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Abstract. In this paper, we introduce a generalized asymmetric fronts
propagation model based on the geodesic distance maps and the Eikonal
partial differential equations. One of the key ingredients for the computa-
tion of the geodesic distance map is the geodesic metric, which can govern
the action of the geodesic distance level set propagation. We consider a
Finsler metric with the Randers form, through which the asymmetry
and anisotropy enhancements can be taken into account to prevent the
fronts leaking problem during the fronts propagation. These enhance-
ments can be derived from the image edge-dependent vector field such
as the gradient vector flow. The numerical implementations are carried
out by the Finsler variant of the fast marching method, leading to very
efficient interactive segmentation schemes.

1 Introduction

Fronts propagation models have been considerably developed since the original
level set framework proposed by Osher and Sethian [1]. Guaranteed by the solid
mathematical background, the fronts propagation models lead to strong abilities
in a wide variety of computer vision tasks such as image segmentation [2–5].
In their basic formulation, the boundaries of an object are modelled as closed
contours, each of which can be obtained by evolving an initial closed curve till
the stopping criteria are reached. The use of curve evolution scheme for image
segmentation can be back-track to the original active contour model [6].

Let Ω ⊂ R2 be an open bounded domain. Based on the level set frame-
work [1], a closed contour γ can be retrieved by identifying the zero level set
line of a function φ : Ω → R such that γ := {x ∈ Ω; φ(x) = 0}. By this curve
representation, the curve evolution is carried out by evolving the function φ

∂φ/∂t = ξ ‖∇φ‖, (1)

where ξ : Ω → R is a speed function and t denotes the time. At any time t,
the curve γ can be recovered by identifying the zero-level set lines of φ. Using
the level set evolutional equation (1), the contours splitting and merging can
be adaptively handled. The main drawback of the level set-based front propa-
gation method is its expensive computational burden. In order to alleviate this
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Fig. 1. Image segmentation through different metrics. a The original image and seeds.
b-d Segmentation results via isotropic Riemannian metric, anisotropic Riemannian
metric and the proposed Finsler metric.

problem, Adalsteinsson and Sethian [7] suggested to restrict the computation
for the update of the level set function φ within a narrow band such that only
the values of φ at the points within this narrowband are updated according to
Eq. (1). Moreover, the distance-preserving level set method [8] is able to avoid
level set reinitialization by enforcing the level set function φ as a signed Euclidean
distance function from the current curves during the evolution.

Despite the efforts devoted to the reduction of the computation burden,
the classical level set-based fronts propagation scheme (1) is still impractical
especially for realtime applications. In order to solve this issue, Malladi and
Sethian [9] proposed a new geodesic distance-based fronts propagation model
for real time image segmentation. It relies on a geodesic distance map Us : Ω →
R+ ∪ {0} associated to a collection s ⊂ Ω of source points. The value of Us(x)
in essence equals to the minimal geodesic length between x and a source point
s ∈ s associated to an isotropic Riemannian metric. The numerical computation
of Us can be carried out by the fast marching method [10, 11]. The efficiency
of the fast marching methods provide the possibility of real time segmentation
application. Based on the geodesic distance map Us, a curve can be denoted by
the T -level set of Us, where T > 0 is a geodesic distance thresholding value. In
other words, a curve γ can be characterized at the distance value T such that

γ := {x ∈ Ω; Us(x) = T}. (2)

One difficulty suffered by the geodesic distance-based fronts propagation scheme
is that the fronts may leak outside the targeted regions before all the points of
these regions have been visited by the fronts. The leaking problem sometimes
occurs near the boundaries close to the source positions or in weak boundaries,
especially when handling long and thin structures. The main reason for this
leaking problem is the positivity constraint required by the Eikonal equation.
Chen and Cohen [12] considered an anisotropic Riemannian metric for fronts
propagation, where the path orientations are taken into account to mitigate
the leaking problem. Arbelaez and Cohen [13] and Bai and Sapiro [14] made
use of the concept of Voronoi index map which is constructed by the geodesic
distance associated to the orientation-dependent pseudo path metric, the values
of which are allowed to be zero. The image segmentation can be characterized
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by the Voronoi regions, each of which involves all the points with the same
voronoi index. In this case, the contours indicating the tagged object edges are
common boundaries of the adjacent voronoi regions. Li and Yezzi [15] proposed a
dual fronts propagation model for active contours evolution, where the geodesic
metric comprises both edge and region statistical information. The basic idea
of [15] is to propagate the fronts simultaneously from the exterior and interior
boundaries of the narrowband. The optimal contours can be recovered from the
positions where the two fast marching fronts meet. These meeting interfaces also
correspond to the boundaries of the adjacent voronoi regions.

