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ABSTRACT

Applications of anisotropic diffusion equation to texture en-
hancement have shown that an image can be smoothed while pre-
serving high frequency features like edges. However, preserving
textures still remains challenging. One way to preserve textures is by
adding an extra term to the diffusion equation. This additional term
can be interpreted as a potential, similar to the role of Schrödinger’s
potential in the complex diffusion equation, or as a reaction term in
a reaction-diffusion process. We show the effect of such potentials
on texture denoising, highlighting that anisotropic diffusion with po-
tential combines properties of diffusion (piecewise-smoothing) and
potential (enhancing fine structures) filters. Simulations performed
on pure texture samples indicate that the reconstruction depends on
the type of texture and the transform operator used in the potential.
The diffusion-with-potential approach is extended. Local and non-
local results show that nonlocal diffusion improves the quality of
denoising.

Index Terms— Diffusion processing, texture enhancement,
wavelets, wave atoms, nonlocal denoising

1. INTRODUCTION

Applying the linear diffusion equation to an image is equivalent to
convolving it with a Gaussian filter. Its lowpass properties enable im-
age smoothing, removing noise but, also, degrading high-frequency
features (like edges) [1]. To overcome this problem, Perona and
Malik (PM) [2] introduced a nonlinear diffusion process, where an
anisotropic diffusion coefficient slows the diffusion near edges. Dif-
fusivity is generally selected to be a decreasing function of the gra-
dient norm of the image. The minimization of the total variation
functional led to the TV restoration model, based on a convex diffu-
sivity function [3]. Other models for diffusivity have been suggested
to improve features preservation (e.g. [4]). Forward-and-Backward
(FAB) diffusion filtering even enhances image features such as edges
and some types of textures [5]. Other improvements of the nonlin-
ear diffusion equation, e.g. regularized or tensor-diffusivity models,
further enhance the quality of PDE-based denoising processes [1].
Diffusion equation was originally applied in the real domain but a
complex version has been proposed by Gilboa et al. [6]. The use
of a complex diffusion, inspired by the Schrödinger equation, has
highlighted a new aspect of diffusion processes: both edge detection
(highpass) and denoising (lowpass) can be achieved at the same time
[6]. Compared with the classical anisotropic diffusion, the complex
diffusion achieves almost the same denoising in fewer iterations.

The PM-type diffusion produces piecewise-smooth filtered im-
ages [7], however, small repeated patterns like textures are compro-
mised or lost. Texture preservation calls for more robust methods.
Similarly to the way a particle can be trapped in a physical potential,
Honigman and Zeevi [8] have shown how the addition of a potential
to the diffusion equation can enhance textured images. To this end
they used wavelet shrinkage. Plonka and Ma [9] used wave atom
shrinkage.

We study such potentials and their impact on different types of
textures. Assuming that images are composed of differently-textured
patches, we are looking for the appropriate potentials. We extend the
study to the nonlocal approach introduced by G. Gilboa and Osher
[10], and compare between local and nonlocal denoising methods.

2. LOCAL DIFFUSION PROCESSES

Let ũ0 : Ω ⊂ R2 → [0, 1] be the original image of size
√
N ×

√
N ,

where N = 2l and l is an even number. The signal is contaminated
with additive white Gaussian noise n. The noisy image u0(x) at
pixel x is given by:

u0(x) = ũ0(x) + n(x). (1)

Solving the linear diffusion equation,
{

∂tu = ∆u

u(x, 0) = u0(x)

consists of convolving the input image u0 with smoothing kernels
which approximate Gaussian kernel functions of standard deviations
µt =

√
2t. This diffusion process illustrates the scale-space theory

[1]. However, it presents several limitations. Despite good smooth-
ing properties, many details are lost.

To cope with this problem, the adaptive anisotropic process of
PM [2] allows preferential diffusion as follows:

∂tu = div(g(|∇u|)∇u) (2)

where |∇u| =
√

u2
x + u2

y is the Euclidian norm of the gradient of
u, and the diffusivity g : R → R+ is a non-negative decreasing
function satisfying limr→∞ g(r) = 0. Thus, only pixels with rel-
atively low gradient intensities (corresponding to high values of g)
are affected and the edges, where the norm of the gradient is typi-
cally high, are preserved. Several models for g have already been
proposed (e.g. [2], [4], [11]). We consider the PM model, for r ∈ R:

g(r) =
1

1 + r2

k2

, (3)



where k ∈ R∗ is a constant parameter characterizing the gradient
intensity below which the pixels are highly diffused. The resulting
filtered images by anisotropic diffusion are piecewise-smooth and
edges are preserved.

