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Minimal Paths for Tubular Structure Segmentation
with Coherence Penalty and Adaptive Anisotropy

Da Chen, Jiong Zhang and Laurent D. Cohen, Fellow, IEEE

Abstract—The minimal path method has proven to be par-
ticularly useful and efficient in tubular structure segmentation
applications. In this paper, we propose a new minimal path model
associated with a dynamic Riemannian metric embedded with an
appearance feature coherence penalty and an adaptive anisotropy
enhancement term. The features that characterize the appearance
and anisotropy properties of a tubular structure are extracted
through the associated orientation score. The proposed dynamic
Riemannian metric is updated in the course of the geodesic
distance computation carried out by the efficient single-pass fast
marching method. Compared to state-of-the-art minimal path
models, the proposed minimal path model is able to extract the
desired tubular structures from a complicated vessel tree struc-
ture. In addition, we propose an efficient prior path-based method
to search for vessel radius value at each centerline position of the
target. Finally, we perform the numerical experiments on both
synthetic and real images. The quantitive validation is carried out
on retinal vessel images. The results indicate that the proposed
model indeed achieves a promising performance.

Index Terms—Geodesic, appearance feature coherence, adap-
tive anisotropy, dynamic metric, tubular structure segmentation.

I. INTRODUCTION

Tubular structure segmentation plays an important role in
many applications of image analysis and medical imaging [1]–
[3]. A broad variety of significant approaches have been
exploited to solve the tubularity segmentation problem in the
passed decades. Among these models, the variational methods
including the active contours models (e.g. [4]–[6]) and the
minimal path models [7] have been successfully applied to
various situations thanks to their solid theoretical background
and the reliable numerical solvers.

The basic idea for the active contours approaches is to model
the boundaries of a tubular structure through optimal curves or
optimal surfaces, which are in general obtained by minimizing
a functional relying on the image features extracted from the
tubular structures. An interesting example is the flux-based
active contours model [8] using the spherical flux of the
image gradient vectors for tubular features computation. Lax
and Chung [9] proposed an efficient way for the multi-scale
spherical flux computation implemented by the fast Fourier
transform in the Fourier domain. To improve the performance
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of the flux maximizing flow [8], the image gradient vector field
can be replaced by more adequate problem-dependent vector
fields [10], [11]. The authors of [12] proposed a new active
contours functional involving the asymmetry measure of the
image gradients and the symmetric oriented flux measure [13].
The constraints derived from the elongated nature of a tubular
structure were taken into account in [14]–[16]. Cohen and
Deschamps [17] combined the geodesic distance-based front
propagation method [18] and a Euclidean curve length-based
thresholding scheme for 2D and 3D vessel segmentation, by
which the front leaking problem suffered by [18] can be
avoided in some extent. Chen and Cohen [19] generalized that
isotropic model [18] to the anisotropic and asymmetric case
through a Randers metric.

It is important to indicate the other interesting and effec-
tive models for tubular structure segmentation applications
including the curvilinear enhancement filters (e.g. the steerable
filters [13], [20]–[23], the orientation score-based diffusion
filters [24]–[26], the path operator-based filter [27]) and the
graph-based shortest path models (e.g. [28], [29]). For more
models relevant to tubular structure segmentation, we refer
to the complete reviews in [1]–[3]. In the remaining of this
section, we present a non-exhaustive overview of the existing
minimal path-based tubular structure segmentation approaches.

The centerline of a tubular structure can be naturally mod-
elled as a minimal path [30], which is a globally optimal curve
that minimizes a curve length measured by a suitable metric.
The classical Cohen-Kimmel minimal path model [30] has
been taken as the basic tool in many tubularity segmentation
tasks, due to its global optimality and the efficient and stable
numerical solvers like the fast marching methods [31]–[33].
In the context of tubularity segmentation, the minimal path-
based approaches are studied mainly along two research lines.
Firstly, the Cohen-Kimmel model [30] provides an efficient
and robust way for minimally interactive segmentation, pro-
viding that the end points of the target structure have been pre-
scribed. To reduce the user intervention, the growing minimal
path model [34] was designed to iteratively add new source
points, which are referred as keypoints, during the geodesic
distance computation. The keypoints detection method has
been applied to road crack detection [35] and blood vessel
segmentation [36], [37] with suitable stopping criteria. The
geodesic voting model [38] used a voting score derived from
a set of minimal paths with a common source point, which
can detect a vessel tree structure from a single source point.
The curves resulted from the geodesic voting method [38] and
their respective offset curves can be taken as initialization for
the narrowband active contours model [39]. By minimizing an
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adequate active contours energy, the results of [39] are able to
depict the tubular centerlines and boundaries simultaneously.
In [40], the authors introduced a new curvilinearity extraction
model through a truncated back-tracked geodesic scheme and
the variant of the geodesic voting score. The minimal path
technique is often applied as the post-processing procedure
in some vessel segmentation applications. In this case, the
minimal paths can be used to get a connected vessel tree via
a perceptual grouping way [23], [41].

Secondly, the metrics used in the original minimal path
model [30] cannot ensure that the geodesic paths will al-
ways pass through the exact tubular centerlines. Deschamps
et al. [42] proposed a Euclidean distance-based potential
construction method, where the geodesic paths can follow the
tubular centerlines. Li and Yezzi [43] defined an isotropic
metric over a multi-scale space to simultaneously seek the
centerline and the boundary of the tubular structure. Benman-
sour and Cohen [44] generalized this isotropic model to an
anisotropic Riemannian case, where the vessel geometry was
extracted by the oriented flux filter [10]. Moriconi et al. [23]
proposed a new tubular geometry descriptor based on a series
of elongated Gaussian kernels for the multi-scale anisotropic
Riemannian metric construction. Péchaud et al. [45] added an
abstract orientation dimension to the multi-scale space, which
provides an orientation-lifted way to use the tubular anisotropy.

The minimal path models mentioned above only consider
the local vessel geometry to construct their metrics, sometimes
leading to a short combination problem or a shortcut problem.
To solve these problems, the curvature regularization was
taken into account for geodesic computation [46]–[50]. This is
based on the Eikonal equation framework, where the used met-
rics are commonly established in an orientation-lifted space.
By the curvature-penalized fast marching method [50], the
geodesic paths associated to the Finsler elastica metric [46],
the sub-Riemannian metric [49] can be efficiently estimated
with adequate relaxations. Instead of using orientation lifting,
Liao et al. [51] proposed a front frozen scheme for geodesic
computation. They estimated a path feature from each point
passed by the fast marching front, and froze these points
which do not satisfy the prescribed criteria. However, these
curvature-relevant models fail to exploit the tubular appearance
coherence penalty which is an important property in many
curvilinear structure segmentation applications such as retinal
vessel segmentation and neural fibre extraction.

