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Abstract

In this paper, we propose an automatic radius-lifted minimal path method to track the

retinal vessels fast and accurately. Our method is related to the minimal path technique

which is particularly efficient to extract a tubular shape, like a blood vessel. The proposed

method consists of a set of pairs of points: each pair of points provides the initial source

point and target point. For each pair of such points, we calculate a special anisotropic

Riemannian metric with an additional Radius dimension to constrain the fast marching

propagation so that our method can get an exact path without any overlapping extraction.

1 Introduction

Automatic tracking and analysis of vascular structures is a crucial task in retinal disease

diagnostics such as retinopathy of prematurity. In this paper, we deal with the problem of

automatically finding a set of radius-lifted minimal paths representing the retinal vessel cen-

treline positions and radii. The minimal path model has been improved deeply since the

seminal Cohen-Kimmel model [3], in which tubular structures, or object edges are extracted

as the form of minimal paths. This classic model can lead to finding the global minimum

with respect to a geodesic energy potential P between two given endpoints. Once this po-

tential is properly defined, Fast Marching (FM) methods [8, 9] are the favored methods to

estimate geodesic distances, from which minimal paths can be extracted. However, with

Cohen-Kimmel model it is difficult to extract the centreline of the tubular structure and the

local width information simultaneously. Li and Yezzi [7] proposed a radius-lifted minimal

path technique, defining the potential domain Ω̂ ⊂ R
n+1, connected open and bounded, as

the product of spatial space Ω⊂ R
n with a parameter space [Rmin,Rmax] representing vessel

radius collection. Thus, each point in the path by [7] contains spatial position and the vessel

thickness at this spatial point. Unfortunately, Li-Yezzi model does not take advantage of ves-

sel orientation information which plays an important role in vessel detection. Benmansour

and Cohen [1] used an anisotropic Riemannian metric to enhance the Li-Yezzi model. Both

Benmansour-Cohen and Li-Yezzi models require the user to give two or more endpoints as

the prior knowledge to track the minimal paths. However, for retinal vessel network ex-
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traction, it requires considerable user-given endpoints to perform the Benmansour-Cohen

model.

The main purpose of this work is to introduce an automatic retinal vessel extraction

method, relying on the Benmansour-Cohen model [1] and the vessel skeleton map. A vessel

skeleton map is computed by sequential thinning filters [5] to the output of retinal vessel

classification methods to obtain the two endpoints for each retinal vessel segment.

2 Background

In this paper, we only consider the 2D vessel extraction so that one point x = (x,r) ∈ Ω̂,

where x ∈Ω (Ω⊂R
2) denotes the point position in spatial dimensions and r ∈ [Rmin,Rmax]

denotes the position in radius dimension.

Minimal Path and Anisotropic FM with Lattice Basis Reduction: Let ℑ denote the collec-

tion of Lipschitz paths γ : [0, L]→ Ω̂. Let s be arc-length parameter, the weighted length

through a geodesic energy potential P can be formulated as follows:

lP(γ(s)) :=
∫ L

0

√

γ ′(s)T M(γ(s))γ ′(s) ds , (1)

where γ ′ denotes the tangent vector of path γ . M is a 3×3 symmetric positive definite tensor

defining the anisotropic Riemannian metric [1] in the domain Ω̂. The geodesic distance

Us(x), is the minimal energy of any path joining x ∈ Ω̂ to a given initial point s:

Us(x) :=min{lP(γ)|γ ∈ ℑ, γ(L) = x, γ(0) = s}. (2)

The path Cs,x is a minimal path if lP(Cs,x) =min
γ
{lP(γ), γ ∈ ℑ}.

Numerical methods for the geodesic distance map Us(x) introduce a discretization grid

Z of Ω̂, and for each x ∈ Z a small mesh S(x) of a neighborhood of x with vertices in Z. An

approximation of Us is given by the solution of the following fixed point problem [8]: find

Us : Z → R such that (i) Us(s) = 0 for the initial point s, and (ii) for all x ∈ Z \ s

Us(x) = min
y∈∂S(x)

P(x,y−x)+ IS(x)Us(y), (3)

where IS(x) denotes piecewise linear interpolation on a mesh S(x) [8, 11]. We use the oriented

flux filter [6] to detect the retinal vessel orientation. The oriented flux of an image I :Ω→R
2,

of dimension d = 2, is defined by the amount of the image gradient projected along the

orientation p flowing out from a 2D circle at point x with radius r:

f (x;r,p) =
∫

∂Cr

(∇(Gσ ∗ I)(x+ rp) ·p)(p ·n)ds = pT ·Q(x,r) ·p, (4)

where Gσ is a Gaussian and n is the outward unit normal vector along ∂Cr. ds is the in-

finitesimal length of ∂Cr. Q(x,r) can be considered as the response of oriented flux in (4).