In this paper we extend the geodesic distance-based fronts propagation frame-
work to the Finsler case, where the edge anisotropy and asymmetry are taken
into account simultaneously. Moreover, we present a way to construct the Finsler
metric with respect to foreground and background segmentation. The existing
fronts propagation methods invoking either Riemannian metric [12,16] or pseudo
path metric [13, 14], do not take into account the edge asymmetry information.
This may lead to leaking problem when the seeds are close to the targeted bound-
aries. We show an example of such problems in Fig. 1, where the seeds are shown
in Fig. 1a with green and red brushes indicating background and foreground. It
can be seen that the segmentation contours from the Riemannian metrics shown
in Figs. 1b and 1c cross the boundaries before the whole object has been covered
by the fronts. In contrast, the segmentation results from the proposed Finsler
metric case can catch the desired boundary (see Fig. 1d).

1.1 Paper Outline

The remaining of this paper is organized as follows: In Section 2, we introduce
the geodesic distance map associated to a general Finsler metric, the Voronoi
regions and the relevant numerical tool. Section 3 presents construction principle
for the asymmetric Finsler metric. The numerical considerations for the Finsler
metric-based fronts propagation are introduced in Section 4. The experimental
results and the conclusion are respectively presented in Sections 5 and 6.

2 Background on Geodesic Distance Map

A Finsler geodesic metric F : Ω × R2 → [0,+∞] is a continuous function over
the domain Ω×R2. For each fixed point x ∈ Ω, the geodesic metric F(x,v) can
be characterized by an asymmetric norm of v ∈ R2. In other words, F is convex
and 1-homogeneous on its second argument. It is also potentially asymmetric
such that ∃x ∈ Ω and ∃v ∈ R2, the inequality F(x,v) 6= F(x,−v) is held.

The curve length associated to the metric F along a Lipschitz continuous
curve C can be expressed by `F (C) :=

∫
C F(C(s), C′(s)) ds with s the arc-length

parameter of C. It is possible for the geodesic length `F to take into account
both the path directions and image data [17]. Letting s ⊂ Ω be the set of the
source points, the minimal curve length from y to x associated to the metric F
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is defined by

DF (y,x) = inf
C∈Ay,x

`F (C), (3)

where Ay,x is the set of Lipschitz continuous curves linking y to x ∈ Ω. The
geodesic distance map Us associated to the metric F can be defined by

Us(x) := inf
s∈s
DF (s,x), (4)

It is the unique viscosity solution to the Eikonal equation such that Us(x) =
0, ∀x ∈ s, and

max
‖v‖6=0

〈∇Us(x),v〉
F(x,v)

= 1, ∀x ∈ Ω\s, (5)

where ∇Us(·) denote the Euclidean gradient vector and 〈·, ·〉 is the standard
Euclidean scalar product in R2. The Eikonal equation (5) can be interpreted by
the Bellman’s optimality principle such that

Us(x) = min
y∈∂Λ(x)

{DF (y,x) + Us(y)}, (6)

where Λ(x) is a neighbourhood of point x and ∂Λ(x) is the boundary of Λ(x).

2.1 Voronoi Index Map

We consider a more general case for which a family of source point sets, denoted
by sk, are provided. These sets are indexed by k ∈ {1, 2, · · · , n} with n the total
number of source point sets. For the sake of simplicity, we note s = ∪nk=1sk. A
Voronoi index map can be defined as a labelling function L : Ω → {1, 2, 3, ..., n},
which satisfies that L(x) = k, ∀x ∈ sk. In the sense of the geodesic distance
Uk, the Voronoi index map L assigns a label identical to the index of its closest
source point set such that

L(x) = arg min
1≤k≤n

Uk(x). (7)

By the map L, one can partition the domain Ω into n Voronoi regions Vk ⊂ Ω

Vk := {x ∈ Ω; L(x) = k}. (8)

