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Abstract

Traditional level set-based active contour models/snakes are widely applied to medical image segmentation.

The main problems faced by those traditional models are that they cannot find the global minimum of the energy

functionals and hardly handle the intensity inhomogeneities which often occur in medical images. In order to overcome

the drawbacks mentioned above, we make use of a global minimization framework and the dual formulation of the

total variation (TV) norm to solve a global variant Mumford-Shah energy with bias field estimator. Furthermore,

we utilize a new method to compute the bias field estimator by the Gaussian kernel function, which can ensure the

bias field estimator to keep smooth in the whole image domain. Finally, through the dual projection method of the

weighted TV-norm, we can find the global minimum of the variant Mumford-Shah energy with bias field estimator

rather than the local one. Experimental results demonstrate that our method can obtain the desire results both in

synthetic and medical images.
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I. INTRODUCTION

Medical image segmentation forms the critical basis of various diseases diagnoses and treatment. Unfor-

tunately, it still faces many difficulties for traditional edge detection methods in automatically segmenting

the medical images like vascular images because of the presence of intensity inhomogeneities and the effect

of noise. Actually, intensity inhomogeneities often arise from technical limitations or artifacts introduced by

the objects, which can be solved by more sophisticated models. Recently, variational methods, especially

for active contour models (ACM) have been widely applied to the medical images with the presence of

intensity inhomogeneities and complex background [?], [?].

The classical parametric ACMs [?], [?], [?] consisting of minimizing an energy functional to drive

contours toward the boundaries of objects can obtain closed curves as segmentation results. However,

those parametric models are dependent of the curve’s parameterization and cannot automatically handle

topological changes. Geometric ACMs [?], [?] based on the level set method [?] were proposed to overcome

the drawbacks of the parametric ACMs, and utilize only geometric measures for curves evolution toward

the boundaries. Both parametric and geometric edge-based ACMs using the image gradients as the objects

boundaries are roust to intensity inhomogeneities.

Work on region-based active contour models are inspired by the Mumford-Shah model [?] which is a very

important problem in terms of image segmentation. However, it is difficult to find numerical approximations

and implementations. T. Chan et al. proposed a piecewise constant Mumford-Shah model called C-V model

which used a constant to approximate each image component [?]. With the application of variational level

set method [?], the C-V method is easy to apply to homogeneous image segmentation. L. vese et al. [?] and

Andy Tsai et al. [?] use the curve evolution technique to solve the piecewise smooth Mumford-Shah problem

[?]. Li. et al. [?] proposed to use local binary fitting (LBF) to replace the fitting constants of the C-V model.

Brox et al. [?] and Lanktona et al. [?] proposed a local region-based ACMs combined with Gaussian kernel

function to reduce the computational time of the piecewise smooth model [?], [?], which often fall into a

local minimum. Li. et al. [?] proposed a local cluster (LC) method with bias field estimator to solve the

initialization sensitivity problem of the local region model. Jung et al. [?], [?] proposed a nonlocal active

contour model utilizing Euclidean and Wasserstein distances between pairs of patches within each region

to construct the energy.



The main drawback of the level set-based ACMs is that they can only find the local (non-global)

minimum which often leads to false results. To deal with this problem, L. Cohen et.al proposed a minimal

paths apporach [?] to find the global minimum of the snake energy among all paths between two points

provided by users. The model is formulated as minimizing the integral of a feature potential P among all

curves that join the two user supplied points. However, it is difficult for the global minimal path method to

find a closed curve as segmentation result. F. Benmansour et al. [?] proposed a method by automatically

introducing new end points which are called keypoints. Those keypoints can be initially reduced to only

one starting point. The main issue of this method is that it is difficult to give a relevant stopping criterion

to decide when to stop the iterations.

T. Chan et al. [?] proposed a new variational framework to find the global minimum of the C-V model

[?]. In this framework, the level set formulation is replaced by a new convex set so that global minimum

can be achieved because of the convexity of the energy functional. Bresson et al. [?] unified the piecewise

constant model and piecewise smooth model into the variational framework of [?] to carry out the global

minimum of the corresponding active contour energy and solve the problem of the active curve propagation

through a fast dual projection method [?]. Other interesting active contour methods have been presented in

[?], [?], [?], [?], [?], [?], [?].

In this paper, we propose a variant Mumford-Shah model with bias field estimator for medical image

segmentation, where the global minimum can be found by the method presented in [?]. In our method, the

bias field estimator of the images can be calculated by Gaussian kernel functional. Due to the effect of the

bias field estimator and the new variational framework proposed by T. Chan [?], the proposed method can

handle the intensity inhomogeneities and find the global minimum of the variant Mumford-Shah model.

