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Abstract. Current image segmentation involves strongly non-uniform,
anisotropic and asymmetric measures of path length, which challenges
available algorithms. In order to meet these challenges, this paper applies
the Finsler metric to the geodesic method based on heat diffusion. This
metric is non-Riemannian, anisotropic and asymmetric, which helps the
heat to flow more on the features of interest. Experiments demonstrate
the feasibility of the proposed method. The experimental results show
that our algorithm is of strong robustness and effectiveness. The pro-
posed method can be applied to contour detection and tubular structure
segmentation in images, such as vessel segmentation in medical images
and road extraction in satellite images and so on.
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1 Introduction

Geodesic refers to the shortest path connecting two points in metric space and
plays an important role in image processing and computer vision. It can be ap-
plied to tasks such as contour detection, tubular structure segmentation, surface
remeshing and so on [19]. In theory, the shortest path problem can be described
by a static Hamilton-Jacobi equation or an anisotropic Eikonal partial differ-
ential equation (PDE). Numerical methods to compute the discrete geodesic
distance on smooth surfaces and images can be classified into two classes: exact
methods based on geometry and approximation method based on PDE. Gener-
ally, the approximation methods via solving the Eikonal PDE are widely used.

In terms of computation, it is difficult to get the analytical solution of the
Eikonal equation directly. Therefore, an iterative relaxation scheme such as
Gauss-Seidel is useful to get the numerical solution. In [13], the authors summa-
rize popular numerical solutions to the Eikonal equation on Cartesian grids. The
most popular algorithms are the Fast Marching [20] and Fast Sweeping Method
[27] etc. By comparing the errors, speed, accuracy and robustness of different
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algorithms, the authors conclude in [13] that the Fast Marching Method out-
performs the other methods. However, the Fast Marching Method do not reuse
its information, i.e., for the same data, once the initial point is changed, the
geodesic distance should be recomputed from scratch.

Recently, the geodesic method based on heat flow has become popular be-
cause of its efficiency, robustness and insensitivity to noise. It is originated from
the Varadhan’s formula [22]:

φ(p0, px) = lim
t→0

√
−4t log up0(px, t), (1)

which shows that within a small time t, the geodesic distance φ(p0, px) between
two points p0 and px can be approximated via the heat kernel up0(px, t).

Inspired by the classical result of Varadhan, Crane et al. proposed a different
method for computing the geodesic distance on a Riemannian manifold, which
is called the heat method [10]. Instead of using the Varadhan’s formula directly,
the heat method is based on solving a pair of standard linear elliptic problems.

The key observation in [10] is to divide the process of distance computation
into two steps: the first step determines the direction along which the distance
increases; the second step recovers the distance via solving a Poisson equation by
using the normalized gradient of the heat flow. Each step relates to a standard
problem in numerical linear algebra. Moreover, the sparse systems from elliptic
PDEs can be solved in a very short time that is close to linear time. Therefore,
the heat method can be facilitated by using existing algorithms and software,
thus improves the efficiency and robustness of distance computation. In addition,
for every single data, the Laplacian can be precomputed, i.e. recomputation is
not necessary even the initial point is changed.

Though fast and efficient, the heat method described in [10] only involves
the simplest case – the diffusion coefficient is a constant. To expand the scope
of use of the heat method, Yang and Cohen [24] proposed to use the isotrop-
ic/anisotropic heat diffusion to obtain geodesic in images and on surfaces. In
their method, the diffusion coefficient is no longer a constant, but an isotropic
scalar or an anisotropic tensor computed from the image. Based on [24], the
authors propose a 2D+Radius heat method for segmenting the centerline and
boundary of the tubular structures simultaneously [25]. Besides, the diffusive
nature of the heat equation causes instant smoothing, which is the reason why
the heat method is robust to noise.

Because of the advantages of the heat method, based on Crane’s work, a
variety of tasks in computational science and data analysis are developed. For
example, Belyaev and Fayolle [4] reinterpret the heat method and achieve more
accurate results by either iterating the heat method or by applying more ad-
vanced descent strategies. Zou et al [28] use the heat method for efficient tool
path planning; Solomon et al [21] use the heat method to facilitate solving opti-
mal transport problems on geometric domains; Lin et al [14] apply this approach
to vector-valued data in the context of manifold learning.