In this paper, we propose a new metric penalized by
the tubular appearance feature coherence measure, where the
appearance features are characterized by coherence-enhanced
orientation scores. We estimate the feature coherence penalty
during the geodesic distance computation in conjunction with
a truncated geodesic path tracking scheme [40], [51]. Thus
the proposed metric is constructed in a dynamic manner. In
addition, we also propose a region-constrained metric estab-
lished in a multi-scale space. The constrained region is the
tubular neighbourhood of a prescribed curve, yielding a radius-
lifted geodesic path to depict the target. Based on this metric,
one can get a geodesic path involving both the centerline
and the respective vessel thickness. The proposed method
is very efficient and effective for single vessel extraction,

especially when the target is weakly-defined and close to
a strong one. This document is an extension to the short
conference paper [52], regarding which more contributions
have been added.
Outline. This paper is organized as follows: Section II intro-
duces the background on the tubular feature extractor and
the tubular minimal path models. The construction of the
appearance feature coherence penalized metric is introduced
in Section III. The numerical implementation is presented in
Section IV. The experimental results and the conclusion are
presented in Sections V and VI, respectively.

II. FINDING MINIMAL PATHS FOR VESSEL EXTRACTION

A. Tubular Feature Descriptor
Let Ω ⊂ R2 be an open and bounded domain instantiated in

2-dimension. A multi-scale space is defined as a radius-lifted
domain Ω̂ := Ω× Rscale ⊂ R3, where Rscale = [<min,<max]
is a radius space. A point x̂ = (x, r) ∈ Ω̂ is a pair comprised
of a position x ∈ Ω and a radius value r ∈ Rscale.

Without loss of generality, we assume that the gray levels
inside the vessel are locally darker than the background. A
tubular structure can be described by the anisotropy feature
vectors (vessel directions) and the appearance features in
the radius-lifted domain Ω̂. These features can be efficiently
extracted by the steerable filters such as [13], [21], [22].
We choose the optimally oriented flux (OOF) filter [10] as
our vessel geometry detector. The 2-dimentioanl OOF filter
invokes a Gaussian kernel Gσ with variance σ and a set of
circles with different radii. Let 1r be an indicator function of
a circle with radius r, which can be expressed by:

1r(x) =

{
1, if ‖x‖ < r,

0, otherwise.

The response OF of the OOF filter can be written by

OF(x, r) =
1

r

(
{∂xixj

Gσ}i,j ∗ 1r ∗ I
)
(x), (1)

where I : Ω → R is a scalar-valued image and the matrix
{∂xixj

Gσ}i,j is the Hessian matrix of the Gaussian kernel Gσ
with ∂xixjGσ the second-order derivative along the axes xi
and xj . For each point x̂ = (x, r), the response OF(x̂) is a
symmetric matrix of size 2 × 2 with eigenvalues %̂1(x̂) and
%̂2(x̂). We assume that %̂1(x̂) ≤ %̂2(x̂), ∀x̂. The anisotropy
feature at x̂ can be set as the eigenvector q̂of(x̂) of the
matrix OF(x̂) corresponding to the eigenvalue %̂1(x̂). One
can decompose the OOF response OF(x̂) by

OF(x̂) = %̂1(x̂)q̂of(x̂)⊗ q̂of(x̂)+ %̂2(x̂)q̂⊥of(x̂)⊗ q̂⊥of(x̂), (2)

where q̂⊥of is the orthogonal vector of q̂of and the operator ⊗
is defined as u1 ⊗ u2 = u1u

T
2 , ∀u1,u2 ∈ R2. The optimal

scale map ζscale : Ω→ Rscale can be expressed by

ζscale(x) = arg max
r∈Rscale

%̂2(x̂), (3)

which defines the radius that a tubular structure should have at
x. Note that for a point x that is inside a vessel, the eigenvalues
satisfy that %̂1(x, ζscale(x)) ≈ 0 and %̂2(x, ζscale(x))� 0 due
to the lower gray levels inside the vessel regions. In this case,
the vector q̂of(x, ζscale(x)) points to the vessel direction at x.
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B. Anisotropic Tubular Riemannian Minimal Path Model
The tubular minimal path models including the isotropic

case [43] and the anisotropic extension [44], aim to minimize
the curve length of a radius-lifted path γ̂(u) = (γ(u), τ(u))
with τ : [0, 1]→ Rscale a parametric function. In this case, the
curve γ(u) serves as the vessel centerline position and τ(u)
represents the radius of the vessel at the position γ(u).

Let S+
d (d = 2, 3) be the set of the symmetric positive

definite matrices of size d × d and let L([0, 1], Ω̂) be the set
of all the Lipschitz paths γ̂ : [0, 1] → Ω̂. In the anisotropic
case [44], the length of a curve γ̂ ∈ L([0, 1], Ω̂) associated to
a tensor field Mscale : Ω̂→ S+

3 can be measured by

E(γ̂) =

∫ 1

0

√
〈γ̂′(t),Mscale(γ̂(t))γ̂′(t)〉 dt, (4)

where γ̂′(t) = dγ̂(t)/dt is the first-order derivative of γ̂.
According to [44], the tensor Mscale(x̂) can be written as

Mscale(x̂) =

(
Maniso(x̂) 0

0 Pscale(x̂)

)
, (5)

where Pscale : Ω̂→ R+ is a scalar-valued function defined by

Pscale(x̂) = βscale exp

(
1

2
αaniso (%̂1(x̂) + %̂2(x̂))

)
, (6)

where αaniso ∈ R and βscale ∈ R+ are two constants. The
tensor field Maniso can be decomposed by

Maniso(x̂) = exp(αaniso %̂2(x̂)) q̂of(x̂)⊗ q̂of(x̂)

+ exp(αaniso %̂1(x̂))q̂⊥of(x̂)⊗ q̂⊥of(x̂). (7)

Given a source point ŝ and a target point x̂ ∈ Ω̂, the
geodesic curve Ĉŝ,x̂ ∈ L([0, 1], Ω̂) linking from ŝ to x̂ is a
global minimizer to the curve length E , i. e.,

Ĉŝ,x̂ = arg min
γ̂∈L([0,1],Ω̂)

{E(γ̂); γ̂(0) = ŝ, γ̂(1) = x̂}. (8)

For tubular structure extraction, a point Ĉŝ,x̂(t) in the geodesic
path Ĉŝ,x̂ involves three components, where the first two
coordinates delineate a centerline position while the last one
describes the radius the tubular structure has at that position.

The geodesic distance map Dŝ : Ω̂→ R+
0 associated to the

source point ŝ is defined by

Dŝ(x̂) = inf
γ̂∈L([0,1],Ω̂)

{E(γ̂); γ̂(0) = ŝ, γ̂(1) = x̂}. (9)

We define a norm ‖u‖M =
√
〈u, Mu〉 for any matrix M ∈

S+
d , where 〈u1,u2〉 denotes the Euclidean scalar product of

two vectors u1, u2 ∈ Rd. The geodesic distance map Dŝ is
the unique viscosity solution to the Eikonal PDE

‖∇Dŝ(x̂)‖M−1
scale(x̂) = 1, ∀x̂ ∈ Ω̂\{ŝ}, (10)

with boundary condition Dŝ(ŝ) = 0.
Let C̄x̂,ŝ ∈ L([0, L], Ω̂) be a geodesic curve parameterized

by its arc-length with C̄x̂,ŝ(0) = x̂ and C̄x̂,ŝ(L) = ŝ, where L
is the Euclidean curve length of C̄x̂,ŝ. The geodesic C̄x̂,ŝ can be
computed by solving the gradient descent ordinary differential
equation (ODE) on the map Dŝ such that C̄x̂,ŝ(0) = x̂ and

C̄′x̂,ŝ(v) = −
M−1

scale(C̄x̂,ŝ(v))∇Dŝ(C̄x̂,ŝ(v))

‖M−1
scale(C̄x̂,ŝ(v))∇Dŝ(C̄x̂,ŝ(v))‖

. (11)

(a) (b) (c)

Fig. 1. Short branches combination problem. (a) A retinal image with red
curves indicating the true boundaries of the target. (b) The minimal path
obtained from [44]. (c) The minimal path from the proposed model. The
yellow and blue dots are the prescribed points.