Experimental results comparing with the level set method (presented in section IV) demonstrate that our

method outperforms the widely used method, like [?], [?], [?].

The paper is organized as follows: In section II, we will introduce the original Mumford-Shah model [?]

serving as preliminary model to our approach and its reduced piecewise constant case, i.e., the C-V model.

Section III will present the proposed formulation including the Gaussian kernel-based bias field computing

method as well as the global minimum for the proposed model. Section IV will explain the experimental

results both in synthetic and medical images. Section V will give the conclusion.



II. RELATED WORKS

The important segmentation problem formulated by Mumford and Shah [?] can be defined as follows:

Given an observed image I : Ω → R (Ω is an open subset in R2), the Mumford-Shah model is to find

all the connected components Ωi of Ω and boundaries ∂Ωi, i = 1, 2, 3...N . Such that, a piecewise smooth

approximation u cis found by minimizing the following energy functional, where u varies smoothly within

each Ωi.

EMS(u,C) =
∫

Ω
(I − u)2dx+ µ

∫
Ω\C
|∇u|2dx+ ν|C| (1)

where µ,ν are positive weighting constants and |C| denotes the length of curve C. Minimizing term∫
Ω\C |∇u|2dx and |C| is to ensure u and curve C to keep smooth, respectively. In (??), the approximation

u can be smooth only inside each region component Ωi. Existence and regularity of minimizers of (??)

can be achieved theoretically [?]. L.vese et al. [?] and Tsai et al. [?] solved the minimization problem of

(??) by the variational level set method [?] and curve evolution technique, making the piecewise smooth

Mumford-Shah model be widely applied to image segmentation.

T. Chan et al. [?] introduced the C-V model which is considered as an efficient numerical implementation

scheme for the Mumford-Shah functional by assuming that µ→∞, i.e., the piecewise smooth approximation

u can be restricted to a piecewise constant. The C-V model is a reduced case of Mumford-Shah functional:

ECV = µ(
∫

Ω1

(I − c1)2dx+
∫

Ω2

(I − c2)2dx) + ν|C| (2)

where µ and ν are positive parameters. Ω1 and Ω2 are the image regions outside and inside the curve(s)

C, respectively. The Constants c1 and c2 are the region fitting data, which can be computed by

c1 =

∫
Ω1
I(x)dx∫
Ω1
dx

, c2 =

∫
Ω2
I(x)dx∫
Ω2
dx

(3)

The C-V functional (??) will achieve its minimum if c1 and c2 formulated in (??) can approximate the

image outside and inside the curves C well, i.e.,



∫
Ω1

(I − c1)2dx ≈
∫

Ω2

(I − c2)2dx ≈ 0 (4)

The C-V formulation can be easily solved by taking the Euler-Lagrange equations as well as the

variational level set framework [?]. However, one main problem is that the C-V model cannot handle

the intensity inhomogeneities as it assumes that the images can be divided into piecewise constant region

components.

III. GLOBAL MINIMUM FOR VARIANT MUMFORD-SHAH MODEL WITH BIAS FIELD

A. Image Model

As mentioned above, intensity inhomogeneity often occurs in medical images due to the technical

limitations or artifacts introduced by the objects. In this paper, our method is mainly based on the following

image model:

I(x) = B(x)T + n, x ∈ Ωi, i = 1, 2...N. (5)

where n is additive noise and N is the total number of region components Ωi (for two-phase segmentation,

N = 2). This image model is formulated for images based on that an observed image I can be represented

as a product of the true image data T and a bias field estimator B varying slowly. A guided filtering

introduced in [?] is also based on the guidance image T and makes use of a locally affine version of true

image T . In this paper, the true image data T can be formulated as [?]:

T =
∑
i

ciχi, i = 1, 2...N (6)

where ci is a constant and χi is the the characteristic function of components Ωi. Based on the image model

(??), our aim is to find the bias field estimator B and the true image T . In the following section, we present

a method to compute the bias field estimator B by a Gaussian kernel function which can keep B varying

slowly in the whole image domain Ω.