The common boundary Γi,j := ∂Vi ∩∂Vj of two adjacent voronoi regions Vi and
Vj is comprised of a set of equidistant points to the collections si and sj . The
geodesic distance map Us associated to s = ∪ksk can be computed by

Us(x) = min
1≤k≤n

Uk(x). (9)
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2.2 Fast Marching Method

The fast marching method is a very efficient way to estimate the geodesic dis-
tance map. One key point of the fast marching method is the stencil map Λ,
where Λ(x) defines the neighbourhood of a grid point x. The original fast march-
ing methods [10,11] are established on the regular 4-connectivity neighbourhood
system, which may suffer some difficulties for the general Finsler metric. Alter-
natively, the Finsler variant of the fast marching method [18] make use of a
complicated neighbourhood system depending on the metric.

The Finsler invariant of the fast marching method [18] estimates the distance
values on a discretization grid Z2 of the domain Ω. It makes use of the Hopf-Lax
operator to approximate the Eikonal equation (6) such that

Us(x) = min
y∈∂Λ(x)

{F(x,x− y) + IΛ(x) Us(y)}, (10)

where Λ(x) denotes the stencil of x involving a set of vertices in Z2 and IΛ(x) is a
piecewise linear interpolation operator in the neighbourhood Λ(x). The minimal
curve length DF of a short geodesic from y to x is approximated by the value of
F(x,x − y). The distance value Us(y) in Eq. (6) is estimated by the piecewise
linear interpolation operator IΛ(x) at y located at the stencil boundary ∂Λ(x).
It is comprised of a set Tx of 1-dimensional simplexes or line segments. Each
simplex Ti ∈ Tx connects two adjacent vertices which are involved in the stencil
Λ(x). The solution Us to the Hopf-Lax operator (10) can be attained by

Us(x) = min
Ti∈Tx

Ui(x), (11)

where Ui is the solution to the minimization problem

Ui(x) = min
y∈Ti

{F(x,x− y) + IΛ(x) Us(y)}. (12)

For each simplex Ti ∈ Tx which joins two vertices z1 and z2, the minimization
problem (12) can be approximated by Tsitsiklis’ theorem [11] such that

Ui(x) = min
λ
F

(
x,x−

2∑
i=1

λizi

)
+

2∑
i=1

λiUs(zi), (13)

where λ = (λ1, λ2) subject to λ1, λ2 ≥ 0 and
∑2
i λi = 1.

Fast Marching Update Scheme. The fast marching method estimates the
geodesic distance map Us in a wave front propagation manner. The fast march-
ing fronts propagation is coupled with a procedure of label assignment opera-
tion, during which all the grid points are classified into three categories:Accepted
points (for which the values of Us have been estimated and frozen), Far points
(for which the values of Us are unknown), and Trial points (the remaining grid
points in Z2 which form the fast marching fronts). A Trial point will be as-
signed a label of Accepted if it has the minimal geodesic distance value among
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all the Trial points. In the course of the geodesic distance estimation, each grid
point x ∈ Z2\s will be visited by the monotonically advancing fronts which ex-
pand from the source points involved in s. The values of Us for all the Trial
points are stored in a priority queue in order to quickly find the point with min-
imal Us. The label assignment procedure1 can be carried out by a binary map
b : Z2 → {Accepted, Far, Trial}.

Suppose that s = ∪ksk with sk a source point set. The geodesic distance
map Us and the Voronoi index map L can be simultaneously computed [19,20],
where the computation scheme in each iteration can be divided into two steps.
Voronoi index update. In each geodesic distance update iteration, among all
the Trial points, a point xmin that globally minimizes the geodesic distance map
Us is chosen and tagged as Accepted. We set L(xmin) = k if xmin ∈ sk. Otherwise,
the geodesic distance value Us(xmin) can be estimated in the simplex T∗ ∈ Txmin

(see Eq. (11)), where the vertices relevant to T∗ are respective z1 and z2. This
is done by finding the solution to (13) with respect to the simplex T∗, where the
minimizer is λ∗ = (λ∗1, λ

∗
2). Then the Voronoi index map L can be computed by

L(xmin) =

{
L(z1), if λ∗1 ≥ λ∗2,
L(z2), otherwise.