Catté et al. [12] proposed a new model that should avoid the the-
oretical problem aroused by anisotropic diffusion, i.e. ill-posedness
of the equation despite the existence of discrete solutions, known as
the Perona-Malik paradox [1]. They replaced the diffusivity g(|∇u|)
by g(|∇(G ∗ u)|), where G is a Gaussian kernel and ∗ the convolu-
tion operator, as follows:

∂tu = div(g(|∇(G ∗ u)|)∇u). (4)

Ratner and Zeevi resolved the PM paradox by showing that discrete
approximation of the diffusion equation is equivalent in fact to the
Telegraph-Diffusion equation [13]. Also, smoothing the noisy im-
age before computing the diffusivity allows removing part of the
noise and avoids staircasing [1]. The regularized anisotropic dif-
fusion (RAD) equation (4) is thus more appropriate to distinguish
between noise (to remove) and edges (to preserve).

Various structured textures can be considered to be high-
frequency oscillations. Diffusion-based filtering often removes
them after few iterations. To counter this effect, one may add some
features containing textural information to a potential [8]. Equation
(4) is then modified as follows:

∂tu = div(g(|∇(G ∗ u)|)∇u) + αV u0, (5)

where V u0 is some kind of transformation of the input image u0,
called potential or reaction term [8], [9], and α is a constant parame-
ter which controls the influence of the potential on the denoising pro-
cess. Since the potential should contain the vanishing (diffused) de-
tails, V should be a highpass filter. A lowpass preprocessing cleans
the input image while preserving fine structures, that are then ex-
tracted by substacting u0, as follows [9]:

V = W−1TθW − I, (6)

Here, Tθ is typically a soft thresholding operator with threshold θ,
and I is the identity operator. W is a 2D transform operator and
W−1 is its inverse. Several authors (e.g. [8], [9]) have proposed
to use wavelet shrinkage or wave atom shrinkage (WS and WAS
respectively). The ultimate goal remains to synthesize a potential
that will best extract the missing details, by judiciously choosing
W . On natural textured images, such potentials usually improve
denoising results. However, their impact on pure textures has not
been clearly explored.

3. NONLOCAL DIFFUSION PROCESSES

PDEs extension to the nonlocal framework is based on a new defini-
tion of derivatives [10]. The nonlocal partial derivative of u at point
x ∈ Ω ⊂ R2 with respect to point y ∈ Ω is:

∂yu(x) =
u(y)− u(x)

d(x, y)
, (7)

where d is a positive measure defined on Ω × Ω, that is supposed
to be symmetric i.e. d(x, y) = d(y, x) for all x, y ∈ Ω, called
distance. This definition is consistent with the general definition of
the derivative operator in R2. It was inspired by the graph theory

[14]. In fact, an image can be considered as a graph of pixels. Each
pixel-vertex x is connected to another y with weight:

w(x, y) =
1

d2(x, y)
. (8)

The nonlocal gradient ∇NLu : Ω → RN is then defined as the vector
of all partial derivatives:

∇NLu(x) =
(
(u(y)− u(x))

√
w(x, y)

)

y∈Ω
. (9)

The nonlocal divergence of a vector v⃗ = (v(x, y))y∈Ω is given by:

divNLv⃗(x) =

∫

Ω

(v(x, y)− v(y, x))
√

w(x, y)dy. (10)

The above framework allows us to express diffusion processes
in their nonlocal forms. The nonlocal linear diffusion equation is
given by:

∂tu = divNL(∇NLu). (11)

Using (9) and (10), it can be also written as:

∂tu = 2

∫

Ω

(u(y)− u(x))w(x, y)dy.