B. Variant Mumford and Shah mode with bias field estimator

Let I : Ω→ R be the image to be segmented and χi be the characteristic function of region components

Ωi, i = 1, 2, where χ2 = 1− χ1. Replacing the piecewise smooth approximation u by (??), we can obtain

the following formulation [?], [?]:

u(x) =
∑
i

B(x)ciχi, x ∈ Ωi, i = 1, 2 (7)

Based on the formulation of the Mumford and Shah model in (??) and image model in (??), the variant

Mumford and Shah mode with bias field estimator can be formulated as follows:

Evms = λ(
∫

Ω1
(I(x)−Bc1)2dx +

∫
Ω2

(I(x)−Bc2)2dx)

+µ
∫

Ω |∇B|2dx+ ν|C| (8)

where λ, µ and ν are weighting parameters. The third term µ
∫

Ω |∇B|2dx is to ensure the bias field estimator

to keep smooth in Ω and the last term ν|C| is the curve length which is used to keep the active curve(s) C

smooth. Combinated with the characteristic functions χ1 and χ2, the energy shown in (??) can be rewritten

as follows:

Evms(c1, c2, B) = λ
∫

Ω((I −Bc1)2χ1 + (I −Bc2)2χ2)dx

+µ
∫

Ω |∇B|2dx+ ν|C| (9)

Minimization of energy (??) can be solved by alternate minimization, for example the iterative process

method [?]. For each iteration, energy (??) can be minimized by three steps:

a) For fixed characteristic function χ1, χ2 and piecewise constants c1, c2, minimize (??) with respect

to bias field estimator B.

b) For fixed characteristic function χ1, χ2 and bias field estimator B, minimize (??) with respect to

piecewise constants c1, c2.



c) For fixed piecewise constants c1, c2 and bias field estimator B, minimize (??) with respect to

characteristic function χ1, χ2.

In the following subsection, we will present the solutions for the three optimization steps.

C. Gaussian Kernel-based Bias Field Estimator

Inspired by the regularization theory of Nielsen et al. [?] that linear convolution of a signal can be the

exact minimizer for certain energy functionals related to this signal, we give the following minimization

method for the energy minimization step a) with respected to the bias field estimator B, which is shown

in Proposition 1.

Proposition 1: Suppose that ι1 and ι2 are characteristic functions of one-dimension intervals τ1 and τ2

respectively, where ι1 = 1− ι2 and τ1 = τ − τ2. For any given constants c1, c2 and characteristic functions

ι1 and ι2, the following energy:

ξ = λ
∫
τ ((S −Bc1)2ι1 + (S −Bc2)2ι2)dx

+
∫
τ

∑+∞
k=1 µk(

∂kB
∂xk

)2dx (10)

can be solved by one of the following convolutions:

B =
(c1S(x)ι1(x)) ∗ gσ1 + (c2S(x)ι2(x)) ∗ gσ2

c2
1ι1 + c2

2ι2
(11)

or

B =
(S(x)ι1(x)) ∗ gσ1 + (S(x)ι2(x)) ∗ gσ2

c1ι1 + c2ι2
(12)

where uk = ηk

k!
is a weighting constant. S, B are one-dimension signals in τ and gσ1 , gσ2 are two Gaussian

kernel functions with standard deviations σ1 and σ2 respectively. The operator ” ∗ ” means convolution.

Proof: For convenience, we recall the energy ξ in (??) as follows:

ξ = λ
∫
τ ((S −Bc1)2ι1 + (S −Bc2)2ι2)dx

+
∫
τ

∑+∞
k=1 µk(

∂kB
∂xk

)2dx (13)



Obviously, formulation (??) is equivalent to the following equation:

ξ1 = λ
∫
τ ((S · ι1 −B · ι1 · c1)2 + (S · ι2 −B · ι2 ·c2)2)dx

+
∫
τ

∑+∞
k=1 µk(

∂kB
∂xk
· (ι1 + ι2))2dx (14)

Since ι1 and ι2 are characteristic functions and (ι1 + ι2) = 1, we have:

(ι1 + ι2)2 = ι21 + ι22 (15)

Thereby, we rewrite (??) integrating with (??) as follows:

ξ2 = λ
∫
τ
((Sι1 −Bι1c1)2 + (Sι2 −Bι2c2)2)dx

+
∫
τ

+∞∑
k=1

µk((
∂kB

∂xk
ι1)2 + (

∂kB

∂xk
ι2)2)dx (16)

According to Parsevals Theorem, transforming energy ξ2 to the Fourier domain [?] will yield the following

energy:

ξ̂2 = λ
∫

((Ŝ ∗ ι̂1 − B̂ ∗ ι̂1c1)2 + (Ŝ ∗ ι̂2 − B̂ ∗ ι̂2c2)2)dω

+
∫ +∞∑

k=1

µkω
2k((B̂ ∗ ι̂1)2 + (B̂ ∗ ι̂2)2)dω (17)

where ξ̂2, Ŝ, ι̂1 and ι̂2 are the Fourier transformation of ξ2, S, ι1 and ι2, respectively. Keeping c1, c2 and

ι1, ι2 fixed, computing the related Euler-Lagrange equation for ξ̂2 with respect to B̂ yields the following

partial differential equation:

