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Abstract. In this paper, we propose a new edge-based active contour
model for image segmentation and curve evolution by an asymmetric
Finsler metric and the corresponding minimal paths. We consider the
edge anisotropy information and the balloon force term to build a Finsler
metric comprising of a symmetric quartic term and an asymmetric lin-
ear term. Unlike the traditional geodesic active contour model where the
curve evolution is carried out by the level set framework, we search for
a more robust optimal curve by solving an Eikonal partial differential
equation (PDE) associated to the Finsler metrics. Moreover, we present
an interactive way for geodesics extraction and closed contour evolu-
tion. Compared to the level set-based geodesic active contour model,
our model is more robust to spurious edges, and also more efficient in
numerical solution.

1 Introduction

Active contours model or the snakes model [1] was proposed by Kass et al. for
boundary detection. The basic idea is to extract a sequence of time-dependent
curves to minimize the curve-based energy where the limit of these curves denotes
the boundary of an object. The snakes energy involves a potential function P

such that Esnake(γ) =
∫ 1

0

(
η1‖γ′(v)‖2 + η2‖γ′′‖2 + P (γ(v))

)
dv, where η1 and η2

are are two constants. A curve γ ∈ H2([0, 1], Ω) lies at an open domain Ω ⊂ R2

with H2 is a Sobolev space. The terms ‖γ′‖ and ‖γ′′‖ are respective the first- and
second-order derivatives of the path γ. In the past decades, a series of approaches
have been devoted to overcome the drawbacks of the snakes model [1] such as
the initialization sensitivity and the dependence of the parameterization.

The geodesic active contours (GAC) model [2,3] reformulated the snakes en-
ergy Esnake and removed the second-order derivative ‖γ′′‖ from Esnake. The GAC
model leads to important theoretical results. However, in its basic formulation,
the geodesic metric is actually an isotropic Riemannian metric which cannot take
into account the curve orientation. In [4, 5], the authors extended the isotropic
metric to the anisotropic case and the Finslerian case. The curve evolution is
originally carried out based on the level set framework [6] and the Euler-Lagrange
equation. Such a curve evolutional strategy costs expensive computation time
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and known to be sensitive to noise and spurious edges due to the numerous un-
desired local minimums. Cohen and Kimmel [7] proposed an efficiently minimal
path model, which can be naturally used for open curve detection. For object
segmentation, more efforts [8–10] have been devoted to for closed contours de-
tection which are used to delineate object boundaries.

In this paper, we propose a new curve evolution scheme based on the Eikonal
interpretation framework of a general regional active contour energy [10]. The
main contribution lies at the construction of a Finsler metric induced from the
balloon force [11] and the anisotropic edge information. In contrast to [10], our
method mainly depends on the anisotropic edge saliency information and balloon
force, which is insensitive to gray levels inhomogeneities.

2 Background on Minimal path and Eikonal PDE

Let =([0, 1], Ω) be the collection of all Lipschitz continuous curves γ : [0, 1] → Ω.
We denote by S+

2 the collection of 2× 2 symmetric positive definite matrices. A

norm ‖u‖M is defined by
√
〈u, Mu〉, where M ∈ S+

2 .

Cohen and Kimmel [7] proposed an Eikonal PDE-based method to globally

minimize the following geodesic energy LIso(γ) :=
∫ 1

0
(P(γ(t))+ ε)‖γ′(t)‖ dt with

ε > 0 a constant used for minimal geodesic regularization. The geodesic dis-
tance map U associated to a source s is defined as Us(x) := min{LIso(γ); γ ∈
=([0, 1], Ω)}, which is the viscosity solution to the isotropic Eikonal PDE [7]

‖∇U(x)‖ = P(x) + ε, ∀x ∈ Ω\{s}, and U(s) = 0. (1)

A general Finsler metric F : Ω × R2 → R+ is a positive, 1-homogeneous, and
potentially asymmetric function [4, 12], based on which the curve length asso-

ciated to the Finsler metric F is defined by LF(γ) :=
∫ 1

0
F(γ(t), γ′(t)) dt. The

Finsler Eikonal PDE [12–15] associated to LF can be expressed by

sup
‖v‖=1

〈∇U(x),v〉
F(x,v)