The geodesic curve Ĉŝ,x̂ with Ĉŝ,x̂(0) = ŝ and Ĉŝ,x̂(1) = x̂
can be recovered by reversing and reparameterizing C̄x̂,ŝ.

C. Short Branches Combination and Shortcut Problems
The anisotropic tubular minimal path model [44] invokes

the static tensor fieldMscale (see Eq. (5)), which relies on the
pointwise geometry features. When the target structure is weak
in the sense of the appearance feature and is close to or even
crosses a strong one, a minimal path derived from this model
favours to pass through a way comprised of a set of strong
vessel branches not belonging to the target. This gives rise
to the short branches combination problem and the shortcut
problem. In Fig. 1, we make use of a retinal image to illustrate
these problems. In Fig. 1a, the red curves are the boundaries
of the target vessel. This target appears to be weaker than its
neighbouring vessel. In Fig. 1b, we can see that the geodesic
path derived from [44] passes by a long vessel segment not
belonging to the target. In contrast, the proposed model which
exploits the appearance feature coherence penalization and the
adaptive anisotropy enhancement is able to overcome these
problems as shown in Fig. 1c.

III. DYNAMIC RIEMANNIAN METRIC WITH APPEARANCE
FEATURE COHERENCE PENALIZATION

Overview. The main objective of this paper is to seek a
tubular structure between two prescribed points from an image
involving a set of vessels, providing that the appearance1 and
anisotropy features vary smoothly along the target structure.
The tubular appearance features are supposed to be distin-
guishable between two structures close to each other. In this
setting, these tubular structures may yield a set of crossing
points, each of which is defined as a point at the overlapped
region. We design a new metric by taking into account the
appearance feature coherence measure to overcome the short
branches combination problem. The existence of the crossing
points may yield two discriminative appearance and anisotropy
features in the overlapped region. In order to accurately
compute the tubular appearance coherence measurement, we
need to identify the correct appearance and anisotropy features
belonging to the target structure at crossing points. For this
purpose, we use the tool of the orientation score to extract the
tubular appearance and anisotropy features.

1In general, the tubular appearance feature can be carried out by either the
image gray levels, the vesselness or the orientation score.
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Fig. 2. A symmetric oriented Gaussian kernel (column 1) and the correspond-
ing asymmetric kernels (columns 2-3). The red dots are the kernel centers.
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Fig. 3. (a) A retinal image with two points x1 and x2. The red and blue
arrows at x1 (resp. x2) respectively indicate the elements involved in Mx1

(resp. Mx2 ) and Nx1 (resp. Nx2 ). (b) The red and blue curves respectively
indicate the orientation scores of Ψ(x1, θ) and ψ(x1, θ) along the orientation
dimention. The black dots indicate the peaks of Ψ(x1, ·) and ψ(x1, ·).

A. Coherence-enhanced Orientation Score

Asymmetrically Oriented Gaussian Kernels. Let S1 = [0, 2π)
be an orientation space with periodic boundary condition and
let g(θ) = (cos θ, sin θ)T be a unit vector associated to
an orientation θ ∈ S1. The oriented Gaussian kernel [53]
associated to an orientation θ ∈ S1 can be expressed by

Qθb(x) =
1

2πσ1σ2
exp

(
|〈g(θ),x〉|2

−2σ2
1

+
|〈g⊥(θ),x〉|2

−2σ2
2

)
,

where b = (σ1, σ2) includes the variances σ1, σ2 ∈ R+ with
σ1 � σ2. The oriented Gaussian kernel Qθb is symmetric with
respect to the orientation θ, i.e., Qθb(·) = Qπ+θ

b (·).
We further consider an asymmetrically oriented Gaussian

kernel relying on a cutoff function δθ : Ω→ {0, 1} such that

δθ(x) =

{
1, if 〈∇Gσ1

(x), g(θ)〉 ≥ ε1,

0, otherwise,
(12)

where ∇Gσ1
= (∂x1

Gσ1
, ∂x2

Gσ1
)T is the gradient of a

Gaussian kernel Gσ1
with variance σ1 and ε1 ≈ 0 is a constant.

An asymmetric oriented Gaussian kernel Hθb associated to an
orientation θ can be expressed by

Hθb(x) = δθ(x)Qθb(x). (13)

In Fig. 2, we illustrate an example for the symmetric kernel
Qθb and the respective asymmetric kernels Hθb and Hθ+πb .
Coherence-enhancing orientation score. The orientation score
ψ : Ω× S1 → R+

0 can be computed by

ψ(x, θ) = max{〈g⊥(θ),OF(x, ζscale(x))g⊥(θ)〉, 0}, (14)

where OF is the OOF response defined in Eq. (1) and
g⊥(θ) = (− sin θ, cos θ)T . The scalar value ζscale(x) denotes

the optimal scale at the point x (see Eq. (3)). The orientation
score ψ sometimes still offers incorrect responses at crossing
points due to the complex structures there, which can be seen
from Fig. 3. In Fig. 3a, the blue arrows at the crossing point
x1 indicate the optimal feature vector g(θ∗) and −g(θ∗) where
θ∗ = arg maxθ{ψ(x1, θ)}. Unfortunately, one can see that the
blue arrows in Fig. 3a are not proportional to the directions
at the crossing point x1. This can be solved by convolving
the orientation score ψ through the kernels Hθb to obtain a
coherence-enhanced orientation score Ψ : Ω× S1 → R+

0

Ψ(x, θ) =
(Hθ+πb ∗ ψθ)(x)∫

Ω
Hθ+πb (x) dx

, ψθ(·) =
ψ(·, θ)
‖ψ‖∞

, (15)

for each fixed orientation θ ∈ S1, where ∗ is the convolution
operator over the domain Ω. The denominator

∫
Ω
Hθ+πb (x)dx

in Eq. (15) is used for normalization.
A set Mx of locally optimal feature vectors with respect to

the coherence-enhanced orientation score Ψ can be defined by

Mx =
{
g(θ∗); Ψ(x, θ∗) > Ψ(x, θ), ∀θ ∈ N(θ∗, `),

Ψ(x, θ∗) >
1

2π

∫ 2π

0

Ψ(x, θ) dθ
}
,

(16)

where N(θ∗, `) denotes the interval of length ` centred at
θ∗. In Eq. (16) we use the mean of Ψ over the orientation
dimension as a thresholding value to identify the local maxima,
which can be tuned adequately for different tasks.