∂ξ̂2

∂B̂
= λc1(B̂ ∗ ι̂1c1 − Ŝ ∗ ι̂1) · (1 ∗ ι̂1)

+λc2(B̂ ∗ ι̂2c2 − Ŝ ∗ ι̂2) · (1 ∗ ι̂2)

+
+∞∑
k=1

µkω
2k · (B̂ ∗ ι̂1) · (1 ∗ ι̂1)

+
+∞∑
k=1

µkω
2k · (B̂ ∗ ι̂2) · (1 ∗ ι̂2) (18)



A sufficient and necessary condition for energy ξ̂2 to achieve its minimum is that ∂ξ̂2

∂B̂
≡ 0, i.e., we have

c1(B̂ ∗ ι̂1c1 − Ŝ ∗ ι̂1)(1 ∗ ι̂1) + c2(B̂ ∗ ι̂2c2 − Ŝ ∗ ι̂2)(1 ∗ ι̂2)

+
+∞∑
k=1

µk
λ
ω2k(B̂ ∗ ι̂1)(1 ∗ ι̂1) +

+∞∑
k=1

µk
λ
ω2k(B̂ ∗ ι̂2)(1 ∗ ι̂2)

≡ 0 (19)

⇔

c1Ŝ ∗ ι̂1︸ ︷︷ ︸
term1

·(1 ∗ ι̂1) + c2Ŝ ∗ ι̂2︸ ︷︷ ︸
term2

·(1 ∗ ι̂2) =

(c2
1(B̂ ∗ ι̂1) +

+∞∑
k=1

µk
λ
ω2k(B̂ ∗ ι̂1)︸ ︷︷ ︸

term3

)(1 ∗ ι̂1)

+(c2
2(B̂ ∗ ι̂2) +

+∞∑
k=1

µk
λ
ω2k(B̂ ∗ ι̂2)︸ ︷︷ ︸

term4

)(1 ∗ ι̂2) (20)

We can see that (??) can be solved by making term1 = term3 and term2 = term4., i.e., (??) can be

solved by the following equations:

c1Ŝ ∗ ι̂1 = c2
1(B̂ ∗ ι̂1)(1 +

+∞∑
k=1

µk
ω2k

c2
1

(B̂ ∗ ι̂1)) (21a)

c2Ŝ ∗ ι̂2 = c2
2(B̂ ∗ ι̂2)(1 +

+∞∑
k=1

µk
ω2k

c2
2

(B̂ ∗ ι̂2)) (21b)

In (??), since uk = ηk

k!
, we have

1 +
+∞∑
k=1

µk
ω2k

c2
1

= 1 +
+∞∑
k=1

(λ
1
−k c
− 2

k
1 η)k

k!
ω2k

= exp(−λ
1
−k c
− 2

k
1 ηω) (22a)

1 +
+∞∑
k=1

µk
ω2k

c2
2

= 1 +
+∞∑
k=1

(λ
1
−k c
− 2

k
2 η)k

k!
ω2k

= exp(−λ
1
−k c
− 2

k
2 ηω) (22b)



Let ĝσ1 = exp(−λ
1
−k c
− 2

k
1 ηω) and ĝσ2 = exp(−λ

1
−k c
− 2

k
2 ηω). It is obvious that ĝσ1 and ĝσ2 are two Gaussian

kernel functions with standard deviations σ1 =
√

2λ
1
−k c
− 2

k
1 η and σ2 =

√
2λ

1
−k c
− 2

k
2 η respectively. By adding

(21a) to (21b), we can obtain that

c1Ŝ ∗ ι̂1 + c2Ŝ ∗ ι̂2 = c2
1(B̂ ∗ ι̂1)ĝσ1 + c2

2(B̂ ∗ ι̂2)ĝσ2 (23)

or

Ŝ ∗ ι̂1 + Ŝ ∗ ι̂2 = c1(B̂ ∗ ι̂1)ĝσ1 + c2(B̂ ∗ ι̂2)ĝσ2 (24)

Transforming (??) and (??) into spatial domain will yield

B =
(c1S(x)ι1(x)) ∗ gσ1 + (c2S(x)ι2(x)) ∗ gσ2

c2
1ι1 + c2

2ι2
(25)

or

B =
(S(x)ι1(x)) ∗ gσ1 + (S(x)ι2(x)) ∗ gσ2

c1ι1 + c2ι2
(26)

Since Gaussian kernel function is Cartesian invariants, according to the theory by Nielsen et al. [?]