= 1, ∀x ∈ Ω\{s}, ∀u ∈ R2, and U(s) = 0. (2)

We consider the Randers metric [16], a special Finsler metric with the form of

F(x,u) = ‖u‖M(x) + 〈ω(x), u〉, ∀x ∈ Ω, ∀u ∈ R2, (3)

where M : Ω → S+
2 is a positive symmetric definite tensor field and ω : Ω → R2

is a vector field. The tensor field M and the vector field ω should satisfy

〈ω(x),M−1(x)ω(x)〉 < 1, ∀x ∈ Ω, (4)

to ensure the positivity of F [13, 16].
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3 Edge-based Balloon Eikonal Active Contours

Geodesic interpretation of an edge-based balloon energy. Let χB be the
characteristic function of a region B ⊂ Ω. The balloon force [11] was designed
as external force for active contours by minimizing the region-based term [17]

Eballoon(χB) =

∫
Ω

χB(x)dx =

∫
B

dx, (5)

where B ⊂ R2 is the interior region of a close path γB ∈ =([0, 1], Ω).

A complete edge-based active contour energy E can be defined by the sum-
mation of an anisotropic edge-based term and a balloon term

E(γB) =
∫ 1

0

‖γ′B(v)‖Me(γA(v)) dv + αEballoon(χB), (6)

where Me : Ω → S+
2 is an edge-based tensor field and α < 0 is a constant.

Let g ⊂ Ω be a fixed shape and let Ug be a tubular neighbourhood of a
curve γg such that Ug := {x ∈ Ω; minv∈[0,1] ‖x− γg(v)‖ < r} where r ∈ R+ is a
constant. Denoting by g′ = g\Ug that is entirely determined by Ug

1. We define
an admissible shape set Φ(Ug) := {B ⊂ Ω; γB ∈ =([0, 1], Ug), g

′ ⊂ B}.
In the course of curve evolution, let γBk

(k > 0) be the resulting curve in the
k-th step. We note Uk as the tubular neighbour of γBk

. Our goal is to find an
optimal curve γBk+1

such that Bk+1 ∈ Φ(Uk). This can be done by solving

inf
A∈Φ(Uk)

E(γA) = inf
A∈Φ(Uk)

{∫ 1

0

‖γ′A(v)‖Me(γA(v))dv + α

∫
A

dx

}
. (7)

For any shape A ∈ Φ(Uk), one has the following equations

E(γA) =
∫ 1

0

‖γ′A(v)‖Me(γA(v)) dv + α

∫
A

dx

=

∫ 1

0

‖γ′A(v)‖Me(γA(v)) dv + α

∫
A

χUk
(x) dx+ CBk

, (8)

where CBk
= α

∫
A\Uk

dx is a constant associated to the shape Bk. We consider

a vector field ak that satisfies the following divergence equation

divak = αχUk
(9)

1 This is because g′ is the bounded connected component of Ω\Ug.
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and suppose that ωk(x) = Rak(x), ∀x ∈ Ω, where R is the clockwise rotation
matrix with angle π/2. We rewrite Eq. (8) by removing the constant CBk∫ 1

0

‖γ′A(v)‖Me(γA(v))dv + α

∫
A

χUk
(x) dx

=

∫ 1

0

‖γ′A(v)‖Me(γA(v))dv +

∫ 1

0

〈
ak

(
γA(v)

)
,N (v)

〉
‖γ′A(v)‖dv (10)

=

∫ 1

0

‖γ′A(v)‖Me(γA(v))dv +

∫ 1

0

〈
ωk

(
γA(v)

)
, T (v)

〉
‖γ′A(t)‖dt

=

∫ 1

0

Fk(γA(v), γ
′
A(v))dv, (11)

where T = RN is the clockwise tangent of γ with the reality that γ′ = T ‖γ′‖.
The function Fk is defined by

Fk(x,u) = ‖u‖Me(x) + 〈ωk(x),u〉. (12)

For a given shape Bk, the problem (7) is equivalent to

inf
A∈Φ(Uk)