An indicator Cx for the set Mx can be defined by

Cx(θ) =

{
1, if g(θ) ∈Mx,

0, otherwise.
(17)

Similar to Mx, we can also define a set Nx for each point x
with respect to the orientation score ψ(x, ·).

In Fig. 3, we show the advantages of the coherence-
enhanced orientation score Ψ when comparing to the original
ψ. In Fig. 3a, the red arrows at the crossing point x1 cor-
respond to the feature vectors in the set Mx1 while the blue
arrows at x1 indicate the feature vectors in the set Nx1 . We can
see that the red arrows derived from Ψ at x1 are approximately
proportional to the respective vessel directions, while the blue
arrows derived from ψ point to incorrect directions. In Fig. 3b,
we plot the values of ψ(x1, θ) and Ψ(x1, θ) with respect to θ,
where the black dots indicate the peaks of Ψ(x1, θ). In Fig. 3a,
the blue arrows at a non-crossing point x2 corresponding to
the feature vectors in Mx2

are almost propositional to the red
arrows derived from Nx2

. Each of the feature vectors indicated
by the red and blue arrows well approximate to the respective
vessel direction at x2.

B. A New Metric with Appearance Feature Coherence Penalty
and Adaptive Anisotropy Enhancement

In this section, we propose a new anisotropic metric Fcoh :
Ω× R2 → [0,∞] based on the appearance feature coherence
penalty and the adaptive anisotropy enhancement. The metric
Fcoh is constructed based on a tensor field Tcoh : Ω→ S+

2

Fcoh(x,u) =
√
〈u, Tcoh(x)u〉. (18)
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(a) (b)

Fig. 4. (a) Blue dot indicates a crossing point x and the target tubularity has
stronger gray levels. The red line indicates the true vessel direction. The white
line is proportional to q̂of(x, ζscale(x)). (b) Close-up view of the crossing
region. The arrows at x represent the vectors in Mx and the yellow one
denotes p(xn). The red arrow represents the vector p(ax) at the reference
point ax (red square). The magenta dot is the reference point bx.

The tensor field Tcoh is comprised of an appearance feature
coherence penalty φcoh defined as a scalar-valued function,
and two tensor fields Tbase and Taniso. More precisely, it can
be formulated as

Tcoh(x) = φcoh(x)
(
Tbase(x) + Taniso(x)

)
, (19)

The remaining of this section will be devoted to the compu-
tation of these components involved in the tensor field Tcoh.

We first present the computation methods respectively for
the scalar-valued function φcoh and the tensor field Taniso.
Both of them rely on a new feature vector field p : x ∈ Ω 7→
p(x) ∈Mx, which characterizes the anisotropy features of the
target tubular structure. In other words, the feature vector p(x)
is proportional to the vessel direction at x. For convenience,
we define a function µ : Ω→ S1 associated to the vector field
p being such that(

cosµ(x), sinµ(x)
)T

= p(x). (20)

Adaptive anisotropy feature vector field. At a crossing point
x, each vector in the set Mx corresponds to a vessel direction.
We need to choose the correct feature vector, i.e., the feature
vector p(x), for the target vessel from the set Mx. Recall
that the vector field p is supposed to vary slowly along the
the same structure. This means that we can seek p(x) from
the set Mx using a reference point ax which is close to x,
providing that p(ax) has been known. Note that the detection
of the reference points is presented in Section IV-B. In Fig. 4b,
we denote the point x by a blue dot and its reference point
ax by a red square. The cyan and yellow arrows at x (blue
dot) represent the elements in the set Mx and the red arrow
indicates the vector p(ax).

Along the same tubular structure, the slow-varying prop-
erty of the vector field p in principle yields the maximal
value of |〈p(x), p(ax)〉| among all the elements in Mx, i.e.,
|〈p(x), p(ax)〉| ≥ |〈u, p(ax)〉|, ∀u ∈ Mx. We define a set
M∗x ⊆Mx involving all the maximal feature vectors by

M∗x = {w ∈ R2; w = arg max
u∈Mx

|〈u, p(ax)〉|}. (21)

Based on the set M∗x, the feature vector p(x) can be identi-
fied by p(x) = (cosµ(x), sinµ(x))T , where the orientation
µ(x) ∈ S1 is computed by2

µ(x) = arg min
θ:g(θ)∈M∗

x

|Ψ(x, θ)−Ψ(ax, µ(ax))|. (22)

In Fig. 4b, we show an example for the computation of
p(x), where the yellow arrow at x represents the identified
vector p(x) from the set Mx. The vector field p is con-
structed in a progressive way. The initialization for p is set as
p(s) = (cosµ(s), sinµ(s))T , where µ(s) = arg maxθ Ψ(s, θ)
and s is the source point. The progressive procedure for the
computation of p is carried out during the fast marching front
propagation which is detailed in Section IV-B.
Appearance feature coherence penalty. Once the anisotropy
feature vector p(x) (or the corresponding orientation µ(x)) is
detected, we can compute the appearance feature coherence
penalty φcoh based on the coherence-enhanced orientation
score Ψ (see Eq. (15)) and a new reference point bx by

φcoh(x) = exp
(
λ |Ψ(x, µ(x))−Ψ(bx, µ(bx))|

)
, (23)

where λ is a positive constant. When the point x and its
reference point bx are located at the same vessel, the value
of φcoh(x) should be low according to the slow-varying prior
for the appearance features.
Adaptively anisotropic tensor field. The anisotropic tubular
minimal path model [44] usesMscale (see Eq. (5)) to compute
the geodesic distances, which grow slowly along the directions
q̂of(·) inside the vessel regions. However, at some crossing
point x, the directions q̂of(x, ζscale(x)) from the OOF filter are
not always proportional to the direction of the target vessel.
This can be seen from Figs. 3a and 4a. In Fig. 4a, the direction
of the target vessel at x (denoted by the blue dot) is indicated
by a red line. The white line indicates q̂of(x, ζscale(x)) which
is almost orthogonal to the red line. In order to get a metric
with correct anisotropy enhancement, we consider a tensor
field Taniso formulated by

Taniso(x) = ξaniso p
⊥(x)⊗ p⊥(x), (24)

where ξaniso is a positive constant.
Finally, the term Tbase in Eq. (19) is an image data-driven

tensor field. It can be formulated in an isotropic form:

Tbase(x) = exp(−α max
θ∈S1

ψ(x, θ)) Id, (25)

where Id is the 2×2 identity matrix and α ∈ R+ is a constant.
In order to take advantages of the anisotropy enhancement,
we use the orientation score-based tensor field construction
method [54] to build Tbase. This is done by replacing the
identity matrix in Eq. (25) by a new tensor field T−1

os which
is the inverse of a positive definite symmetric tensor field Tos

Tos(x) =

∫ 2π

0
Cx(θ)Ψ(x, θ)g(θ)g(θ)T dθ

max{ε2,
∫ 2π

0
Cx(θ)dθ}

+ ξident Id, (26)

where ξident and ε2 (ε2 ≈ 0) are two small positive constants.
The matrix ξident Id ensures the non-singularity of the matrix

2Note that if the set {θ ∈ S1; g(θ) ∈ M∗
x} includes more than one

elements, we assign the smallest one to µ(x).
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(a) (b) (c)

Fig. 5. (a) Two tubular structures crossing each other. The red dot indicates
the source point. (b) Geodesic distances superimposed on the synthetic image.
The green dot is the latest Accepted point xmin. (c) Close-up view of the
region around xmin. The red square and the magenta dot are the reference
points a and b respectively. The yellow line denotes the back-tracked short
geodesic path.