and analysis by Brox [?], (??) and (??) can be directly generalized to higher dimensions. Thereby, the

convolution

B =
c1χ1(x) ∗Gσ1 + c2χ2(x) ∗Gσ2

c2
1χ1 + c2

2χ2

I(x) (27)

will be an exact minimizer of

E0 = λ
∫
Ω((I −Bc1)2χ1 + (I −Bc2)2 χ2)dxdy

+
∫
Ω

∑+∞
i+j=k µk(

∂kB
∂xi∂yj

)2dxdy + ν|C| (28)

Ignoring all bias field estimator smoothness penalizer terms for of order k > 1 may yield

E1 = λ
∫

Ω((I −Bc1)2χ1 + (I− Bc2)2χ2)dxdy

+µ
∫

Ω |∇B|2dxdy + ν|C| (29)



In our work, (??) can be well approximated by

B =
c1Iχ1 + c2Iχ2

c2
1χ1 + c2

2χ2

∗G (30)

where G is a Gaussian. The convolution shown in (??) may ensure the bias field estimator B keep smooth

in the whole image domain.

For the energy minimization step b), given the fixed χ1, χ2 and B, the minimum of (??) with respect

to fitting constants c1, c2 can be achieved by computing the corresponding Euler-Lagrange equation:

∂E1

∂c1

=
∫

Ω
(I(x)−Bc1)Bχ1dx = 0

∂E1

∂c2

=
∫

Ω
(I(x)−Bc2)Bχ2 = 0 (31)

⇒

c1 =

∫
Ω I(x)B(x)χ1dx∫

Ω B
2(x)χ1dx

, c2 =

∫
Ω I(x)B(x)χ2dx∫

ΩB
2(x)χ2dx

(32)

D. Global Minimum

As discussed in [?], one of the main drawbacks of traditional active contour models is that they cannot

find the global minima. As χ1 and χ2 take only the values 1 and 0, the proposed energy (??) cannot find

the global minimum with respect to χ1 and χ2, i.e. the following minimization problem can only find the

non-global minimum with respect to Ω1(where Ω1 is the image domain outside the active curves.):

min
χ1,χ2
{E2 = λ

∫
Ω((I −B c1)2χ1 + (I −Bc2)2χ2)dx

+ν|C|} (33)

In this paper, based on the new variational framework of T.Chan et al. [?] and Bresson et al. [?], we propose

to find the energy shown in (??) by solving the following minimization problem:



min
0≤u≤1

{E3 = λ
∫
Ω(I −Bc1)2udx +λ

∫
Ω

(I −Bc2)2(1− u)dx

+ν
∫
Ω |∇u|2dx} (34)

In (??), the characteristic functions χ1 and χ2 are replaced by u and 1 − u where 0 ≤ u ≤ 1, which

means that the minimization problem of (??) over the non-convex set {χ1}(or {χ2}) has been extended to

the convex set {u ∈ BV (Ω), 0 ≤ u ≤ 1}, just as discussed by [?]. Thereby, we can find the global minimum

of (??) with respect to u. The following theory will give the relationship between the optimization problem

of (??) and (??).

Theorem 1: Suppose that I(x) ∈ [0, 1]. For any given c1, c2 and B, if u(x) is any minimizer of

E3(c1, c2, B, .), then for almost every ε ∈ [0, 1], the characteristic function 1{x:u(x)>ε} is a global minimizer

of E1(c1, c2, B, .).

Proof: Inspired by the proof formulated in [?], [?], [?], and according to the coarea formula, we rewrite

the energy E3:

E3(u, c1, c2, B) = λ
∫

Ω
(I −Bc1)2udx+ λ

∫
Ω

(I −Bc2)2 ×

(1− u)dx+ ν
∫

Ω
|∇u|2dx

= λ
∫

Ω
(I −Bc1)2

∫ 1

0
1[0,u(x)](ε)dεdx+ λ

∫
Ω

(I −Bc2)2 ×∫ 1

0
1[u(x),1](ε)dεdx+ ν

∫
Ω
|∇u|2dx (35)

Let D = {x : u(x) > ε} and rewrite (??) integrating with set D:

E3(u, c1, c2, B) = λ
∫

Ω
(I −Bc1)2

∫ 1

0
1[0,u(x)](ε)dεdxdx

+λ
∫

Ω
(I −Bc2)21[u(x),1](ε)dε+ ν

∫ 1

0
Per(D(ε))dε (36)

Moving the integral over x inside the integral over ε, we can obtain

E3(u, c1, c2, B) =
∫ 1

0
{λ

∫
Ω

((I −Bc1)21[0,u(x)]

+(I −Bc2)21[u(x),1])dx+ νPer(D(ε))}dε

=
∫ 1

0
E2(D, c1, c2, B)dε (37)



It means that if u(x) is a global minimizer of E3, then for almost every ε ∈ [0, 1], the set D(ε) is a

global minimizer of minimization problem (??).