The heat method is popular, however, the diffusion coefficient and tensor are
constructed on Riemannian manifold, which can not provide asymmetric met-
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ric. While current image processing applications involve strongly non-uniform,
anisotropic and asymmetric measures of path length, which can not be efficient-
ly solved on Riemannian manifolds. Hence, in this paper, we are motivated to
apply asymmetric Finsler metric to the heat method.

Finsler geometry can be described as Riemannian geometry without the
quadratic restriction [9]. Riemannian distances are defined by a position de-
pendent inner product, while Finslerian distances are defined by a direction
dependent inner product, computed from a position dependent norm. Since the
level sets determined by norms can be more complex than those (ellipsoidal)
given by an inner product, Finsler metric is more suitable for modeling complex
diffusion profiles [3].

In [15], Melonakos et al.proposed a Finsler active contour method by re-
placing the original potential in [6] into a potential including the normal of the
curves. Then Zach et al [26] proposed a global optimal method for the Finsler
active contours. Mirebeau [16] proposes an efficient discretization scheme for the
Fast Marching Method on Finsler manifold. Chen et al [8] introduces a mini-
mal path model with Finsler metric and uses the scheme in [16] to compute the
distance. In [7], the authors extend the framework of front propagation from
Riemannian manifold to Finsler manifold. The Rander’s metric used in their
work [7] prevents the fronts leaking problem during the fronts propagation.

The asymmetric metric is successfully applied in the Eikonal PDE, but as
mentioned before, the numerical scheme Fast Marching Method is more sensitive
to noise than the heat method. In addition, the Fast Marching Method do not
reuse information. Therefore, we would like to develop the asymmetric heat
method.

The contributions of this paper lie in that:

1. We extend the heat method based on Riemannian metric to Finsler metric;
2. We build two kinds of Rander’s metric to detect contours and centerlines;
3. The asymmetric heat diffusion improves the performance comparing with

the traditional heat method on image segmentation.

2 Background and Related Work

2.1 Finsler metric and minimal path model

Similar to the geodesic on Riemannian manifold, the minimal path on Finsler
manifold is also obtained by minimizing the length between two fixed points.
Let Ω ⊂ RN , N ∈ {2, 3} denote the image domain, which is equipped with a
Finsler metric F(x, v) > 0, where x ∈ Ω denotes the position and v ∈ RN
denotes the orientation. Generally, the Finsler metric F(x, v) is asymmetric, i.e.,
F(x, v) 6= F(x,−v). The length of a Lipschitz continuous curve γ(t), 0 ≤ t ≤ 1
on a Finsler manifold is defined as:

LF (γ) =

∫ 1

0

F(γ(t), γ′(t))dt. (2)
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Note that because of the asymmetry of F(x, v), the curve on a Finsler man-
ifold and its reverse curve are usually not the same.

The geodesic distance defined in (2) can be generalized to the distance from
any point p ∈ Ω to a set of points S ⊂ Ω, thus defines the geodesic distance
map:

φS(p) := inf{LF (γ); γ(0) = p, γ(1) ∈ S}, (3)

which is the unique viscosity solution to the following Eikonal PDE:{
F∗(∇φ(p)) = 1, ∀p ∈ Ω \ S,
φ(p) = 0, ∀p ∈ S,

(4)

where F∗ is the dual metric of F :

F∗(x, u) = sup
‖v‖6=0

〈u, v〉
F(x, v)

. (5)

Once the geodesic distance map φ is obtained, the shortest path from p to S
can be tracked by solving an ordinary differential equation (ODE) [17]:

dγ(t)

dt
:= ∇F∗(∇φ(γ(t))). (6)

In this paper, we will utilize the Rander’s Finsler metric, which is defined by
the combination of a symmetric Riemannian metric and an asymmetric linear
part:

F(x, v) = ‖v‖M(x) + 〈ω(x), v〉 . (7)

According to [16], the dual to F is also a Rander’s metric F∗ with parameters
M∗ and ω∗:

F∗(x, v) := ‖v‖M∗(x) + 〈ω∗(x), v〉, (8)

where M∗ and ω∗ are some algebraic expressions of M and ω [16]:

η := 1− 〈ω,M−1ω〉,M∗ :=
(M−1ω)(M−1ω)T + ηM−1

η2
, ω∗ := −M

−1
∗ M−1ω

η
.

