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Abstract This paper proposes a method to extract geodesic distance and
geodesic curves using heat diffusion. The method is based on Vardhan’s for-
mula that helps to obtain a numerical approximation of geodesic distance
according to metrics based on different heat flows. The heat equation can be
utilized by regarding an image or a surface as a medium for heat diffusion and
letting the user set at least one source point in the domain. Both isotropic
and anisotropic diffusions are considered here to obtain geodesics according
to their respective metrics. 1) In the part of the paper where we deal with
the isotropic case, we use gray-level intensity to compute the conductivity,
i.e. those pixels with gray-levels similar to the source point would have higher
conductivity. The model of Perona and Malik, which inhibits heat from diffus-
ing out of homogeneous regions, is also used for geodesic computations in this
paper. The two methods are combined and used for more complicated cases.
We can also use the norm of the gradient of an image as the feature in the
Perona and Malik model to make the heat diffuse along boundaries and edges.
2) For the anisotropic case, we use different eigenvectors and eigenvalues to
compose the diffusion tensors to concentrate heat flow along chosen directions.
Furthermore, to automate the process of extracting geodesic lines, we propose
two automatic methods: a new voting method and a key point method, which
are both especially designed for the heat-based method. Our algorithms are
tested on synthetic and real images as well as on a mesh. The results are very
promising and demonstrate the robustness of the algorithms.
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1 Introduction

The heat equation is a partial differential equation that describes the evolution
of the distribution of heat (or variation in temperature) in a given region over a
certain period of time T . Generally, the form of the heat equation is as follows:

∂u

∂t
− α∆u = 0 (1)

where α, a positive constant, stands for the thermal diffusivity and ∆ repre-
sents the Laplace operator. In the physical problem of temperature variation,
u(x, t) represents the temperature. More generally, u(x, t) may represent the
concentration of a certain substance, like water, whose quantity may vary with
time t [22]. Eq.(2) gives a more general form of the heat equation.

∂tu(x, t) = k(x)div(D · ∇u) (2)

The coefficient k(x) is the inverse of the specific heat of the substance
multiplied by the density of the substance at that location [35]. In the case
of a homogeneous isotropic medium, the matrix D has the form of a constant
scalar times Id, where the scalar represents the conductivity and where Id is
the identity matrix. If this scalar value is varying on the domain, we have a
general medium. This case is called the isotropic case. In the anisotropic case,
the coefficient matrix D has different eigenvalues. This means conductivity is
not the same in different orientations.

The heat equation is widely used in many fields. For example, the HKS
(Heat Kernel Signature), which is obtained by restricting the heat kernel to
the temporal domain, is based on the properties of the heat diffusion process
on a shape [14]. In [26], Raviv et al used the heat kernel to compute the
diffusion distance for shape matching. As introduced in [38] a long time ago,
the notion of Scale-Space is based on the Heat Equation. The non-linear heat
diffusion can be also used for filtering problem. For example, in [23], Perona
and Malik introduced an anisotropic diffusion approach to reduce image noise
without removing prominent parts of the image content, and their non-linear
diffusion filter only involves scalar diffusion coefficients. In [10,21], Fehrenbach
and Mirebeau proposed a non-negative numerical scheme called anisotropic
diffusion using lattice basis reduction for image filtering and enhancing. It
involves constructing the stencils whose geometry is tailored after the local
diffusion tensor.

In this paper, we are interested in the consequences of the work of Varadhan
[33], where the author has proposed to approximate the geodesic distance
φ(p0, px) between two points p0 and px on a Riemannian manifold by solving
the following equation numerically:

φ(p0, px) = lim
t→0

√

−4t logup0(px, t) (3)

where up0 is the heat kernel of Eq.(1), that is, up0 is a solution with initial value
up0(0) = δp0 . This was used recently in [8] to derive a numerical approximation
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of the geodesic distance, by solving the heat equation numerically with a small
time step t. Diffusion is a process of motion of molecules (mass) moving from
a place of high density to a place of low density. Based on this, Crane et al
[8] proposed a method to extract geodesics on surfaces. Intuitively, one may
regard the heat diffusion process as a large collection of hot particles moving
from the source point p0 and to the end points px, under the assumption that
the domain is homogeneous with unit diffusivity α = 1. The heat equation is
solved based on standard differential operators. Compared with the state-of-
the-art methods [31], using heat diffusion to approximate the geodesic distance
is computationally more efficient and has comparable accuracy and robustness
[8] .