For convenience, we denote the total variation
∫

Ω |∇u|dx in (??) by TV(u). Then the minimization

problem of (??) with respect to u can be efficiently solved by the dual formulation method [?], [?].

Thereby, we solve the following minimization problem by adding a new variable v:

min
u,v
{E4 = νTV(u) +

1

2θ

∫
Ω

(u(x)− v(x))2dx

+
∫

Ω
λr(x, c1, c2) + αψ(u)dx} (38)

where r(x, c1, c2) = (I − Bc1)2 − (I − Bc2)2 and θ > 0 is a small parameter. αψ(u) is an exact penalty

term [?] used to extend the constrained convex set {u ∈ BV (Ω), 0 ≤ u ≤ 1} to unconstrained convex

set{u ∈ BV (Ω)}, where ψ(u) = max{0, 2|u− 1
2
| − 1}, provided that α > λ

2
||r(x, c1, c2)||L∞(Ω).

The minimization of (??) for given c1, c2 and B can be solved iteratively by the following two steps:

(i) v being fixed, minimize the following functional F1 with respect to u:

F1(u) = TV(u) +
1

2θ
||u(x)− v(x)||2L2 (39)

(ii) u being fixed, minimize the following functional F2 with respect to v:

F2(v) =
1

2θ
||u(x)− v(x)||2L2 +

∫
Ω
λr(x, c1, c2)v

+αψ(v)dx (40)

Following Chambolle’s dual formulation method [?], the step (i) can be efficiently solved by:

u(x) = v(x)− θdivρ(x) (41)

where ρ = (ρ1, ρ2) is the solution of

∇(θdivρ− v)− |∇(θdivρ− v)|ρ = 0 (42)



(??) can be solved by a fixed point method ρ0 = 0 and

ρn+1 =
ρn + δt∇(div(ρn)− v/θ)

1 + δt|divρn − v/θ|
(43)

The solution of (??) is achieved by the method of [?]:

v(x) = min{max{u(x)− θλr(x, c1, c2), 0}, 1} (44)

E. Numerical Implementation

In this paper, we compute the fitting constants shown in (??) by the smooth region descriptors H(1)
ς and

H(2)
ς instead of the characteristic functions χ1 and χ2. The smooth region descriptors H(1)

ς and H(2)
ς where

H(1)
ς = 1−H(2)

ς can be described as:

H(1)
ς (ϕ(x)) =

1

2
(1 +

2

π
arctan(ϕ ∗Gς)), x ∈ Ω (45)

where Gς is a Gaussian kernel and ς is standard deviation. From (??) we can see that H(1)
ς is rather similar

to the regularized version of Heaviside function introduced by [?]. Variable ϕ(x) is computed in terms of

u:

ϕ(x) =


c, for x∈ Ω: u(x) > ε

−c, for x∈ Ω: u(x) ≤ ε
(46)

where ε ∈ [0, 1] and c > 0 are two given constants. The convolution φ = ϕ ∗ Gς in (??) is to ensure the

value of φ to be small around the curves C and keep smooth in Ω. Thus the region descriptor H(1)
ς can be

smooth. Based on the region descriptors H(1)
ς and H(2)

ς , the fitting constants c1 and c2 can be computed by:

c1 =

∫
Ω I(x)B(x)H(1)

ς dx∫
Ω B

2(x)H
(1)
ς dx

, c2 =

∫
Ω I(x)B(x)H(2)

ς dx∫
Ω B

2(x)H
(2)
ς dx

(47)

In this paper, we choose c = 2, ς = 1 for each experiment. The curve-length weighting parameter ν and

time step δt can be set as ν = 1 and δt = 1/8. We also set θ = 1/3 for all experiments. The standard



Fig. 1. Segmentation results of our method with λ = 0.006 × 2552, ε = 0.5 and σ = 3. Columns 1 to 4 are initial curves, intermediate

results, final results and bias field estimation respectively.

deviation σ of Gaussian kernel in (??), the weighting parameter λ in (??) and constant ε ∈ [0, 1] will be

related to each experimental image. Also, The Gaussian kernel can be truncated as a mask with size %× %

(% is the the smallest odd number following that % ≥ 4σ+ 1 where σ is the standard deviation of Gaussian

kernel [?]). Unless otherwise specified, we update the u and v for each iteration and update c1, c2 and B

for every two iterations.