Hence, the backtracking ODE on the Rander’s metric becomes [17]:

dγ(t)

dt
=

M∗(γ(t))∇φ(γ(t))

‖∇φ(γ(t))‖M∗(γ(t))
+ ω∗(γ(t)). (9)

Compared with the Riemannian minimal path model [5], the Rander’s Finsler
minimal path is with an additional linear part, which is able to deal with the
asymmetric information of the images.
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2.2 Finsler Heat Equation

In this paper, we are dedicated to developping the heat method on the Rander’s
Finsler manifold. Let us consider the following energy functional:

E(u) :=

∫
Ω

‖ε∇u+ g‖2D, (10)

where D is the conductivity matrix and is positive definite by construction:

D = M∗ − ω∗ ⊗ ω∗, (11)

and we set g = D−1ω∗.
The gradient descent of (10) is interpreted as:

∂tu = ∆Fu, (12)

where ∆F is the Finsler Laplace operator [1, 18], and (12) is called the Finsler
heat equation.

Let us recall the heat method proposed in [24], where the initial condition
for the heat equation is up0(px, t = 0) = δp0 . Therefore, the initial condition for
the Finsler heat method should be the same as in [24]. The Varadhan’s formula
(1) presents that within a small time t → 0, the heat kernel can be used to
approximate geodesic distance. It is proved in [24] that the Varadhan’s formula
is applicable in Riemannian cases because that the geodesic distance is only
related to the coefficients of the second-order derivative of the heat kernel.

In [18], the Finsler Gauss kernelGF∗ is presented by the following exponential
form:

GF∗(x, t) := (4πt)−
N
2 exp (−F

∗(x)2

4t
). (13)

Let t → 0, put the Finsler heat kernel (13) on the r.h.s of the Varadhan’s
formula (1), according to the L’Hospital’s rule, we have:

lim
t→0

√
−4t log(GF∗) = F∗(x). (14)

Equation (14) is already well understood in the case of homogeneous heat
diffusion on the whole domain R2, where F∗(x) = ‖x‖ and the corresponding
distance is Euclidean.

3 Construction of Rander’s Metric and Algorithm of the
Asymmetric Heat Method

As mentioned in section 2.1, the Rander’s metric is composed by a Riemannian
symmetric quadratic form plus a linear part. In this section, the construction
of the Rander’s metric is presented. In addition, we should pay attention that
in order to ensure that the metric F is always positive, the following constraint
should be satisfied [8, 7]:

〈ω(x),M−1(x)ω(x)〉 < 1,∀x ∈ Ω. (15)

Different specific metrics are designed for detecting the boundaries of shapes
and centerlines of tubular structures in images.
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3.1 Rander’s Metric for Boundary detection

In [24] and [23], the authors use either the magnitude of the gradient as the
diffusion coefficient or the structure tensor to enhance the flow-like structures or
edge features. Inspired by their work, we adapt these metrics to our method for
detecting boundaries.

Denote by g(x) the gradient of the image: g(x) = ∇f(x), where f(·) is a
scalar function computed from the image I. The definite positive symmetric
tensor field M(x) can be built by the magnitude of g(x):

MI(x) := (‖g(x)‖+ ε)Id, (16)

where MI(·) represents the tensor field in isotropic case, ε is a small constant
that prevents the diffusion coefficient from being 0, and Id is a 2 × 2 identity
matrix.

M(x) can be also built by the tensor product:

MA(x) = λ1(x)e1(x)eT1 (x) + λ2(x)e2(x)eT2 (x), (17)

where MA(·) denotes the tensor field in anisotropic case, e1(x) = g(x) and
e2(x) = g(x)⊥ are the eigenvectors of MA(x), λ1(x) ≥ λ2(x) ≥ 0 are the corre-
sponding eigenvalues. The anisotropy A is defined as:

A(x) =
λ1(x)− λ2(x)

λ1(x) + λ2(x)
. (18)

The linear part can be obtained by using the orthogonal of the normalized
gradient of the image:

ω(x) = τ

(
∇I(x)

‖∇I‖∞

)⊥
, (19)

where τ is an adjustable coefficient which is used to satisfy (15).
Note that in [24], MA behaves better than MI when the feature of interest is

very curved. However, in the proposed method, the difference between MA and
MI is weakened because of ω(x).