(14)

Local geodesic distance update. For a grid point x, we denote by Λ?(x) :=
{z ∈ Z2; x ∈ Λ(z)} the reverse stencil. The remaining step in this iteration is to
update Us(z) for each grid point z such that z ∈ Λ?(xmin) and b(z) 6=Accepted
through the solution Ûs(z) to the Hopf-Lax operator (10). This is done by as-
signing to Us(z) the smaller value between the solution Ûs(z) and the current
geodesic distance value of Us(z). Note that the solution Ûs(z) to (10) is attained
using the stencil Λ(z) [18]. The algorithm for the fast marching method is de-
scribed in Algorithm 1. In this algorithm, the computation of a map Cdyn in
Line 12 of Algorithm 1 is not necessary for the general fast marching fronts
propagation scheme, but required by our method as discussed in Section 4.2.

3 Finsler Metrics Construction

Definition 1. Let S+
2 be the collection of all the positive definite symmetric

matrices with size 2 × 2. For any matrix M ∈ S+
2 , we define a norm ‖u‖M =√

〈u, Mu〉, ∀u ∈ R2.

In this section, we present the construction method of the Finsler metric which
is suitable for fronts propagation and image segmentation. Suppose that a vector
field g : Ω → R2 has been provided such that g(x) points to the object edges at
least when x is nearby them. In this case, the orthogonal vector field g⊥ indicates
the tangents of the edges.

1 Initially, each source point x ∈ s is tagged as Trial and the remaining grid points
are tagged as Far.
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Algorithm 1 Fast Marching Fronts Propagation

Input: Source points set s = ∪ksk.
Output: Geodesic distance map Us and Voronoi index map L.
1: ∀x ∈ Ω\s, set Us(x)←∞ and b(x)←Far.
2: ∀x ∈ s, set Us(x)← 0 and b(x)←Trial.
3: ∀x ∈ sk, set L(x) = k.
4: while there remains at least one Trial point do
5: Find a Trial point xmin globally minimizing Us.
6: Set b(xmin)←Accepted.
7: if xmin /∈ s then
8: Update the Voronoi index L(xmin) by Eq. (14).
9: end if

10: for all z ∈ Z2 such that xmin ∈ Λ(z) do
11: if b(z) 6=Accepted and z /∈ s then
12: /∗ Update some map Cdyn(z) if necessary. ∗/
13: Find Û(z) by evaluating the Hopf-Lax formula (11).
14: Set Us(z)← min{Us(z), Û(z)} and b(z)←Trial.
15: end if
16: end for
17: end while

Basically, the Eikonal equation-based fronts propagation models [9] perform
the segmentation scheme through a geodesic distance map. In order to find a
good solution for image segmentation, the used geodesic metric should be able
to reduce the risk of front leaking problem. For this purpose, we search for a
direction-dependent metric Fg satisfying the following inequality

Fg(x, g⊥(x)) < Fg(x, g(x)) < Fg(x,−g(x)). (15)

Recall that for an edge point x, both the feature vectors g⊥(x) or −g⊥(x) are
propositional to the tangent of the edge at x. When the fast marching front
arrives at the vicinity of image edges, it prefers to travel along the edge feature
vectors g⊥(x) and −g⊥(x), instead of passing through the edges, i.e., prefers to
travel along the direction −g(x).

The inequality (15) requires the geodesic metric Fg to be anisotropic and
asymmetric with respect to its second argument. Thus, we consider a Finsler
metric with a Randers form [21] involving a symmetric quadratic term and a
linear asymmetric term for any x ∈ R2 and any vector u ∈ R2

F(x,u) := C(x)
(
‖u‖Mg(x) − 〈ωg(x),u〉

)
, (16)

where Mg : Ω → S+
2 is a positive symmetric definite tensor field and ωg :

Ω → R2 is a vector field that is sufficiently small. The function C : Ω → R+

is a positive scalar-valued potential which gets small values in the homogeneous
regions and large values around the image edges. It can be derived from the
image data such as the coherence measurements of the image features, which
will be discussed in detail in Section 4.2. The tensor field Mg and the vector



8 Da Chen, Laurent D. Cohen

Fig. 2. Control sets for different metrics corresponding to different values of ψf(x0)
and ψb(x0). The blue dots and the contours denote the origins and the boundaries of
these balls, respectively.

field ωg should satisfy the constraint

‖ωg(x)‖M−1
g (x) < 1, ∀x ∈ Ω, (17)

in order to guarantee the positiveness [18] of the Randers metric F .
We reformulate the Randers metric Fg in Eq. (16) as

Fg(x,u) = C(x)Gg(x,u), (18)

where Gg : Ω × R2 → [0,∞] is still a Randers metric formulated by

Gg(x,u) = ‖u‖Mg(x) − 〈ωg(x),u〉. (19)

The remaining part of this section will be devoted to the construction of the
Randers metric Gg in terms of the vector field g which is able to characterize the
directions orthogonal to the image edges.