The geodesic distance and geodesic lines on images and surfaces play an
important role in computer vision and graphics. They can be applied to vessel
segmentation, road extraction, surface remeshing and so on [24]. Generally,
the geodesic distance φ can be obtained by solving the Eikonal equation nu-
merically using Dijkstra’s method [9] or the Fast Marching Method [31,4].
Once we get an approximation of the geodesic distance φ, the geodesic lines
γ∗ between source point p0 and other points px on the domain are extracted
by integrating an ordinary differential equation numerically [4,24]:

∀s > 0,
dγ⋆

ds
= −D−1∇φ, γ⋆(0) = px (4)

where D is the metric tensor in the anisotropic case. For the isotropic case,
D = α2Id, and Eq.(4) becomes dγ⋆

ds = −∇φ.
The metrics used in this paper can also be computed by other distance

computation techniques such as the Fast Marching Method [31,32,20].
Using a heat method to approximate the geodesic distance has several

advantages. The heat method is very fast [8] and also easy to implement.
Furthermore, we show that different kinds of features can be extracted by
using different diffusion models. Another advantage of this method is that it is
not highly sensitive to noise. On the other hand, there are some disadvantages.
The heat method is useful within a limited time period. After a long period
of time, too much diffusion over the domain will cause blurring and make it
hard to sort out the features of interest from all available features.

In this paper, we go beyond the work of Crane et al [8] and introduce
different heat flows to find the geodesic distance and lines. These flows can
be either isotropic or anisotropic, depending on the needs. Note that all the
diffusion models used in this paper are linear. In order to extract the geodesic
lines automatically, we introduce two new approaches based on geodesic voting
and key point detection, which are inspired by [28–30] and [2,12] but adapted
to heat diffusion rather than Fast Marching.

This paper is organized as follows: Section 2 presents isotropic and anisotrop-
ic heat diffusion models using different potentials and tensors including func-
tions of the image gray values for conductivity, the Perona-Malik (P-M) model,
and functions of the image Hessian for the diffusion tensor. We also explain the
validity of Varadhan’s formula in the cases we consider. Section 3 demonstrates
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the results of using different diffusion models to acquire geodesic distances
and paths. Section 4 introduces two new approaches for automatic geodesic
extraction. Section 5 shows experimental results for these automatic methods
on images. Section 6 provides some concluding remarks and possible directions
for future work.

2 Varadhan’s Formula and Heat Diffusion by Different Potentials

and Tensors

Heat diffusion comprises 2 types: isotropic and anisotropic. The distinction is
made by determining whether the diffusivity is a scalar or a matrix. When we
consider heat diffusing on a N ×N image, the initial condition would be:

{

ut − α∆u = 0, (x, y) ∈ [0, N ]× [0, N ], t ∈ [0, R+]
u(x, y, t = 0) = δ(x0,y0)

(5)

where α is a constant in the homogeneous domain and δx0,y0 is the dirac
distribution centered at p0 = (x0, y0). It should be noted that several source
points can be used to diffuse simultaneously.

In Crane et al ’s method [8], there are three steps to get the geodesic dis-
tance φ on a surface: 1) compute the heat density: ∂tu = α△u, α is a constant
on the whole domain; 2) normalize the gradient: X = ∇u

|∇u| ; 3) solve the Pois-

son equation: △φ = div(X) to get the distance φ. Crane et al ’s method shows
the correlation between the heat density u and the geodesic distance map φ.
In this paper, we solve the isotropic (or anisotropic) heat equation to get the
heat distribution on images where the heat will flow along the direction of a
geodesic. Then we apply Eq.(3) directly to get the geodesic distance φ.

Next, a geodesic curve γ⋆ between the source point p0 and another point px
in the domain can be computed by gradient descent [4,3], by using dγ⋆

ds = −∇φ.
This backtracking becomes Eq.(4) in the general anisotropic case.

2.1 Isotropic Diffusion

Four situations of isotropic heat diffusion are discussed here: 1) conductivity
based on a function of the gray level, 2) P-M model [23] (although Perona
and Malik claimed that their model is anisotropic, we still consider it isotropic
following [15], since they use a scalar diffusivity and not a tensor), 3) the
combination of conductivity and the P-M model, 4) a P-M model using the
norm of gradient of the image as the feature.