Limitations of Benmansour-Cohen model: Benmansour-Cohen model [1] can accurately

extract the vessel boundaries and centrelines at the same time, and also very fast. Unfortu-

nately, despite its numerous advantages, this model exhibits two disadvantages when applied

to retinal vessels extraction: (i) it requires user provided endpoints for each tubular structure,

which means expensive user intervention; (ii) it may suffer overlapping extraction problem

(see Fig. 1(c) and (d)).
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(a) (b) (c) (d) (e) (f)

Figure 1: overlapping extraction. (a) Original image. (b) Skeleton map: different segments

labeled by different colours. (c)(d) are the results by [1]. (e)(f) are the results by our method.

3 The Proposed Method

3.1 Pre-Processing

In this paper, we use a vessel detector to get the binary segmented map combining with a

threshold. Then we thin the binary segmented image by a sequential morphological filters [5]

and remove all the branch points. Thus the entire skeleton is broken up into a set of segments.

The branch points are defined as any skeleton point having at least three neighbours in its

8-neighborhood. Any endpoint is discovered if it has only one neighbour and segment point

has two neighbours. In Fig. 1(b), we show the skeleton map and the labeled segments in

different colours. In our work, we firstly scan the entire skeleton map to find all the vessel

segments with two endpoints. Delete the segments whose length in pixels are smaller than a

given threshold Tlen. Those segments will be stored in the set T.

3.2 Constrained Riemannian Metric and Anisotropic Fast Marching

We have all the segments and the corresponding endpoints stored in T, in which each seg-

ment consists of two endpoints. For each segment h̄ ∈ T with two endpoints ps and pe,

the centreline can be extracted by Benmansour-Cohen model [1] by taking one of the two

endpoints as initial point and track the path from another one. However, sometimes overlap-

ping extraction will occur and some segments will be missed. In Fig. 1(c), the extracted path

follows the segment labeled as blue in Fig 1(b). But the path in Fig. 1(d) is an overlapping

extraction path. To solve this problem, we use the following function with respect to h̄ ∈ T:

Dh̄(x,r) =

{

1, if dh̄(x,r)≤ ℓ ;

+∞, else ,
(5)

where ℓ is a given positive constant. And dh̄(x,r) is a distance function:

dh̄(x,r) =min
xh̄∈h̄

‖x− xh̄‖2. (6)

representing the minimal Euclidean distance from spatial point x ∈ Ω to the segment h̄. Dh̄

in (5) gives an offset region computed by dh̄ and ℓ. Now we can construct the constrained

Riemannian Metric for segment h̄ ∈ T as follows:

Mh̄(x) =

(

Dh̄(x) 0

0 Dh̄(x)

)(

M̃(x) 0

0 Pr(x)

)

=

((

Dh̄ ·M̃
)

(x) 0

0
(

Dh̄ ·Pr

)

(x)

)

. (7)

The anisotropic entry [1] M̃(x,r), which is a 2× 2 symmetric definite positive matrix, at

point x = (x,r) can be constructed by v1, v2, λ1 and λ2, which are the the eigenvectors and
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(a) (b)

Figure 2: Segmentation Results.(a) result from [1]. (b) results from the proposed method.

Figure 3: Examples after Endpoints Correcting(see text).

eigenvalues of the response of the oriented flux shown in (4) as:

M̃(x) = eα·λ2(x)v1(x)v1(x)
T + eα·λ1(x)v2(x)v2(x)

T . (8)

The isotropic entry Pr(x) can be computed as [1]:

Pr(x) = β exp
(

α
λ1(x)+λ2(x)

2

)

, (9)

where α controls the spatial anisotropic ratio while β controls the radius speed. Using

the radius-lifted Riemannian metric shown in (7), we can perform the anisotropic FM [8]

to transform the Riemannian metric map to distance map. Thus we can find the global

minimum with the given constrained metric and initial source point. Note that we give

only one physical space endpoint pe ∈ Ω. Once the anisotropic FM front meets one point

p = (p0,r) which follows p0 = pe , we consider p to be the endpoint.The radius-lifted path

γ , consisting of centreline positions and radii, can be extracted by solving an ODE:

γ ′(s) ∝−M−1
h̄ (γ(s)) ·∇U (γ(s)) (10)

Fig. 1(e) and (f) demonstrate the result of our method. In Fig. 2, we show the results of a

retinal image from Benmansour-Cohen model and the proposed method respectively. It can

be seen that our method can overcome the overlapping extraction problem.