Figure.1 shows the experimental results on a synthetic image under the same
initial condition but different metrics. In (a), only (16) is used as the diffusion
coefficient, without adding any additional part, which leads to a shortcut during
backtracking from the endpoint to the source point. In (b) and (c), since ω(x)
and −ω(x) defined in (19) are used as the linear part in the Rander’s metric
respectively, the heat flows more on the edge of the central black curve. Hence,
during the backtracking process, the extracted curves are along the edge of the
shape. Note that the closed boundary of the black central curve can be obtained
by simply merging the results of (b) and (c).

Figure.1 illustrates clearly that the additional linear part ω(x) forces the heat
to flow more along the direction of ω(x), i.e., ω(x) enhance the heat diffusion
on the edges.
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(a) (b) (c)

Fig. 1. From top to bottom are the distance maps and their corresponding geodesic
respectively, from left to right are the results: (a) by using Riemannian metric M
defined in (16), (b) by using Rander’s metric whose linear part ω is defined in (19) and
(c) by using the Rander’s metric, the linear part −ω. In the bottom row, the red and
blue points denote the source point and endpoint respectively, the green curves are the
geodesic curves.

Figure.2 presents an example of using different metrics on a 2D Gaussian
image. First we show the Euclidean distance with the anisotropy A = 0 and
its corresponding geodesic curve, which is in fact a straight line (a). In (b),
we use the diffusion tensor defined in (17) as the symmetric part MA(x) with
the anisotropy A ≡ 0.9 everywhere. We can see that the heat flows along the
direction of e2(x) and the geodesic line is curved because of the anisotropic
diffusion. In (c), we add the linear part ω(x). Though the geodesic curves in (b)
and (c) make no difference visually, it is not hard to distinguish the distance
maps from (b) and (c), which are symmetric and asymmetric respectively. In
(b) the distance map is symmetric because the diffusion tensor is with quadratic
form, while in (c), because of ω(x), the heat diffusion is becomes asymmetric
hence flows more on the direction of ω(x). In (d), we use −ω(x) as the linear
part, which is opposite to ω(x), so the heat flows in the inverse direction of (c).

The results in Fig.1 and 2 not only demonstrate the validity of the metrics
designed for boundary detection, but also testify the effectiveness of the Rander’s
metric. In addition, both examples illustrate that F(x, v) 6= F(x,−v).

3.2 Rander’s Metric for Centerline extraction

For the purpose of extracting the centerline, the vessel enhancement method
can be considered, e.g. Hessian-based vesselness measures [12] Here we plan to
construct the symmetric part of the Rander’s metric based on the eigenvalues
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(a) (b) (c) (d)

Fig. 2. From top to bottom are the distance maps and their corresponding geodesic
respectively, from left to right are the results: (a) Euclidean, (b) using anisotropic
Riemannian metric (17), (c) by using the Rander’s metric with the linear part ω defined
in (19) and (d) by using the Rander’s metric with linear part −ω. In the bottom row,
the red and blue points denote the source point and endpoint respectively, the blue
curves are the geodesic curves.

and eigenvectors of the Hessian matrix because of its simplicity. In [12], the
authors introduced a multi-scale vessel enhancement method by interpreting
geometrically the eigenvalues of the Hessian matrix. The local orientation of the
image can be estimated by using the Hessian eigenvectors, which allows us to
find out the position of the tubular structures.

First we convolve the image I with a Gaussian kernel G(x, σ):

G(x, σ) =
1√

(2π)σ
exp(−‖x‖

2

2σ2
) (20)

Since σ can be considered as an estimator of the width of the tubular struc-
tures, we use different σ in different images. Let IG be the product after con-
volution, we obtain the symmetric Hessian matrix H by computing the second
derivative of IG :

H =

[
∂xx ∂xy
∂yx ∂yy

]
IG (21)

Then we decompose H to get the corresponding eigenvectors v1(x), v2(x) and
eigenvalues ϑ1(x), ϑ2(x) in order to form M(x):

M = ϑ1(x)v1(x)vT1 (x) + βϑ2(x)v2(x)vT2 (x) (22)

where β is a constant controlled by the users to adjust the anisotropy A.
In order to prevent the heat from leaking out the region of tubular structure,

we can use the eigenvector v1(x) as the linear part of the Rander’s metric:
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ω = τv1 (23)

where τ is an adjustable constant which plays the same role as in (19) to ensure
that (15) is satisfied.