Tos(x), ∀x ∈ Ω. Increasing the value of ξident may reduce the
anisotropy property of Tos(x). The desired tensor field Tbase

can be computed by

Tbase(x) = exp(−α max
θ∈S1

ψ(x, θ))T−1
os (x), (27)

where the parameter α ∈ R+ controls the influence from the
image data. At the crossing points, the tubular appearance and
anisotropy features derived from both of the two overlapped
structures will contribute to the tensor fields Tos and Tbase.
In the following experiments, we make use of the tensor field
Tos defined in Eq. (26) to build the tensor field Tbase.

IV. FAST MARCHING IMPLEMENTATIONS

A. Fast Marching Fronts Propagation Scheme

In this section, we introduce the general scheme for the
fast marching method which is first introduced in [31], [55].
It is an efficient way for the computation of the geodesic
distances on the discretization domain Z2 of the image domain
Ω. Basically, the fast marching fronts visit all the grid points
in a monotonically increasing order expanding from a set
of source points, coupled with a course of label assignment
operation through a map V : Z2 → {Far, Accepted, Front}.
One of the crucial point of the fast marching method is
the neighbourhood system used. In contrast to the isotropic
fast marching method [31] which invokes an 4-connectivity
neighbourhood system, the anisotropic variant of the fast
marching method3 [32] used in this paper requires a more
complicated metric-dependent neighbourhood S. It utilizes the
geometry tool of the Lattice basis reduction and achieves an
excellent balance between the complexity and accuracy for
the geodesic distance computation. For the sake of simplicity,
we define an inverse neighbourhood S−1 for each grid point
x ∈ Z2 such that S−1(x) := {z ∈ Z2;x ∈ S(z)}. Thus a grid
point y ∈ Z2 is a neighbour point of x if y ∈ S−1(x). We
refer to [32], [33] for more details on S and S−1.

Let Us : Z2\{s} → R+
0 be the geodesic distance map

associated to the metric Fcoh defined in (18), where s ∈ Z2

3C++ codes: https://github.com/Mirebeau/ITK Anisotropic.

is the source point such that Us(s) = 0. In each geodesic
distance update iteration, a point xmin ∈ Z2 with minimal Us
among all the Front points can be detected by

xmin = arg min
x:V(x)=Front

Us(x). (28)

The point xmin is immediately tagged as Accepted. In the fol-
lowing, xmin is called the latest Accepted point. The geodesic
distances for all the neighbour points xn ∈ S−1(xmin) with
V(xn) 6=Accepted can be estimated by the solution to the
Hopf-Lax operator [32]

Us(xn) = min
z∈∂S(xn)

{Fcoh(xn, z− xn) + IS(xn) Us(z)} (29)

where IS(·) is a piecewise linear interpolator and IS(xn) Us(z)
is a distance value estimated by the interpolator IS(xn) in the
neighbourhood S(xn). The Hopf-Lax operator in Eq. (29) is
an approximation to the Eikonal equation based on Bellman’s
optimality principle.

B. Single Front Propagation Implementation

In this section, we present the method for updating the met-
ric Fcoh in conjunction with the detected reference points. This
is done by the fast marching front propagation scheme [32] and
a truncated geodesic curve back-tracking scheme [51]. Since
the metric Fcoh is constructed during the front propagation,
we refer to Fcoh as a dynamic Riemannian metric.

In each geodesic distance update iteration, we first search
for the latest Accepted point xmin from all the Front points.
In Fig. 5b, we take a green dot as an example for such a
point xmin. From xmin we can track a geodesic path C̄xmin by
solving the following gradient descent ODE on Us

C̄′xmin
(v) = −

T −1
coh (C̄xmin

(v))∇Us(C̄xmin
(v))

‖T −1
coh (C̄xmin

(v))∇Us(C̄xmin
(v))‖

, (30)

with C̄xmin(0) = xmin and C̄xmin(L) = s, where L is the
Euclidean curve length of C̄xmin . Since each neighbour point
xn ∈ S−1(xmin) is close to xmin, we can seek the reference
points axn

and bxn
for the points xn with V(xn) 6=Accepted

through the geodesic path C̄xmin
as follows:

axn
= C̄xmin

(u1), bxn
= C̄xmin

(u2), (31)

where u1, u2 ∈ (0, L) are two positive constants and u1 ≤ u2.
In this case, in each distance update iteration, all the non-
accepted neighbour points xn of xmin share the same reference
points. Henceforth we respectively denote by a and b the
reference points axn

and bxn
for simplicity. In Fig. 5c, the

portion of the geodesic path C̄xmin between xmin (green dot)
and the reference point a (red square) is illustrated by a yellow
line. The reference points a and b for all the non-accepted
neighbour points xn are respectively denoted by a red square
and a magenta dot.

The fast marching front propagation scheme provides a
progressive way to identify the reference points, which can be
used to update the metric Fcoh. The details are illustrated in
Algorithm 1. In practice, the reference points are detected via
two thresholding values χ1, χ2 with χ1 ≤ χ2, which denote

https://github.com/Mirebeau/ITK_Anisotropic
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(a) (b)

Fig. 6. (a)-(b): Control sets Baniso(xmin) and Bcoh(xmin) derived from
the picture in Fig. 5a, where xmin is indicated by the green dot in Fig. 5b.
In each figure, the black line indicates the direction of the major axis of the
corresponding ellipse while the red line indicates the direction of the target
vessel shown in Fig. 5a at the crossing point.

the numbers of grid points passed through by each back-
tracked geodesic. This tracking processing is terminated once
the reference point corresponding to the larger thresholding
value χ2 is obtained or the source point is reached.
Metric visualization. We use the control set, a tool for visu-
alizing the anisotropy of a metric, to show the advantages of
the proposed metric Fcoh at a crossing point. For the metric
Fcoh at a point x, it can be defined by

Bcoh(x) = {u ∈ R2; Fcoh(x,u) ≤ 1}. (32)

For comparison, we also consider an anisotropic metric

F̃aniso(x,u) =
√
〈u,Maniso(x, ζscale(x))u〉,

where Maniso is defined in Eq. (7). Let Baniso be the control
set of F̃aniso constructed through Eq. (32). For a Riemannian
metric, the control set appears to be an ellipse and we expect
that the direction of its major axis should align with the vessel
direction as much as possible.

We construct the metrics F̃aniso and Fcoh for the syn-
thetic image shown in Fig. 4a. We illustrate the control sets
Baniso(xmin) and Bcoh(xmin) respectively in Figs. 6a and 6b,
where the point xmin is indicated by the green dot in Fig. 5b.
The red line in each figure indicates the target vessel direction
at xmin while each black line indicates the major axis of the
corresponding ellipse. One can point out that in Fig. 6a, the
black and red lines are misaligned with each other since the
tensorManiso(xmin) is dominated by the strong vessel. While
in Fig. 6b, the red and black lines are almost collinear to each
other thanks to the adaptive anisotropic tensor Taniso(xmin).