The steady state of the above equation corresponds to the Nonlocal
Means algorithm (NLM) [15]:

u(x) =

∫
Ω
u(y)w(x, y)dy∫
Ω
w(x, y)dy

. (12)

Nonlocal linear diffusion is in this way a generalization of NLM.
In [16], it is shown how nonlocal processes perform better results
than local ones, and how an iterative procedure based on the steepest
descent (11) outperforms the original nonlocal means algorithm, also
in terms of computational complexity.
Similarly to the local method proposed by [2], we use a nonlocal
version of anisotropic diffusion (NLAD):

∂tu = divNL(g(|∇NLu|)∇NLu). (13)

Using (10), the last equation can be written as:

∂tu =

∫

Ω

(u(y)− u(x))
( 1
1 + |∇NLu|2(x)/k2

+

1
1 + |∇NLu|2(y)/k2

)
w(x, y)dy,

where the nonlocal norm of the gradient is defined by:

|∇NLu|(x) =

√∫

Ω

(u(y)− u(x))2w(x, y)dy.

Similarly to local diffusion with potential, we can compute nonlocal
diffusion with potential, as follows:

∂tu = divNL(g(|∇NLu|)∇NLu) + αV u0. (14)

We enhance textures by combining two denoising processes. Since
nonlocal methods have been proven to often outperform local meth-
ods in image denoising, we want as well to make the comparison



Fig. 1. The effect of adding a potential in local diffusion equation.
Noisy wall texture with σ = 0.05. Top row: original, noisy, and
noise images. Middle row: RAD, WS, RAD-WS, WAS, RAD-WAS
denoised images. Bottom row: corresponding residue images.

in our context. The benefit of using a nonlocal equation to recon-
struct a noisy pixel x is that all its similar pixels in the image be-
come involved in the reconstruction and not only its closest neigh-
bors. To evaluate the similarity between pixels x and y, one must
define weights w(x, y) ∈ [0, 1]:

d(x, y) = e
|p(x)−p(y)|2

4τ2

w(x, y) =
1

c(x)
e−

|p(x)−p(y)|2

2τ2 ,
(15)

where p(x) is a patch of pixels around the pixel x (square window of
neighbors pixels), τ is a filtering parameter which controls the decay
of the weights, and c(x) =

∫
Ω
w(x, y)dy is a normalizing factor.

Other distances can be used as mentioned in [16].
In order to reduce computational time [15], we do not choose Ω

to be the integration domain of the above integral equations, even if
theoretically, it would have been better. In practice, we restrain the
search of patches to a square search window of size (2s+1)×(2s+
1). The patches p(x) are of size (2p + 1) × (2p + 1) and usually
p ≪ s. A trade-off between s and p must be found.

4. RESULTS

In order to evaluate the performance of the different methods, we
performed experiments on 10 textures adopted from the Kylberg
dataset [17]. Original images are 576×576 grayscale textures, but to
reduce the computational time, we cropped them and processed only
128×128 samples. To each texture, we added white Gaussian noise
of standard deviation σ = 0.05, 0.075, 0.1. Then we processed
the images by means of different algorithms while optimizing the
involved parameters 1. Our goal is not to develop automatic meth-
ods to set the parameters but, instead, to find parameters that should
achieve the best reconstruction. Therefore, all parameters were cho-

1For the implementation, we used Matlab with the help of Numerical Tour
toolboxes [18] and codes obtained from respective references.

sen to reach the best possible performance. As a criterion to compare
noisy and reconstructed images, we used PSNR.

First simulations were performed on local algorithms. Indepen-
dently of the type of texture, best performance was achieved by
diffusion with potential RAD-WAS. Also, RAD-WS outperformed
anisotropic diffusion. The results highlight the role played by the
potential in texture enhancement. In particular, wave atoms are more
suitable than wavelets to enhancing oscillatory and oriented textures
[19]. Figure 1 illustrates visually the advantage afforded of adding
a potential to diffusion process. Residue images correspond to the
difference between reconstructed and input noisy images, and show
the noise and details that have been removed by the applied process.
Diffusion with potential results show residue that is less correlated
with original texture. RAD-WAS and RAD-WS mostly outperform
WAS and WS filters. The diffusion (RAD) and the potential filters
combine their strengths to produce a better reconstruction. Note in
figure 1 the advantage of RAD-WAS, by observing that the residue
image is nearly similar to that of noise, compared with the other
methods, even with WAS.
When we consider each texture separately, we observe that the qual-
ity of the denoising depends on the type of texture. Figure 2 de-
picts RAD results of every texture sample on the x-axis (in dB), and
the increase in PSNR due to incorporation of WAS potential on the
y-axis (∆ PSNR = PSNRRAD-WAS − PSNRRAD). Textures can be
classified into 3 groups, according to the quality of their reconstruc-
tion by RAD (values on the x-axis): (a) low, (b) average, and (c)
high denoising quality. In fact, textures belonging to the same group
may share common properties. From group (a) to (c), the scale of
characteristic features and the proportion of flat regions in textures
increases. Textures with small details whose scale is close to noise
scale are hardly denoised. The contribution of adding a WAS po-
tential in order to improve RAD results differs also according to the
texture, as it can be seen on the y-axis of figure 2. Best contribu-
tions appear in samples of group (a) and (b) (paille and wall texture
images with a maximal improvement of 0.7 dB) that contain oscil-
latory and oriented textured patches. Besides, as well as the quality
of reconstruction, improvements due to the addition of a potential
decrease with the level of noise.