Figure.3 shows an example on a synthetic U-tube image. In this example,
we set σ in (20) to be 4, β in (22) to be 0.1 and τ = 1. In (a), we use the
isotropic heat diffusion. The diffusion coefficient is simply obtained by using the
graylevel of the image: α = (1− (I − Ix0

))n, n = 3 in this case, and MI = αId.
Clearly, there is a shortcut connecting the source point and the endpoint. In
(b), we use the anisotropic heat diffusion where M is the diffusion tensor. The
geodesic curve goes along the U tube structure this time. However, our aim is to
extract the centerline of the structure. In (c), we use the Rander’s metric in heat
diffusion by adding ω (23). From the result, we can see that the asymmetric heat
diffusion forces the heat to flow more on the main direction v1, In the bottom
row of Fig.3, although that both curves in (b) and (c) travel along the U tube
structure, we can still find that the result by using asymmetric diffusion is closer
to the centerline.

(a) (b) (c)

Fig. 3. From top to bottom are the distance maps and their corresponding detected
geodesic curves respectively, from left to right are the results by using: (a) isotropic
heat diffusion, (b) anisotropic heat diffusion with metric (17), (c) asymmetric heat
diffusion with the linear part ω defined in (23).

3.3 Algorithm of the Asymmetric Heat Method

The basic steps of the asymmetric heat method can be described as follows:

In our method, the numerical solution to the Finsler heat equation and the
time of diffusion (Step.2) are determined according to a backward discretization
scheme designed for anisotropic heat diffusion, see [11] for details.
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Algorithm 1 The Asymmetric Heat Method

1. Construct the asymmetric metric F(x, u), Sect.3.1 and Sect.3.2 ;
2. Integrate the heat flow ∂tu = ∆Fu from some source points for some fixed time t;
3. Approximate the distance φ using Varadhan’s formula;
4. Backtrack the geodesic from a given endpoint to the source point using an ODE

(9).

4 Experiments and Discussions

4.1 Experiment data and settings

We testify the effectiveness of the proposed method on both synthetic and real
images. Firstly, we use a 411×411 synthetic image to testify the noise-insensitive
performance of the heat method, see Fig.4. A 12% of pepper and salt noise is
added to the original image. The metric is constructed by using (16) and (19),
with τ = 1.

For detecting the boundary of shapes in images, we choose some natural
images from the BSDS500 dataset [2], see Fig.5. The gray images are used to
construct metrics and initiate the heat flow.

For extracting the centerline of tubular structure, we use real road and ves-
sel images, see Fig.6. We compare the result obtained by asymmetric diffusion
with isotropic and anisotropic diffusion in [24]. For the isotropic diffusion, we
preprocess the images with a sigmoid function:

f(x) = 1− 1

1 + exp(k(I − α))
, (24)

where k = 10 and α = 0.4 in our tests, and f(x) is used to compute the diffusion
coefficient MI in (16). For anisotropic and asymmetric diffusion, the quadratic
form MA is constructed by using (22) with a fixed σ = 8 and β = 0.1.

To display the results clearly, we use either green or blue curves to represent
the extracted geodesic curve. The source points and endpoints for each image
are given by the users. The red point denotes the source point and the blue ones
are the endpoints.

Finally, we evaluate the quality of our algorithm on the images of BSDS500
dataset. Table.4.2 lists the recall of the detection results by symmetric diffusion
method [24] and the proposed method. Note that instead of all the edges, only
the geodesic curves between the two chosen points are used to calculate the
recall.

4.2 Results and analysis

(1) Noisy case
In this test, the original synthetic image is corrupted by some pepper and salt

noise. As we know that these kind of noise is impulse noise, it affects the image
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gradient a lot. However, as we can see in Fig.4(a), most part of the extracted
geodesic still goes along the edge of the center curve. Moreover, by adding the
additional linear part ω and −ω (19), both geodesics travel exactly on the bound-
ary of the curve and complete the contour of the center shape. For the result by
the fast marching method (d), we use the same metric as in (b), but the result
is not as good as in (b) or (c). This test demonstrates that the heat method is
robust to noise, since the exponential kernel (13) causes instant smoothing.

(a) (b) (c) (d)

Fig. 4. Experiment on a synthetic noisy image, from left to right are the results by
using: (a) isotropic heat diffusion, (b) asymmetric heat diffusion with linear part ω
defined in (19), (c) asymmetric heat diffusion with the linear part −ω, (d) asymmetric
fast marching method (the same metric as used in (b)) .