Let us define a new vector field ḡ : Ω → R2 by ḡ(x) := g(x)/‖g(x)‖2. The
tensor fieldMg used in Eq. (16) can be constructed dependently on two scalar-
valued coefficient functions η1 and η2 such that

Mg(x) = η21(x)ḡ(x)⊗ ḡ(x) + η2(x)ḡ⊥(x)⊗ ḡ⊥(x), (20)

where ḡ⊥(x) is the orthogonal vector of ḡ(x) and ⊗ denotes the tensor product,
i.e., u ⊗ u = uuT . Note that the eigenvalues of Mg(x) are η21(x)/‖g(x)‖2 and
η2(x)/‖g(x)‖2, respectively corresponding to the eigenvectors g(x)/‖g(x)‖ and
g⊥(x)/‖g(x)‖. The vector ωg(x) is positively collinear to field g(x) for all x ∈ Ω

ωg(x) = τ(x) ḡ(x), (21)

where τ : Ω → R is a scalar-valued coefficient function.
We estimate the coefficient functions η1, η2 and τ through two cost functions

ψf , ψb : Ω → (1, +∞), which assign the cost values ψf(x), ψb(x) and 1 to the
Randers metric Gg respectively along the directions g(x), −g(x) and g⊥(x) for
any point x ∈ Ω such that

Gg(x, g(x)) = ψf(x), Gg(x,−g(x)) = ψb(x), Gg(x, g⊥(x)) = 1. (22)
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Fig. 3. Geodesic distance maps associated to the Randers metric Gg with different
values of ψf and ψb. The red arrow indicate the vector (cos(π/4), sin(π/4))T . The
white dots are the source points. Each white curve indicates a level set line of the
respective geodesic distance map. (a) shows the geodesic distance map associated to
ψf ≡ 3 and ψb ≡ 8. (b) shows the geodesic distance map associated to ψf ≡ 3 and
ψb ≡ 3. (c) shows the geodesic distance map associated to ψf ≡ 8 and ψb ≡ 3.

Combining Eqs. (20) and (22) yields that

η1(x)− τ(x) = ψf(x), η1(x) + τ(x) = ψb(x), η2(x) = 1, ∀x ∈ Ω. (23)

The positive symmetric definite tensor fieldMg and the vector field ωg thus can
be respectively expressed in terms of the cost functions ψf and ψb by

Mg(x) =
1

4
(ψf(x) + ψb(x))2 ḡ(x)⊗ ḡ(x) + ḡ⊥(x)⊗ ḡ⊥(x), (24)

ωg(x) =
1

2
(ψb(x)− ψf(x)) ḡ(x). (25)

Based on the tensor field Mg and the vector field ωg respectively formulated
in Eqs. (24) and (25), the positiveness constraint (17) is satisfied due to the
assumption that ψf(x) > 1 and ψb(x) > 1, ∀x ∈ Ω. The cost functions ψf and
ψb can be derived from the image edge information such as the image gradients,
which will be discussed in Section 4.

Note that if we set ψf ≡ ψb, the vector field ωg will vanish, i.e., ωg ≡ 0 (see
Eq. (25)). In this case, one has 〈ωg(x),u〉 = 0 for any point x ∈ Ω and any vector
u ∈ R2, leading to a special form of the Randers metric Gg. This special form is
a symmetric (potentially anisotropic) Riemannian metric R(x,u) = ‖u‖Mg(x)

which depends only on the tensor field Mg.
Tissots indicatrix. A basic tool for studying and visualizing the geometry
distortion induced from a geodesic metric is the Tissots indicatrix defined as
the collection of control sets in the tangent space [22]. For an arbitrary geodesic
metric F : Ω ×R2 → [0,∞], the control set B(x) for any point x ∈ Ω is defined
as the unit ball centered at x such that B(x) := {u ∈ R2;F(x,u) ≤ 1}. We
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demonstrate the control sets B(q) in Fig. 2 for the Randers metric Gg(q, ·) with
different values of ψf(q) and ψb(q) at a point q ∈ Ω. The vector g(q) is set as