∫ 1

0

Fk(γA(v), γ
′
A(v))dv, (13)

where the shape A is the interior region of the path γA. Note that the formu-
lation (11) was first used in [10] for geodesic energy interpretation of a general
region-based energy. Here we use it to convert the balloon force energy to a
geodesic energy by a Finsler metic Fk. The crucial point for the curve length
energy (11) is the construction of the vector ωk in Eq. (9). As discussed in [10],
we solve the following PDE-constrained problem

min

{∫
Uk

‖ωk(x)‖2dx
}
, s.t. divωk = αχUk

, (14)

in an optimization-then-discretization manner to obtain the vector field ωk.
A new robust Finsler Metric. The tensor field Me can be expressed by
its eigenvalues λi and eigenvectors νi such that Me(·) =

∑
i λi(·)νi(·)νT

i (·)
following that 1 ≤ λ1(·) ≤ λ2(·). The eigenvalues λi are computed according to
the Frobenius norm of the gradient ∇(Gσ ∗I) of a color image I : Ω → R3, where
∇(Gσ ∗ I) is a Jacobian matrix with size 2× 3 and Gσ is a Gaussian filter with
variance σ. Letting g be the Frobenius norm of the gradient ∇(Gσ ∗ I), one has

λ1(·) = exp
(
β1 (‖g‖∞ − g(·))

)
, λ2(·) = exp

(
β2 g(·)

)
λ1(·),

where β1 and β2 are two positive constants. The vector ν1(·) is the eigenvector
of ∇(Gσ ∗ I)(·) corresponding to the smaller eigenvalue. Thus ν1(x) is collinear
to the edge orientation at x. The vector ν2(·) is the remaining eigenvector of
∇(Gσ ∗ I)(·). In this case, β2 controls the anisotropy of the tensor filed Me.
If x is far from the boundaries, one has λ1(x) ≈ λ2(x) � 1, leading to an
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Fig. 1. Illustration for the procedure of interactive image segmentation. Column 1
Control points pi (red dots) and tubular neighbourhood (gray region). Column 2
Separated tubular subregions. Column 3 Extracted minimal paths (solid black curves)
between successive control points.

Fig. 2. Evolution course of the interactive image segmentation scheme. Column 1
Initialization. Red dots are the control points. Columns 2-5 Segmentation results
from the first iteration to the fourth iteration.

approximately isotropic tensor Me(x) and high metric cost at x. In contrast, if
x is near a boundary, one has λ2(x) � 1 and λ1(x) ≈ 1 corresponding to an
highly anisotropic tensor Me(x).

To obey the positive constraint (4), we should ensure that infx ‖ωk(x)‖ < 1.
We make use of a non-linear map to construct a new vector field ω̃ such that

ω̃k(x) =
(
1− exp(−α̃ ‖ωk(x)‖)

)
ωk(x)/‖ωk(x)‖, (15)

where α̃ is a positive parameter. The Finsler metric Fk in Eq. (12) thus becomes

F̃k(·,u) = ‖u‖Me(·) + 〈ω̃(·),u〉. (16)

Since the balloon force is only used to drive the curves outward, the use of the
reconstructed Finsler metric F̃ will not modify the goal that F services for [10].

Interactive Segmentation. A curve concatenation operator can be defined by

Γ (v) = (Γ1 d Γ2)(v) =

{
Γ1(2v), if 0 ≤ v < 1

2 ,

Γ2(2v − 1), if 1
2 ≤ v < 1,

where Γ, Γ1, Γ2 ∈ =([0, 1], Ω) are clockwise paths.
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Fig. 3. Curve evolution with Me ≡ Id. Column 1 Control points and initial contour.
Columns 2-3 Evolution results on different iterations.