2.1.1 Conductivity

In Eq.(1), α represents thermal diffusivity. In the homogeneous case, α is a
constant. Putting the source point in the center of the image, heat will diffuse
across concentric circles and geodesics will be straight lines orthogonal to these
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(a) (b) (c) (d)

Fig. 1 The example of how heat propagates on a synthetic image and the effect of the
power n in (6), (a) is the original 300 × 300 image composed of several parts including a
wide black curve in the middle and its surroundings, the red point which is the source-
point (187, 36)manually set on top of the curve from which heat can diffuse, (b) is the heat
distribution for n = 1 in (6), (c) is the result for n = 2 in (6), and (d) is the result for n = 3
in (6). These results are generated in the same period of time T .

circles. We are motivated by finding geodesic paths that follow related gray-
level values, and therefore use a conductivity which is a function of the gray-
level at each pixel. Given a source point p0 on an image f , the conductivity
of p0 equals to 1. Point px has a higher conductivity α when the gray-value
difference between p0 and px is small as shown in Eq.(6).

αpx
= |(1− |f(p0)− f(px)|)|n + ε (6)

n = 1, 2, 3..., ε is a small positive constant that prevents α from vanishing.
The value of n depends on the contrast between the interesting features in
the image and the image background. In other words, if there exist fewer
differences between the interesting features and their background, we can set
a higher n. From Fig.1, it can be clearly seen that the black wide curve (the
part to be enhanced) is the most visible in (d), compared with the other two
results (b) and (c).

2.1.2 Perona-Malik (P-M) model

As stated above, the P-M model [23] is not a real anisotropic model because
D used in (7) is a scalar and not a tensor.

{

∂u
∂t = div(D∇u)
u(x, y, t = 0) = δ(x0,y0)

(7)

There are two forms of D usually used, both being positive decreasing
functions of the gradient, which are given by

D = e−(‖∇f‖/K)2 or D =
1

1 + (‖∇f‖/K)2
(8)

whereK is the contrast parameter and ‖∇f‖ is the norm of the gradient of the
image. Diffusion processes in Sect.2.1.1 tend to equilibrate the concentration
differences in the materials, while the feature (Eq.(8)) used in the P-M mod-
el can constrain the diffusion process inside the homogeneous regions. From
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(a) (b)

Fig. 2 Example for showing effect of the item ∇D · ∇u, (a) is the result without the item,
and (b) is the result with the item.

Eq.(8) we can see that wherever there is higher gradient there is lower diffu-
sivity, which indicates that P-M model inhibits heat from leaking outside a
homogeneous region. Note that since the goal here is different from the usual
P-M equation where the heat density is the image f itself, the initial value
of u here is different from the usual case. We use a Dirac distribution as the
initial density. Eq.(7) can be also written as Eq.(9)

∂u

∂t
= D∆u+∇D · ∇u (9)

Compared with Eq.(1), there exists an additional first derivative term in
Eq.(9): ∇D · ∇u. Fig.2 shows the experimental result on a synthetic image.
From this result, it can be seen that there is a difference between (a), the form
the result takes without adding the item, and (b), the result with the item
considered. Compared to (b), we can see that (a) has more heat around the
edges, which shows that adding this item ∇D · ∇u helps to restrain the heat
from leaking out of a region slightly.

2.1.3 Combination of Conductivity and P-M Model

As we can see above, both methods have their own advantages. Using conduc-
tivity is direct and useful in simple scenes, but it becomes insufficent when
dealing with more complicated scenes. The P-M method helps to weaken heat
diffusion on the edges and boundaries. Thus it can be used as an auxiliary
factor. This is the reason why we combine the two methods together:

∂u

∂t
= α · div(D∇u) (10)

Here, α is defined by Eq.(6). Thus diffusion depends on both region and
edge based features. The advantage can be seen in Fig.3 where the heat be-
comes more concentrated along the central curve as a result of this combina-
tion.

Another advantage of using this combination is that it can get the center-
line automatically. According to Eq.(3), it is indicated that wherever there is a
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(a) (b) (c)

Fig. 3 Example on the same synthetic image showing the combination of conductivity and
P-M diffusivity. A source point settles on top of the curve. After the same period of time,
(a) is the result of using the cubic form of Eq.(6), (b) corresponds to the PM model Eq.(8),
(c) is the result of using the combination of conductivity and P-M model Eq.(10).

larger heat density there is a smaller distance between the points on the image
and the source point p0. By using Eq.(10), heat will be mostly concentrated
in the center of the region containing the source point. Fig.8 gives an example
of centerline extraction in a vessel image.