g(q) =
(
cos
(
π
4

)
, sin

(
π
4

))T
. In Fig. 2a, we show the control sets for the Randers

metric Gg with respect to different values of ψb(q) and a fixed value ψf(q) = 5.
One can point out that the common origin of these control sets have shifted from
the original center of the ellipses2 due to the asymmetric property. In Fig. 2b,
the control sets for the Randers metric Gg associated to ψf(q) = ψb(q) > 1 are
demonstrated, where Gg(q, ·) gets to be anisotropic and symmetric on its second
argument. When ψf(q) = ψb(q) = 1, the values of the Randers metric Gg(q,u)
turn to be invariant with respect to u as shown in Fig. 2c. In this case, the tensor
Mg(q) is propositional to the identity matrix. In Fig. 3, we show the geodesic
distance maps associated to Gg with different values of the cost functions ψf and

ψb. The vector field g is set to g ≡
(
cos
(
π
4

)
, sin

(
π
4

))T
.

In Figs. 3a and 3c, we can see that the geodesic distance maps have strongly
asymmetric and anisotropic appearance. In Fig. 3b, we observe that the geodesic
distance map appears to be symmetric and strongly anisotropic. This is because
the respective propagation speed of the fast marching fronts along the directions
(cos(π/4), sin(π/4))T and −(cos(π/4), sin(π/4))T are identical to each other.

4 Numerical Considerations

Let I = (I1, I2, I3) : Ω → R3 be a vector-valued image in the chosen color space
and let Gσ be a Gaussian kernel with variance σ ( we set σ = 1 through all the
experiments of this paper). The gradient of the image I at each point x = (x, y) is
a 2×3 Jacobian matrix ∇Iσ(x) = ∇Gσ ∗ I (x) involving the Gaussian-smoothed
first-order derivatives along the axis directions x and y

∇Iσ(x) =

(
∂xGσ ∗ I1 ∂xGσ ∗ I2 ∂xGσ ∗ I3
∂yGσ ∗ I1 ∂yGσ ∗ I2 ∂yGσ ∗ I3

)
(x). (26)

Let ρ : Ω → R be an edge saliency map. It has high values in the vicinity
of image edges and low values inside the flatten regions. For each domain point
x ∈ Ω, the value of ρ(x) can be computed by the Frobenius norm of the Jacobian
matrix ∇Iσ(x)

ρ(x) =

√√√√ 3∑
i=1

(
|∂xGσ ∗ Ii(x)|2 + |∂yGσ ∗ Ii(x)|2

)
. (27)

For a gray level image I : Ω → R, the edge saliency map ρ can be simply
computed by the norm of the Euclidean gradient of the image I such that

ρ(x) =
√
|∂xGσ ∗ I(x)|2 + |∂yGσ ∗ I(x)|2. (28)

2 These ellipses are the boundaries of the control sets.
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4.1 Construction of the vector field g

We use the gradient vector flow method [23] to compute the vector field g for
the construction of the Randers metric Fg. This can be done by minimizing the
following functional Egvf with respect to a vector field h = (h1, h2)T : Ω → R2,
where Egvf can be expressed as

Egvf(h) = ε Ereg(h) + Edata(h), (29)

where ε ∈ R+ is a constant and

Ereg(h) =

∫
Ω

(
‖∇h1(x)‖2 + ‖∇h2(x)‖2

)
dx, (30)

Edata(h) =

∫
Ω

‖∇ρ(x)‖ 2‖h(x)−∇ρ(x)‖2 dx. (31)

The parameter ε controls the balance between the regularization term Ereg and
the data fidelity term Edata. As discussed in [23], the values of ε should depend
on the image noise levels such that a large value of ε is able to suppress the
effects from image noise. We set ε = 0.1 through all the numerical experiments
of this paper. The minimization of the functional Egvf can be carried out by
solving the Euler-Lagrange equations of the functional Egvf with respect to the
components h1 and h2. The gradient vector flow h is more dense and smooth
than the original gradient filed ∇ρ. The vector field g for the construction of the
Randers metric Gg can be obtained by normalizing the vector field h

g(x) = h(x)/‖h(x)‖, ∀x ∈ Ω. (32)