Considering a collection {pi}i≤m of m ( m ≥ 3) user-provided control points
distributed in a clockwise order along an object boundary. We aim to search
for a closed contour to delineate the target object boundary. This can be done
by concatenating a set of minimal paths associated to the metric Fk, each of
which links a pair of successive landmark points {pi,pi+1}. In Fig. 1a, we show
three control points denoted by red dots. During the curve evolution, in the k-th
iteration, we denote by Ci,k the paths between each pair of successive control
points pi and pi+1 for i < m, and by Cm,k the path linking pm to p1. A
closed contour γBk

, indicating the exterior boundary of the shape Bk, can be
concatenated by γBk

= dm
i=1 Ci,k. Let Uk be the tubular neighbourhood of γBk

.
One can identify a subregion <i ⊂ Uk for each path Ci,k

<i := {x ∈ U ; d(x, Ci,k) < d(x, Cj,k), ∀j 6= i} ∪ {Ci,k(0), Ci,k(1)}.

In Fig. 1b, we illustrated each subregion <i by different colours.

Within each region <i, we take pi as the source point to compute the geodesic
distance map Upi with respect to the metric F via the solution to the Eikonal
PDE (1). Then a minimal path Ci,k+1 is obtained by using Upi

and the gradient
descent ODE (2). The desired closed contour γBk+1

can be concatenated by

γBk+1
= dm

i=1Ci,k+1, (17)

and the shape Bk+1 can be simply identified as the interior region of γBk+1
.

Once we obtain γBk+1
, the vector field ω̃k+1 and metrics F̃k+1 can be updated

using Eqs. (15) and (16), respectively. We illustrate the course of the interactive
segmentation in Fig. 2, where the proposed model can converge to the desired
object boundary in only 4 steps. The curve evolution can be terminated when
the Hausdorff distance between two curves γBk

and γBk+1
is small enough.

Remark. The path Ci,k is actually a globally minimizing curve in the domain

<i with respect to the Finsler metric F̃k, which leads the proposed method to be
insensitive to spurious edges and noise. Moreover, the definition of <i guarantees
the extracted closed contour γBk+1

(see Eq. (17)) to be a simple curve since each
pair of subregions <i and <j has only one intersection point.
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Fig. 4. Image segmentation results. Column 1 Initializations. Red dots are user-
specified control points. Column 2 Edge saliency map. Column 3 Segmentation
from GAC model. Column 4 Segmentation from the proposed model.

4 Experimental Results

In Fig. 3, we show the curve evolution results by setting the tensor fieldMe ≡ Id,
where Id is the identity matrix. These contours (blue curves) inflate outward in
the course of the curve evolution due to the balloon force (negative value of α).
In this experiment the control points pi (red dots) have been fixed. Moreover,
as an option, these control points can be resampled in each iteration (for details
we refer to [10]). In this case, the contours (blue curves) will tend to appear as a
circle and will expand indefinitely since there is no edges to stop the evolution.

We compare our method to the GAC model [2]. The gradient flow of the
GAC model with respect to a level set function2 ψ can be expressed by

ψt = ‖∇ψ‖div(f ∇ψ/‖∇ψ‖) + c f ‖∇ψ‖, (18)

where f(·) = exp(−β2g(·)) and g is defined as the Frobenius norm of the gradient
∇(Gσ ∗ I). The term c f‖∇ψ‖ with c < 0 services as the adaptive balloon force
such that the curves will go outward in the flatten region where the edge indicator
f(·) � 0. In columns 3 and 4 of Fig. 4, we show the comparison results of
the GAC model and our method, where the corresponding initializations are

2 We use the distance preserving method [18] to avoid level set reinitialization.
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illustrated in column 1. We also show the edge saliency map in column 2. One
can see that the proposed model can successfully catch the desired boundaries. In
each tubular subregions <i, our method can find the robust and globally (w.r.t
<i) minimizing curve. In the column 3 of the GAC results, some portions of
the contours leak outside the boundaries due to the constant c for the adaptive
balloon force in Eq. (18). At the same time, some parts of the contours fall
into unexpected local minimums that are inside the objects. We can claim that
compared to the GAC model, the main advantages of the proposed method are
the robust optimality and the use of the user-specified control points.

5 Conclusion

In this paper, we propose a new edge-based active contour model based on the
Finsler Eikonal PDE. The basic idea is to convert the balloon regional term
as a curve energy via an asymmetric Finsler metric including the anisotropic
edge information. The proposed model is able to blend the benefits from the
global optimality of minimal path framework, the efficiency of the fast marching
method and the user intervention. Experiments show that our model indeed
obtains promising results.
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