(2) Contour Detection

The boundary and contour detection results are displayed in Fig.5. The com-
parison experiments are performed by using symmetric heat method in [24] with
isotropic metric MI or anisotropic metric MA, as shown in Column.1 and Col-
umn.3 in Fig.5. The results of the proposed method are shown in Column.2 and
Column.4. By using symmetric diffusion [24], the detected edges do not include
some main details, e.g., some elephants and the tree of elephant, the long pole,
haystack and head of lakeman. As mentioned before, because of the diffusive
nature of the heat kernel, the heat method can smooth the sharp changes in
images, i.e., noise, spurious parts. Hence in such cases, the spurious part of the
edges can not be fully detected by using the symmetric heat diffusion. However,
after adding the linear part ω, all the missing details are included.

Apparently, the shapes of all images are irregular and asymmetric. Because
of the symmetry of the Riemannian metric, the geodesic connecting two points
of using Riemmanian metric will surely be the shorter part on the contour of the
shape, such as mushroom, redbird and so on. However, by adding the asymmetric
linear part ω, the detected curves can go in the opposite way and thus complete
the whole contour of the shape, such as hawk, swan, mushroom and birds etc. In
addition, for river, waterfall and bear, the background is complex, therefore, the
symmetric method fails to extract the edges of these shapes directly and causes
some shortcuts. When adding the linear part ω, the curves are forced to go along
the edges of the shapes, even the details can be detected.
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The reason why asymmetric diffusion using Rander’s metric works better is
not only because that during the process of diffusion, the heat are more con-
centrated on the edges, but also on the way of backtracking, the vector field ω?

in (9) is taken into account. However, it is worth mentioning that the proposed
method to detect the boundaries are somehow sensitive to the gradient of the
image, e.g., the beak of the swan in Row.2, the contour of the bird in Row.5.

The quantitative results of contour detection in Fig.5 (from left to right, top
to bottom) is shown in Table.4.2. Obviously, in most cases, the recall of detection
results using asymmetric diffusion are higher than the symmetric ones in [24].

Table 1. Quantitative results of symmetric and asymmetric heat methods

Image elephant river hawk swan lakeman

Symmetric recall 0.365 0.214 0.863 0.628 0.653

Asymmetric recall 0.892 0.878 0.827 0.852 0.936

Image mushroom redbird waterfall bear bird

Symmetric recall 0.637 0.774 0.033 0.797 0.913

Asymmetric recall 0.921 0.836 0.866 0.453 0.824

(3) Centerline Detection
The results of detecting centerlines in tubular structures are shown in Fig.6.

For the road image in Row.1, the curves extracted using different metrics are
all smooth, despite that there is a lot of noise around the road. This example
demonstrates again that the heat method is not sensitive to noise. The Column.1
of Fig.6 displays the results by using isotropic heat diffusion. As we can see, the
extracted lines are not on the centerline, especially for the curved part, there
is much deviation from the center. This case can be improved by using the
anisotropic diffusion, which helps the heat to concentrate inside the tubular
structures. However, the centerlines of the very curved parts and junctions are
still not very well detected (Column.2). Finally, we combine the quadratic form
with the linear part ω (23) to construct the Rander’s metric. The results by using
the asymmetric diffusion are shown in Column.3. Thanks to ω the extracted
geodesic curves are located much more on the centerlines visually.

5 Conclusion

In this paper, we extend the traditional symmetric heat method to asymmetric
cases in order to overcome the difficulty on measuring asymmetric path length.
Two kinds of Rander’s metric are designed for contour detection and centerline
extraction. Experimental results show that asymmetric heat diffusion is effective
and robust. Thanks to the asymmetric metric, the proposed method performs
better than the traditional heat method. However we only consider the Rander’s
metric in this paper. In future, we will design different Finsler metrics to apply
to the heat method according to different image processing tasks.
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Fig. 5. Experiment on several real natural images (from left to right and top to bot-
tom): elephant, river, hawk, swan, lakeman, mushroom, redbird, waterfall, bear and
bird. The red points are the source points and the blue ones are the endpoints, the blue
or green curves are the detected geodesic curves.
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Fig. 6. Experiment on real satellite road image and vessel images, from left to right
are the results by using: (a) isotropic heat diffusion, (b) anisotropic heat diffusion, (c)
asymmetric heat diffusion.
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