The cost functions ψf and ψb used in Eq. (22) for the foreground and background
segmentation application can be expressed for any x ∈ Ω by

ψf(x) = exp (αf ρ(x)/‖ρ‖∞) , ψb(x) = exp (αb ρ(x)/‖ρ‖∞) ψf(x), (33)

where αf and αb are non-negative constants dominating how anisotropic and
asymmetric the Randers metric Gg is. Once the cost functions ψf and ψb have
been computed by Eq. (33), we can construct the tensor filedMg and the vector
field ωg respectively via Eqs. (24) and (25). Indeed, one has ψf(x) ≈ ψb(x) ≈ 1
for the points x located in the homogeneous region of the image I where ρ(x) ≈ 0.
In this case, the data-driven Randers metric Gg(x, ·) in Eq. (19) approximates
to be an isotropic Riemannian metric. For each point x around the image edges
where the value of ρ(x) is large, the Randers metric Gg(x, ·) will appear to be
strongly anisotropic and asymmetric.

4.2 Computing the Potential C

We present the computation methods for the potential function C used by the
data-driven Randers metric in Eq. (18). Basically, the function C should have
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small values in the flatten regions and large values in the vicinity of image edges.
The potential function C can be expressed by

C(x) = exp (βs ρ(x)/‖ρ‖∞) Cdyn(x), (34)

where βs is a positive constant and ρ is the edge saliency map defined in Eqs. (27)
or (28). The term exp(βs ρ(x)) which depends only on the edge saliency map ρ
will keep invariant during the fast marching fronts propagation. The dynamic
potential function Cdyn relies on the positions of the fronts. It will be updated in
the course of the geodesic distances computation in terms of some consistency
measure of image features [14]. Basically, the values of the dynamic potential
Cdyn should be small in the homogeneous regions. We use a feature map F :
Ω → Rn with n the dimensions of the feature vector to establish the dynamic
potential Cdyn. The feature map F can be the image color vector (n = 3), the
image gray level (n = 1), or the scalar probability map (n = 1) as used in [14].

Recall that in each fast marching distance update iteration, the latest Ac-
cepted point xmin is chosen by searching for a Trial point with minimal distance
value Us (s is the set of the source points), i.e.,

xmin := arg min
x:b(x)=Trial

Us(x). (35)

Then the value of Cdyn(z) for each point z ∈ Z2\s such that xmin ∈ Λ(z) and
b(z) 6=Accepted can be updated by evaluating the Euclidean distance between
F(z) and F(xmin) (see Line 12 of Algorithm 1). In other words, one can compute
the dynamic potential Cdyn in each fast marching update iteration by

Cdyn(z) = exp(βd ‖F(z)− F(xmin)‖ ) (36)

for all grid points z ∈ Z2\s such that xmin ∈ Λ(z) and b(z) 6=Accepted, where
βd is a positive constant. Note that we initialize the dynamic potential Cdyn by
Cdyn(x) = 1, ∀x ∈ s.

5 Experimental Results

The anisotropy and asymmetry of the Randers metric Gg is determined by the
parameters αf and αb (see Eq. (33)). We denote by Gαg the Randers metric Gg
with a pair of parameters α = (αf , αb). In this case, the corresponding Randers
metric Fg in Eq. (18) can be noted by Fα

g . The potential function C relies on
two parameters βs and βd. We fix βd = 10 through all the experiments, except
in Fig. 5 for which we set βd = 5. The values of βs are individually set for each

experiment. Note that the parameter α = (0, 0) means that the metric G(0,0)g

is isotropic with respect to its second argument. Furthermore, when α = (a, 0)

with a ∈ R+, the metric G(a,0)g gets to be the anisotropic Riemannian cases3.

3 Note that metric Gαg has the identical anisotropy and asymmetry properties to Fα
g .
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Fig. 4. (a) shows a synthetic image. The blue dots indicate two sampled points. The
arrows indicate the directions g(x) and g(y). (b) and (c) respectively plot the cost

values of G(0,0)g , G(2,0)g and G(2,1)g at points x and y along different directions.