C. Partial Fronts Propagation Implementation

In the single front propagation scheme presented in Sec-
tion IV-B, in each geodesic distance update iteration, the back-
tracked geodesic path C̄xmin

obtained from Eq. (30) always
links the latest accepted point xmin to the source point s.
When the fast marching front arrives closely to the end point
q, we expect that the associated reference points are located
at the vessel segment between xmin and q in order to obtain
more adequate appearance coherence penalty. For this purpose,
we consider the partial fronts propagation method [42].

Algorithm 1 SINGLE FRONT PROPAGATION SCHEME

Input: The orientation score Ψ, the points s and q.
Output: Geodesic distance map Us.
Initialization:
• Set Us(x)←∞ and V(x)← Far, ∀x ∈ Ω\{s}.
• Set Us(s)← 0,V(s)← Front, p(s)← arg maxθ Ψ(s, θ).

1: while V(q) 6=Accepted do
2: Find xmin, the Front point which minimizes Us.
3: Set V(xmin)← Accepted.
4: Find the reference points a and b through Eq. (31).
5: for All xn ∈ S−1(xmin) and V(xn) 6= Accepted do
6: Set V(xn)← Front.
7: Update p(xn) by the reference point a via Eq. (22).
8: Update Tcoh(xn) by the point b via Eq. (19).
9: Estimate Utem(xn) by evaluating the Hopf-Lax

operator in Eq. (29).
10: Set Us(xn)← min{Utem(xn),Us(xn)}.
11: end for
12: end while

We can estimate the respective geodesic distance maps Us
and Uq with Us(s) = Uq(q) = 0 through the fast marching
method with dynamic metric update scheme as presented in
Algorithm 1. A saddle point m is the point which has the
minimal value of Us (or Uq) among the equivalence distance
point set A = {x; Us(x) = Uq(x)}, i.e.,

m = arg min
x∈A

Us(x). (33)

We can track two geodesic curves C̄m,s and C̄m,q from the sad-
dle point m through the solutions to the gradient descent ODEs
respectively on Us and Uq. Let Cs,m, Cq,m ∈ L([0, 1],Ω) be
the reversed and re-parameterized curves of C̄m,s and C̄m,q
respectively. The final geodesic curve Cs,q with Cs,q(0) = s
and Cs,q(1) = q can be obtained by concatenating the
geodesic curves Cm,s and Cm,q as follows:

Cs,q(v) =

{
Cs,m(2v), if 0 ≤ v ≤ 1/2,

Cq,m(2(1− v)), if 1/2 < v ≤ 1.
(34)

For numerical implementation, we perform the fast march-
ing front propagation as presented in Algorithm 1 simultane-
ously from the points s and q. In this case, the saddle point
m is the first meeting point of the two fronts respectively
expanding from s and q. That partial fronts propagation
will be terminated once the saddle point m is detected in
order to reduce the computation complexity. We illustrate an
example for this partial fronts propagation scheme in Fig. 7.
In Figs. 7a and 7b, the geodesic distance maps Us and Uq
together with the corresponding geodesic paths C̄m,s and C̄m,q
are demonstrated. The white line in Fig. 7c indicates the
concatenated curve Cs,q.

D. Region-Constrained Radius-lifted Geodesic Model

The geodesic curves associated to the metric Fcoh are
computed in the image domain Ω. However, for a complete
tubular structure segmentation, the goal is to search for the
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(a) (b) (c) (d)

Fig. 7. (a) The geodesic distance map Us superimposed on the retinal patch. The black line indicates the geodesic curve Cm,s and the red dot is the point s.
The green dot indicates the saddle point m. (b) The geodesic distance map Uq. The black line denotes Cm,q and the yellow dot indicates q. (c) The white
line denotes the concatenated curve Cs,q. The blue shadow region is the constrained region U. (d) The radius-lifted geodesic curve Ĉŝ,q̂.

centerline and the corresponding thickness of the vessel simul-
taneously. Moreover, we observe that the geodesic curves from
Fcoh sometimes suffer from a centerline bias problem, mainly
because of the inhomogeneous intensity distributions. To solve
these problems, we propose a region-constrained minimal path
method, providing that a prescribed curve is given in order to
build the constrained region.

We take the concatenated curve Cs,q as an example of
the prior curve. Let U ⊂ Ω be a bounded and connected
tubular neighbourhood of Cs,q (see Fig. 7c for an example of
U), which can be efficiently computed by the morphological
dilation operator. The region-constrained metric Fcstr : Ω̂ →
[0,∞] can be expressed for any point x̂ = (x, r) by

Fcstr(x̂, û) =

{
‖û‖Mscale(x̂), ∀x ∈ U,
∞, otherwise,

(35)

where Mscale is defined in Eq. (5). The geodesic distance
map associated to Fcstr can be efficiently solved by the
general anisotropic variant of the fast marching method [32],
where the propagation is terminated once the end point q̂ =
(q, ζscale(q)) is tagged as Accepted. Obviously, the radius-
lifted geodesic curve Ĉŝ,q̂ = (η, τ) associated to Fcstr satisfies
η(u) ∈ U, ∀u ∈ [0, 1]. We show the geodesic curve Ĉŝ,q̂ in
Fig. 7d, where the red curve denotes the centerline η and the
yellow contour depicts the vessel boundary derived from τ .

The region-constrained minimal path model can seek a
complete vessel segmentation in conjunction with the appear-
ance feature coherence-penalized minimal path model. In the
following experiments, we take the paths from the metric Fcoh

as the prior curves to establish the respective tubular regions
for the metric Fcstr.
Remark. The region-constrained minimal path model can be
taken as an efficient way to estimate the vessel thickness
measurement from a binary vessel segmentation map4. An
interesting example as introduced in [56] is to generate a set
of disjoint skeletons from the binary segmentation map. As a
result, each skeleton can provide two end points and a tubular
region for Fcstr, yielding the thickness measurement for each
vessel segment.

4Each grid point in this map is classified as either a vessel point or a
background point.