Nonlocal algorithms were also tested. We used the NL-means
implementation of [18]. To reduce computational time, we extended
the code and used a blockwise implementation as proposed in [20].
Instead of computing NLM averaging for all pixels in the search
window, blockwise implementation performs weighted averaging of
blocks (or patches) of pixels centered in every q pixels. This simpli-
fication speeds up computations, but reduces denoising quality. On
the contrary, for several textures, classical implementation enables
to achieve higher performance than local methods. The influence of
a potential is hardly observed with blockwise implementation. How-
ever, with classical implementation, PSNR improvements by ∼ 0.1
dB show the advantage of adding a potential, especially a wave atom
potential. Improvements are more significative for certain textures,
for oscillatory ones and textures with small scale features. The im-
pact of the potential on reconstruction seems to be closely linked to
particular denoising capabilities of the transform used in the poten-
tial. In fact, wave atom transform is more suitable for oscillatory
patterns as shown in [19]. Figure 3 shows visually the benefit of
combining a potential with nonlocal diffusion process. NLAD-WAS
residue images are less correlated with original textures than NLMs.
PSNR results have hardly improved (improvements by ∼ 0.01 dB)



Fig. 2. Classification of results. Top: on the x-axis, PSNR results
by RAD; on the y-axis: ∆ PSNR = PSNRRAD-WAS − PSNRRAD:
PSNR increases by adding WAS potential to RAD. Quality of the
reconstruction of textures: (a) low, (b) medium, (c) high (see bottom
images). Level of noise is σ = 0.05.

by the introduction of a diffusivity in the nonlocal equation (equa-
tion (14)). We conclude that the analogy between local and nonlocal
schemes is not so simple. Nonlocal diffusivity can be interpreted as
adaptive weights but its efficacy in image denoising is not qualita-
tively justified. In order to extrapolate concepts introduced by Per-
ona and Malik [2] to nonlocal denoising, adaptive weights models
as proposed in [21] would be more relevant. However, we did not
fully explore NLAD model mainly because of the difficulty to eval-
uate optimal parameters. In fact, the correlation between parameters
τ and k is not clear. High computational times do not facilitate the
task of understanding this correlation.

5. CONCLUSION

Diffusion with potential processes achieve texture enhancement.
Both local and nonlocal approaches show advantages of adding
a suitable potential to the diffusion equation. The diffusion with

Fig. 3. Benefit of adding a potential to nonlocal diffusion equation.
Paille (left) and sand (right) textures respectively for σ = 0.1 and
σ = 0.05. From top to bottom: original and noisy images; NLM
and NLAD-WAS denoised images; corresponding residue images.

potential equation combines advantages characteristic of the two
filters: the anisotropic diffusion filter allows to perform piecewise
smoothing; the potential allows to reincorporate in the reconstructed
image the loss of details caused by smoothing. The impact of the
potential depends on the type of texture. Wave atom shrinkage
potential is more suitable for oscillatory and small scale patterns.

Since texture enhancement depends on types of texture, a non-
local diffusion with multiple potentials may be envisaged. By us-
ing statistical criteria in order to classify textured patches in the in-
put image, one may incorporate an appropriate potential to every
patch. Nonlocal methods should facilitate classification and adap-
tive denoising of patches. Also, one should enlarge the list of useful
potentials and classify them according to their impact on textures.
Besides, the optimization of parameters must be improved. In par-
ticular, nonlocal framework cannot be totally explored, unless com-
putational times have been strongly reduced with the same quality of
denoising. Reducing computational time will allow to perform more
relevant simulations and may help to deduce approximative estima-
tors of parameters. The estimation should depend on the noise level
and some intrinsic properties of textures.
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