The interactive foreground and background segmentation task can be con-
verted to the problem of identifying the Voronoi index map or Voronoi regions
in terms of geodesic distance [13, 14]. Let s1 and s2 be the sets of source points
which are respectively located at the foreground and background regions. The
Voronoi regions V1 and V2, indicating foreground and background regions re-
spectively, can be determined by the Voronoi index map L through Eq. (8) such
that Vi := {x ∈ Ω;L(x) = i}, i = 1, 2.

Let us consider a synthetic image as shown in Fig. 4a with two sampled points
x and y indicated by blue dots. The arrows respectively indicate the directions
of g(x) and g(y), where x is near the edges and y is located inside the homo-

geneous region. In Fig. 4b, we plot the cost values of the metrics G(0,0)g (x,uj),

G(2,0)g (x,uj) and G(2,1)g (x,uj), along different directions uj ∈ R2. The directions
uj are obtained by rotation such that uj = M(j θs) g(x), j = 1, 2, ..., 72, where
θs = π/36 is the angle resolution and M(j θs) is a rotation matrix with angle
j θs in a count-clockwise order. In Fig. 4c, we plot the cost values for the metrics

G(0,0)g (y,vj), G(2,0)g (y,vj) and G(2,1)g (y,vj) with vj = M(j θs)g(y). In Fig. 4b,
we can see that all of the three metrics get low values around the directions
M(π/2) g(x) and M(3π/2) g(x), which are orthogonal to the direction g(x).

However, around the direction −g(x), the Randers metric G(2,1)g attains much

larger values than the Riemannian cases G(0,0)g and G(2,0)g . Such an asymmetric
property is able to reduce the risk of front leakages.

In Fig. 5, we show the fronts propagation results on a synthetic image. In
the first column of Fig. 5, we initialize the sets of the source points in differ-
ent locations, which are indicated by green and blue brushes. The columns 2 to
4 of Fig. 5 are the segmentation results from the isotropic Riemannian metric

F (0,0)
g , the anisotropic Riemannian metric F (2,0)

g and the Randers metric F (2,3)
g ,

respectively. For the purpose of fair comparisons, the three metrics used in this
experiment share the same potential function C defined in Eq. (34). One can

point out that the results from the metrics F (0,0)
g and F (2,0)

g suffer from the
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Fig. 5. Image segmentation via different geodesic metrics on a synthetic image. Col-
umn 1 shows the initializations, where the green and blue brushes indicating the seeds
in different regions. Columns 2-4 show the segmentation results by the fronts propaga-
tion associated to the isotropic Riemannian metric F (0,0)

g , the anisotropic Riemannian

metric F (2,0)
g and the Randers metric F (2,3)

g , respectively.

leaking problem, while the final boundaries (red curves) associated the proposed

Randers metric F (2,3)
g are able to catch the expected edges thanks to the asym-

metric enhancement. In this experiment, we choose βd = 5.
In Fig. 6, we compare the interactive image segmentation results via different

geodesic metrics on real images [24, 25]. The final segmentation results are de-
rived from the boundaries of the corresponding Voronoi index maps. In column
1, we show the initial images with seeds indicating by green and blue brushes
respectively inside the foreground and background regions. In columns 2 to 4
of Fig. 6, we demonstrate the segmentation results obtained via the isotropic

Riemannian metric F (0,0)
g , the anisotropic Riemannian metric F (2,0)

g and the

Randers Metric F (2,3)
g . For the results from the isotropic and anisotropic Rie-

mannian metrics (shown in columns 2 and 3), the final contours leak into the
background regions. In contrast, the segmentation contours associated to the
Randers metric F (2,3) are able to follow the desired object boundaries.

6 Conclusion

In this paper, we extend the fronts propagation framework from the Rieman-
nian case to a general Finsler case with applications to image segmentation. The
Finsler metric with a Randers form allows us to take into account the asym-
metric and anisotropic image features in order to reduce the risk of the leaking
problem during the fronts propagation. We presented a method for the con-
struction of the Finsler metric with a Randers form using a vector field derived
from the image edges. This metric can also integrate with a feature coherence
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Fig. 6. Image segmentation via different geodesic metrics on real images. Column 1
shows the initializations, where the green and blue brushes are the seeds for background
and foreground regions. Columns 2-4 show the segmentation results by the metrics
F (0,0)

g , F (2,0)
g and F (2,3)

g , respectively.

penalization term updated in the course of the fast marching fronts propagation.
Experimental results show that the proposed model indeed produces promising
image segmentation results.
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