V. EXPERIMENTAL RESULTS

A. Parameter Setting

The orientation score Ψ is computed by the oriented Gaus-
sian kernels defined in Eq. (13). In numerical implementations,
the variances σ1, σ2 of the oriented Gaussian kernels dominate
the anisotropy properties of these kernels. In the experiments,
we fix σ1 = 300 and σ2 = 1 to construct a series of well-
oriented Gaussian kernels. The parameter w which controls the
size of the truncated window for each oriented Gaussian kernel
should depend on the image data. For instance, if the target
tubular structure has strong tortuosity, the values of w should
be small. In case the target vessel crosses a stronger and thicker
one, especially when the target is invisible at the crossing
region, a large value of w is preferred. In our experiments,
we set w = 11 unless specified otherwise. The thresholding
lengths χ1 and χ2 (in grid point) of the back-tracked short
geodesic curves are used to seek the two reference points.
The parameter χ1 contributes to the estimation of the vector
field p based on the Eqs. (21) and (22). When the target has
strong tortuosity, the reference point associated to χ1 should be
close to the latest Accepted point, which corresponds to a small
χ1. The values of χ2 affect the appearance feature coherence
penalty, which should be set dependently to the image data.
In default, we experimentally set χ1 = 1 and χ2 = 12. The
parameters α in Eq. (27) and λ in Eq. (23) control the influence
from the tubular appearance and from the coherence penalty,
respectively. For the case that a weak tubular structure crosses
a strong one, the values of α should be low while the values of
λ should be high. Finally, the constants ξident and ξaniso used
in Eqs. (26) and (24) dominates the anisotropy property of the
tensor fields Tbase and Taniso. We declare the default values for
these parameters as follows: α = 2, λ = 20, ξaniso = 10 and
ξident = 0.1. In the following experiments, we make use of
the default setting discussed above unless specified otherwise.
The experiments are performed on a standard Intel Core i7 of
4.2GHz architecture with 32Gb RAM.

B. Comparative Results with State-of-the-art Metrics

We compare the proposed metrics, including the appearance
feature coherence penalized (AFC) metric Fcoh and the region-
constrained (RC) metric Fcstr, to the radius-lifted anisotropic
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Fig. 8. Comparative results on a synthetic image. Left Prescribed points.
Right Geodesic paths obtained from the metrics Faniso (blue dash line), Fe

(green solid line) and Fcoh (red line). The objective is to extract the weak
tubular structure.

Riemannian (RLAR) metric [44] and the Finsler elastica (FE)
metric [46]. By the tensor field Mscale in Eq. (5), the RLAR
metric Faniso : Ω̂→ [0,∞] can be formulated by

Faniso(x̂, û) = ‖û‖Mscale(x̂). (36)

The anisotropy ratio [44] for Faniso can be defined by

Cratio(Faniso) = max
x̂∈Ω

{
max

‖u1‖=‖u2‖=1

‖u1‖Maniso(x̂)

‖u2‖Maniso(x̂)

}
,

where Maniso is defined in Eq. (7). The values of the pa-
rameter αaniso (see Eq. (7)) can be determined by the ratio
Cratio. We set Cratio = 10 in the following experiments. The
computation of the geodesic distance associated with Faniso

will be terminated once all the end points have been reached.
The FE metric Fe : Ω × S1 → [0,∞] is established in an

orientation-lifted space [46], which can be expressed by

Fe(x̃, ũ) = Pos(x̃)(
√
ρ2‖u‖2 + 2ρβela|ν|2−(ρ−1)〈g(θ),u〉)

where x̃ = (x, θ) ∈ Ω × S1 is an orientation-lifted point and
ũ = (u, ν) ∈ R3 is a vector. The value of the parameter ρ
determining the anisotropy and asymmetry properties of the
metric Fe is fixed to 100 for all the experiments. The function
Pos : Ω× S1 → R+ can be derived from the orientation score
ψ defined in Eq. (14), i.e.,

Pos(x, θ) = exp(−αela ψ(x, θ)/‖ψ‖∞), αela ∈ R+.

The values of αela and βela ∈ R+ control the balance between
the curvature penalization and the image data [46], which
should be tuned dependently on the target structures. In our
experiments, we adopt the same Eikonal solver as used in [46],
i.e., the Finsler variant of the fast marching method [33], for
the FE metric Fe. We also use the same tubular structure
extraction strategy as proposed in [46].

In Fig. 8, we compare the proposed AFC metric Fcoh with
the RLAR metric Faniso and the FE metric Fe. The structure
in Fig. 8 is comprised of a strong tubular segment and a
weak one. The goal is to extract the weak structure between
two points. Both the minimal paths from Faniso (blue dash
line) and Fe (green solid line) prefer to pass through the
tubular segment with strong appearance features. In contrast,
the geodesic curve (red line) associated to Fcoh can delineate
the desired structure. In this experiment, we use the default
parameters for Fcoh except for χ2 which is set to 15.

In Fig. 9, the minimal paths derived from the RLAR metric
Faniso, the FE metric Fe, the AFC metric Fcoh and the RC

metric Fcstr are shown in columns 2 to 5 respectively. In
the first column, the prescribed points are indicated by the
green and yellow dots. In column 2, the geodesic paths yielded
by the RLAR metric Faniso suffered from the short branches
combination problem, where these paths prefer to pass through
the vessel segments with strong appearance features. In the
first three rows of column 3, we also observe the short
branches combination problem for the geodesic paths from the
FE metric Fe. In column 4, the geodesic paths from the AFC
metric Fcoh can correctly depict the desired vessel segments
due to the appearance feature coherence penalization. In
column 5, we illustrate the radius-lifted minimal paths where
the yellow contours delineate the vessel boundaries and the red
curves indicate the vessel centerlines. One can claim that the
geodesic paths in column 5 is capable of accurately describing
the target vessels. In rows 1 to 3, we use the default parameters
for the metric Fcoh. While in row 4, we set λ = 10.

In some extent, the short branches combination problem can
be solved by the FE metric Fe, as shown in column 3 and row
4 of Fig. 9. However, it is difficult for the FE metric to get
the accurate results in the situation of extracting a weak vessel
with strong tortuosity especially when the target is close to
another vessel with strong appearance features. We show two
such examples in Fig. 10. In columns 2 to 4 of Fig. 10, the
results from the RLAR metric Faniso, the FE metric Fe and the
RC metric Fcstr are shown, indicating that only the proposed
metric Fcstr can get the expected paths.

In Fig. 11 we show the results from the RLAR metric
Faniso, the FE metric Fe and the AFC metric Fcoh on two
neural fibre images5. The curvilinear structures are treated as
thin vessels. Some portions of the targets between the blue and
yellow dots are weakly defined. Both the metrics Faniso and Fe

fail to detect the expected structures, while the minimal paths
from the metric Fcoh are able to accurately depict the targets.
In this experiment, we use the default parameters for the metric
Fcoh except for χ2 which is set to 5. The parameters αela and
βela for the FE metric Fe are set to 3 and 50 respectively.

In Fig. 12 we show the geodesic paths on a leaf image [57]
with respect to the metrics Faniso, Fe, Fcoh and Fcstr. The
geodesic paths shown in Fig. 12b from the RLAR metric
Faniso fail to detect the left vein. In Figs. 12c, 12d and 12e, the
geodesic paths derived from the metrics Fe, Fcoh and Fcstr are
able to obtain the desired results. However, the computation
time associated to the metric Fe in Fig 12c requires about
77 seconds for the leaf image of size 548 × 1447, while
the computation time in Fig 12d is only around 8 seconds
involving the construction of Tbase in Eq. (27) and the geodesic
distance computation. Note that for the results in Fig. 12e, we
only show the centerline positions denoted by the first two
coordinates in each 3D point in the obtained geodesic path. In
this experiment, we use the single front propagation scheme
for the results in Fig. 12d.

5Many thanks to Dr. Tos T. J. M. Berendschot from Maastricht University
for providing the data.
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Fig. 9. Comparative results on retinal images. Column 1 Prescribed points which are indicated by dots. Columns 2-4 Minimal paths from the metrics of
Faniso, Fe, the proposed Fcoh and Fcstr, respectively. Note that we only show the centerline positions of the minimal paths from the RLAR metric Faniso.