IV. EXPERIMENTAL RESULTS

In the following experiments, we perform our Matlab codes on a PC with Pentium dual-core E5400

processor, 2.70 GHz, 2GB RAM.

A. Performance Evaluation

In this section, we test our method both in synthetic and medical images especially for vessel images.

Firstly, we demonstrate the performance of our method in two vessel images and a synthetic image as

shown in Fig. 1. Curve evolution process including the initial curves, intermediate results and final results



(a) (b) (c) (d)

Fig. 2. Different initializations for synthetic images with size 256× 256.

C−V LC LBF Our Method

Fig. 3. Segmentation results for synthetic images. Rows 1 to 4 are the segmentation results with initializations corresponding to Fig.2 (a) to

(d) respectively.

are plotted on images in columns 1 to 3. Column 4 shows the bias field estimator. Though intensity

inhomogeneities of the three images shown in Fig. 1 are rather obvious, the performance of our method



Initial Curve C−V Our Method

Fig. 4. Performances of C-V model and our model for two vessel images. The left, middle and right columns are initial curves, results by

C-V model and results by our model respectively.

can achieve desire results. Furthermore, from column 4 of Fig. 1, we can see that the bias field estimator

computed by (??) can keep smooth in the whole image domain just as discussed in section III.

Let Ct denote the ground truth contours and Pi denote the ith pixel located at the detected curves. In

order to evaluate our method, we perform the following metric:

emin =
1

N

N∑
i=1

Dis(Ct, Pi) (48)

where Dis(Ct, Pi) is the minimal distance among all the distances from pixel Pi to each pixel of Ct. N is

the total number of pixels on the detected contours. This metric can evaluate the segmentation results with

subpixel accuracy.

Fig. 2 shows four different initializations on the same synthetic image with tubular tree structure as



the object. As the ground truth contours of Fig. 2 have been known, we make use of Fig. 2 to evaluate

the performance of the C-V model [?] , LBF model [?] and LC model [?] as well as our method. Fig. 3

demonstrates the segmentation results for the three methods and our method respectively. For our method

in Fig. 3, we update the u and v for each iteration and update c1, c2 and B for every four iterations.

The C-V model utilizes only two fitting constants to approximate the image inside and outside the curves,

which will lead to false results. Column 1 of Fig. 3 demonstrate the performance of C-V model and many

false curves are detected under any initializations. Column 2 shows the segmentation results by LC method

which is able to handle under intensity inhomogeneities. However, due to the level set application, under

some initializations, LC model may suffer from local minimums. LBF model makes use of local binary fitting

data to approximate the image in a local region. This method is robust to intensity inhomogeneities but will

introduce amounts of local minimums. Column 3 shows the results by LBF model. Under the initializations

shown in Fig. 2(c), LBF can obtain good results. However, under the other initializations it will result false

segmentation curves. Columns 4 demonstrates the results of our method with λ = 0.015× 2552, σ = 4 and

ε = 0.5. It can be seen that under different initializations, our method will result the same segmentation

curves, i.e. our method is more robust against the initialization than LC model and LBF model. The mean

computational time of our method in Fig. 3 is about 27 seconds.

Table 1 shows the quantitative evaluation results computed by (??). For four initializations, the evaluation

results of our method are almost the same. The evaluation values of C-V model seem to be much higher

than the other methods. And the results of LBF and LC are very similar, both of which are higher than our

method.

In Fig. 4, we compare the C-V model and our model in two real vessel images with size 131 × 103

(the top row) and 122 × 94 (the bottom row). Notice that the C-V model can only identify regions with

brightest intensity while our method can find the accurate partitions of the images. As both the background

and foreground of the images shown in Fig. 4 vary smoothly and quickly, the image model formulated by

piecewise constants used in C-V mode cannot work well. Instead, our model utilizing the piecewise smooth

image model can handle the intensity inhomogeneities more accurately. The mean computational time of

our method for Fig. 4 based on the parameters λ = 0.005 × 2552(λ = 0.01 × 2552 for the bottom row),

σ = 4 and ε = 0.5 is about 6.5 seconds.



TABLE I. QUANTITATIVE EVALUATION RESULTS OF DIFFERENT ACTIVE CONTOUR MODELS FOR IMAGES SHOWN IN FIG.3

Methods Row 1 Row 2 Row 3 Row 4

C-V 19.6350 20.0497 20.0651 19.4441

LC 2.8336 2.7025 1.2405 7.2686

LBF 2.3486 1.0839 1.3529 11.1026

Our Method 1.0810 1.0816 1.0816 1.0810

(a) (b) (c)

(d) (e) (f)

Fig. 5. Performances of LBF model and our model with different initializations. (a) and (d) are two different initializations. (b) and (e) are

segmentation results of LBF model. (c) and (f) are segmentation results of our model with λ = 0.0037× 2552, σ = 3 and ε = 0.45.

