0})

Γ

Γ

Ψ¹({0})

S
Γ

Γ

Figure 7: Left ventricle segmentation : on the left, some level sets of our solution

Ψ on a plane. middle shows the intersection of the zero level set of Ψ with a slice
of the image and on the right a volume representation of Ψ−1({0}).

that the surface we generate is constrained to contain them. We have developed

a novel implicit approach that, through a linear partial differential equation, ex-

ploits the solution to the Eikonal equation and generates a function whose zero

level set contains all the globally minimal paths between the constraining curves.

Hence, our approach is not prone to local minima traps as are other active surface

approaches.
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