Fig. 10. Comparative results on retinal images with strong tortuosity. Column 1 Prescribed points indicated by dots. Columns 2-4 Minimal paths from the
RLAR metric Faniso, the FE metric Fe and the proposed AFC metric Fcoh respectively.

TABLE I
QUANTITATIVE COMPARISONS OF DIFFERENT METRICS ON DRIVE.

A Faniso Fe Fcoh Fcstr

Artery Region

Avg. 0.36 0.65 0.92 0.98
Max. 1 1 1 1
Min. 0.02 0.13 0.60 0.79
Std. 0.26 0.29 0.08 0.04

Dilated Skeleton

Avg. 0.32 0.53 0.76 0.90
Max. 0.95 0.94 0.93 0.99
Min. 0.02 0.12 0.35 0.5
Std. 0.25 0.25 0.12 0.08

TABLE II
QUANTITATIVE COMPARISONS OF DIFFERENT METRICS ON IOSTAR.

A Faniso Fe Fcoh Fcstr

Dilated Artery Region

Avg. 0.52 0.78 0.93 0.95
Max. 0.99 1 1 1
Min. 0.03 0.03 0.53 0.54
Std. 0.34 0.33 0.08 0.08

C. Quantitative Comparative Results

In this section, we quantitatively compare the vessel de-
tection performance of the proposed metrics Fcoh and Fcstr

with Faniso and Fe on 88 patches of retinal images from the
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Fig. 11. Comparative results on neural fibre images. Column 1 Prescribed
source and end points indicated by blue and yellow dots. Columns 2-4
Minimal paths (indicated by red lines) derived from the metrics of Faniso,
Fe and Fcoh, respectively.

(a) (b) (c) (d) (e)

Fig. 12. Comparative results on a leaf image. (a) The leaf image with source
point (blue dots) and end points (yellow dots). (b)-(e): Geodesic curves from
the metrics Faniso, Fe, Fcoh and Fcstr respectively.

DRIVE and IOSTAR datasets6. The corresponding artery-vein
(A-V) labeled images of the DRIVE and IOSTAR datasets are
provided by [59] and [26], respectively. Each patch includes a
retinal artery which is close to or crosses a vein with stronger
appearance features. The objective is to extract the artery
centerline between two given points.

Let A be the set of the grid points inside the target artery
region derived from the respective A-V label image and let
|A| be the number of elements of the set A. In addition, we
define a set Γ of grid points passed through by a continuous
geodesic curve. A scalar-valued measure Θ ∈ [0, 1] can be
defined by Θ = |Γ ∩ A|/|Γ|.

For the DRIVE dataset, we provide two ways to construct
the set A from the A-V labeled images. The first way is to
regard A as the set of all the grid points tagged as artery. The

6We derive 45 patches from the DRIVE dataset [58] and 43 patches from
the IOSTAR dataset [26].

second way is to skeletonize the regions labeled as artery via
the morphological operators, followed by a dilation operation
with radius 1 on these skeletons. Then we remove the non-
vessel grid points from the dilated skeletons. In Table. I, the
two construction methods are referred to as Artery Region
and Dilated Skeleton respectively. For the IOSTAR dataset,
we directly dilate the regions tagged as artery by a morpho-
logical operator with radius 1, which is named Dilated Artery
Region. The use of the dilation operator is to mitigate the
influences from the strong intensity inhomogeneities of the
images in IOSTAR dataset. The results from Fcoh shown in
Table I are obtained using the default parameters described
in Section V-A. In Table II, α and λ for the metric Fcoh are
chosen from the sets {1, 2, 3} and {10, 20, 30}, respectively
to mitigate the effects from the retinal vessel centre reflec-
tion. The quantitively comparative results on the DRIVE and
IOSTAR datasets associated to the metrics Faniso, Fe, Fcoh

and Fcstr are respectively shown in Tables. I and II.
One can claim that the AFC metric Fcoh and the RC metric

Fcstr outperform the state-of-the-art metrics Faniso and Fe

on both datasets. The results from Faniso correspond to the
lowest values of Θ in both datasets due to the short branches
combination and shortcut problems. The elastica geodesic
paths try to avoid sharp turnings as much as possible due to the
curvature penalization. This property matches the observation
of the retinal arteries, leading to a better performance than the
metric Fcstr. However, sometimes the FE metric still suffers
from the short branches combination and shortcut problems
due to the weak appearance or high tortuosity features of the
targets. In addition, the average computation time (in seconds)
for the metrics Faniso, Fe, Fcoh and Fcstr are 0.58s, 0.71s,
0.35s and 0.11s for the DRIVE retinal patches, respectively.
For the IOSTAR dataset, the computation time are 3.85s,
8.05s, 1.14s and 0.65s respectively. Note that the computation
time for the metric Fcoh includes the construction of the
sets Mx, the tensor field Tbase and the geodesic distance
computation. The experimental results in Tables. I and II show
that the proposed metrics Fcoh and Fcstr are indeed effective
for the retinal vessel extraction.

In Fig. 13 we show the geodesic paths derived from the AFC
metric Fcoh in the case that the gray levels of the targets are
almost identical to its neighbouring structures. In column 1,
the two structures are close to each other without overlapping,
while in column 2, a tubular structure crosses another one
just once. In both cases, the metric Fcoh are able to get the
expected results. In column 3, the two tubular structures yield a
loop, where the target is longer than another one in the sense
of Euclidean length. The geodesic path Cq1,q2

between the
points q1 (blue dot) and q2 (yellow dot) from the metric Fcoh

fails to follow the target. In order to solve this problem, one
can simply add a new point q3 (cyan dot) to the target at the
loop region, as shown in column 4 of Fig. 13. The geodesic
paths Cq1,q3 and Cq2,q3 can be concatenated to form the final
path.

VI. CONCLUSION

In this paper, we propose two minimal path models: a
dynamic model and a region-constrained model. The first
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Fig. 13. The minimal paths on different synthetic images. Row 1 The original
images and the prescribed points. Row 2 The corresponding minimal paths
obtained using the metric Fcoh.

model relies on a new metric which blends the benefits from
the appearance feature coherence penalization and the adaptive
anisotropy enhancement. This metric is constructed dynami-
cally during the front propagation. The dynamic minimal path
model can correctly extract a vessel between two points from
a complicated tree structure providing that along the target
the appearance features vary smoothly. The second model
is posed in a radius-lifted domain established by adding a
radius dimension to a tubular neighbourhood of a prescribed
curve. The integration of the two models can seek a complete
segmentation of a vessel, and meanwhile can reduce the risk
of the short branches combination and shortcut problems.

The future work for the proposed models will be dedicated
to exploit more applications for tubular structure extraction
such as road detection in remote sensing images. In addition,
we will also extend the proposed dynamic minimal path model
for 2D and 3D vessel tree extraction applications in conjunc-
tion with the geodesic voting scheme. Such an extension is
very natural and the initialization can be simplified to a single
source point placed at the tree root.
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