Fig. 5, Fig. 6 and Fig. 7 are the comparison of performance between LBF model and our model for

clinic images with two different initializations for each image. Fig. 5(b) and (e) are the results by LBF

model which suffers from many local minima especially around the initial curve. Fig. 5(c) and (f) are the

segmentation results by our model and can capture the accurate contour. Fig. 6 and Fig. 7 share the same

explanation with Fig. 5. Compared to LBF model, our method can avoid suffering from the local minima

due to the new variational framework [?] to find the global minimum and the two constants in(??) to give

our model a global restriction. The mean computational time of our method for Fig. 5 with size 131× 207,

Fig. 6 with size 110×111 and Fig. 7 with size 151×151 are about 18.3, 11.3 and 27.3 seconds, respectively.



(a) (b) (c)

(d) (e) (f)

Fig. 6. Performances of LBF model and our model with different initializations. (a) and (d) are two different initializations. (b) and (e) are

segmentation results of LBF model. (c) and (f) are segmentation results of our model with λ = 0.08× 2552, σ = 3 and ε = 0.45.

In the next examples (Figs. 8, 9 and 10) we compare the LC model based on level set formulation with

our method. Fig. 8 shows the performance of LC model and our model in a 138× 137-size vessel image

with weak edges. Fig. 8(a) is the initial curve, Fig. 8(b) is the result by LC model and Fig. 8(c) is the result

by our method. The LC model based on level set formulation and local cluster finds a large amount of false

curves while our model can capture the main tubular structure. It costs about 19.3 seconds for our method

to guide the curves to convergence to the boundaries in Fig. 8. Fig. 9 shows the segmentation results of

LC model and our method for a ultrasound image with weak edges as well and shares the same instruction

with Fig. 8. It will take about 20 seconds for our method to segment Fig. 9 with size 202 × 249. The

original image in Fig. 10(a) and (d) is the same one as shown in Fig. 5. With two different initializations

as shown in Fig. 10(a) and (d), we demonstrate the performance of LC model and our model. Similar to

the segmentation results of LBF in Fig. 5(b) and (d), Fig. 10(b) and (d) also suffer from the local minima

especially around the initial curve.

Fig. 11 shows the segmentation results by LC model with different curve-length parameters (denoted by



(a) (b) (c)

(d) (e) (f)

Fig. 7. Segmentation results of LBF model and our model with different initializations. (a) and (d) are two different initializations. (b) and

(e) are segmentation results of LBF model. (c) and (f) are segmentation results of our model with λ = 0.007× 2552, σ = 3 and ε = 0.65.

(a) (b) (c)

Fig. 8. Segmentation results of LC model and our method. (a) is initial curve. (b) is the performance of LC model. (c) is the performance

of our model with λ = 0.017× 2552, σ = 4 and ε = 0.45.

ν). The initialization for Fig. 11 is the same as in Fig.10(d). It can be seen that the LC model falls into

local minima around the initial curve though we give more weight to curve-length energy.



(a) (b) (c)

Fig. 9. Segmentation results of LC model and our method for ultrasound image. (a) is initial curve. (b) is the performance of LC model. (c)

is the performance of our model with λ = 0.035× 2552, σ = 4 and ε = 0.45.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Performances of LC model and our model with different initializations. (a) and (d) are two different initializations. (b) and (e) are

segmentation results of LC model. (c) and (f) are segmentation results of our model with λ = 0.0035× 2552, σ = 3 and ε = 0.5.

(a) (b) (c)

Fig. 11. Segmentation results of LC mode with different curve-length parameters ν. (a) results by setting ν = 0.001× 2552. (b) results by

setting ν = 0.008× 2552. (c) results by setting ν = 0.015× 2552.



V. CONCLUSION

In this paper, we have presented a global active contour model with the bias field estimator for tubular

structure segmentation. The proposed method can find the global minimum of the energy functional through

the application of Chan’s new variational framework and it is very robust against the initialization including

shapes and positions. Also, Because of the existence of bias field estimator, our model is able to segment

images with intensity inhomogeneities. Furthermore, we proposed a new method based on the Gaussian

kernel function to calculate the bias field estimator, which can ensure the bias field estimator vary smoothly

in image domain. Finally, by application of dual projection method and Bresson’s work [?], our method

can extract the boundaries more accurately than the widely used methods based on level set formulation

like C-V model , LBF model and LC model. Meanwhile, experimental results on tubular and tree structure

images further demonstrate the utility of the proposed method.
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