3.3 Endpoints Correcting

Sometimes the endpoints of the segment h̄ are not located at the exact centreline of the tubular

structure. As an example, see the two endpoints of the segment in Fig. 1(b) labeled as red.

We propose an endpoint correcting (EC) method to solve this problem before applying the

proposed method described in Section 3.2. The EC method relies on the Euclidean length

map Λ of the minimal path. We firstly introduce the Euclidean length calculation method

during the FM propagation [2]: an approximation of Λ is the solution of the fixed point
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Table 1: Comparison of the proposed model and Benmansour-Cohen model on the test set

of DRIVE database.

Methods Maximum Minimum Mean Standard deviation

Benmansour-Cohen model[1] 0.947 0.9271 0.9372 0.0054

Proposed Method 0.949 0.9305 0.9397 0.0052

problem: find Λ : Z → R such that (i) for ps ∈ Ω̂, Λ(ps) = 0, and (ii) for all x = (x0,r0) ∈
Z \ps, let yx = (y,r) be the point at which the minimum (3) is attained:

Λ(x) = ‖y− x0‖2+ IS(x)Λ(yx), (11)

Then a single pass solver is possible: whenever the FM updates U , update Λ at the same

time, by using the just computed minimizer yx from (3).

The EC method can be described as: for a given segment h̄ ∈ T and its two endpoints

ps, pe we find its middle point pm ∈ h̄ and compute the Riemannian metric by (7) as input.

Launch the FM from pm = (pm,1) to compute the maps U and Λ. Once either endpoint p̃e =
(pe,re) is reached, search the desired point inside a set B : {x∈ Ω̂,‖x− p̃e‖2 ≤ rB} according
to the criteria: find a collection of points Φ := {x |Λ(x)≥ [Λ(p̃e)]+1,x∈B}where [n]means

the largest integer which is smaller than n ∈ R. Then the desired endpoint can be selected

as pe = argmin
x∈Φ

U (x). After another endpoint with the same criteria is corrected, stop the

algorithm completely. The criteria are based on the fact that among all the points with the

same curve length λ , any point which is located at the centreline of the tubular structure has

a local minimum arrival time. Fig. 3 shows some details from Fig. 2(b) that the results are

improved after endpoint correcting. In Fig. 3, yellow lines indicate the centrelines before

endpoint correcting while red lines indicate the centrelines after endpoint correcting.

4 Experiments

In Figs 1 and 2 we have shown the performance of the proposed method. In those two

images, the pre-segmented maps are obtained by Hessian-based filter [4]. In the following

experiments we will also use this filter to get the pre-segmented maps. For evaluation we

apply our method on 20 retinal images got from the test set of the DRIVE dataset [10],

acquired through a Canon CR5 non-mydriatic 3CCD camera with a 45 degree field of view

(FOV). We show the comparison between Benmansour-Cohen model [1] and our method

in Table 1 with evaluation measure Accuracy, which can be computed by the ratio of the

summation of the statistical components: the true positive and the true negative to the total

number of pixels in the FOV. In this paper, we erode the FOV region by 11 pixels to remove

the effect of the boundaries of the FOV to the vessel pre-segmentation. We evaluate our

results only inside this eroded FOV region. In Table 2 we show the computational time

(CPU) of our algorithm in endpoints correcting and constrained Fast Marching respectively.

We also compare the CPU with Benmansour-Cohen model [1] with the same given segment

set in the test set of DRIVE. Our method can achieve almost 2 times faster than [1]. In this

experiment, we use the parameters as: anisotropic ratio µ = 15, β = 1, the region offset size

ℓ shown in (5) equals 3.
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Table 2: CPU (in Seconds) of the proposed model and Benmansour-Cohen model [1] on the

test set of DRIVE database.

Maximum Minimum Mean Standard deviation

Benmansour-Cohen model 22.6 9.16 13.17 3.2

Endpoints Correcting 5.1 4.0 4.39 0.27

Constrained Fast Marching 5.6 4.4 5.06 0.353

5 Conclusions

In this paper, we propose a new tubular structure extraction method based on the constrained

anisotropic FM, and introduce an endpoints correcting method using Euclidean curve length.

These ingredients allow our method to approximate piecewise minimal paths from complex

tubular network, leading better extraction results compared to the Benmansour-Cohen model.
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