2.1.4 A P-M Model that Follows the Edges

In fact, besides the features in Eq.(8), there are other features that can also
be used in the P-M model. Contrary to the features in Eq.(8) that keep the
heat inside a region, we propose to define features that help heat focus on the
edges or boundaries by enhancing the potential on the edges:

{

∂tu = div(D∇u)
D = ‖∇f‖2 + ε

(11)

In this model, heat diffuses faster wherever the gradient gets higher such as
on an edge or across thin structures. In order to keep the diffusion coefficient
strictly positive, we add a small positive constant ε to ‖∇f‖. Examples are
shown in Fig.4. In the row above, without enhancing ‖∇f‖, the very thin line
can hardly be taken into account, as shown in (b), while in (c), the heat travels
mostly along the thin curve in the middle, using Eq.(11). In addition, a much
wider line of interest and its background with several polygons is shown in
(d). Both (e) and (f) are the results of diffusion using Eq.(11) in P-M model
where the diffusion starts from two different positions of the source point.
When the heat starts diffusing from the red point, it almost goes along the
boundary of the hexagon and then heat diffuses to the curve. The heat also
concentrates on the boundary of the curve. The same phenomenon can be seen
in (f) where heat starts diffusing in the center of the curve and then goes along
the double edge. Thus Eq.(11) is good at extracting features such as edges and
boundaries.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Example on a synthetic image to illustrate how Eq.(11) works. The source point is
placed on the very thin line in (a) and a wider curve in (d), the red point in (a) is the source
point for (b) and (c). (b) is the result of diffusing on (a) by a method discussed in (6), (c)
is the diffusion result of (a) using (11). The red point on (d) indicates the position of the
source point for (e) and the yellow point indicates the position of the source point for (f).
Both (e) and (f) are the diffusion results of (d) generated by using |∇f |2 as the feature in
the P-M model.

2.2 Anisotropic Diffusion

Anisotropic diffusion has a form as follows:

ut = div(D∇u) (12)

where D is a diffusion tensor rather than a scalar. It is a tensor field of sym-
metric positive matrices that encodes the local orientation and anisotropy of
an image. This anisotropic diffusion makes heat propagate in the direction
that we design [3,13] by defining the relevant tensor D. Weickert [37] pro-
posed a coherence enhancing diffusion method, using a nonlinear anisotropic
diffusion equation for filtering problems. A symmetric and positive definite
diffusion tensor is used in this method. It is obtained by the tensor product
of ∇f : Jρ(∇fσ) := Kρ ∗ (∇fσ ⊗∇fσ), where Kρ is a Gaussian kernel. In [37],
the eigenvectors are the same as in Jρ(∇fσ) and the eigenvalues are chosen
to make diffusion act mainly along the direction with the highest coherence.
An improved structure tensor is proposed in [18] to get an integrated edge
and junction detection method. The structure tensor is calculated by means
of Gaussian derivative filters of the image f . The authors proposed multiple
ways to improve the structure tensor including using a higher sampling rate,
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improving corner localization etc. Generally, the gradient ∇f of the image is
usually taken into account to measure the local direction of edges or texture
[24]. In [3], the authors proposed an interactive vessel segmentation method to
extract the centerlines as well as the boundaries of the vessels. In this method,
they defined the metric using the eigenvectors and eigenvalues obtained from
OOF (optimally oriented flux) [19]. This metric is oriented along the estimated
direction of the vessel, allowing a higher velocity on the centerline and with
an estimate of the vessel local radius. Since we do not segment the boundaries
in our paper, we just use the Hessian matrix to construct the metric.

2.2.1 Eigenvalues and Eigenvectors

The tensor field can be diagonalized as in [24]:

Tx = λ1(x)e1(x)e1(x)
T + λ2(x)e2(x)e2(x)

T (13)

The normalized vector fields ei(x) are orthogonal eigenvectors of the sym-
metric matrix Tx, and the λi(x) are the corresponding eigenvalues, with 0 <
λ1(x) ≤ λ2(x). Following [24], the anisotropy A(x) is defined as:

A(x) =
λ2(x)− λ1(x)

λ2(x) + λ1(x)
(14)

When λ1(x) = λ2(x), the anisotropy A(x) is 0, and the tensor is in fact
a scalar metric which makes geodesics the shortest paths according to the
isotropically weighted distance.

2.2.2 Anisotropic Diffusion Tensor

When λ1 6= λ2, it is anisotropic. As mentioned before, λ2 ≥ λ1, λ2 controls
the direction of the heat flow. When λ2 is far larger than λ1, the heat flows in
the direction of e2 while only a little goes into the orthogonal direction. Fig.5
depicts the effect of the change of anisotropy in detecting a shortest path. We
define the gradient direction of the image as e1, which is the radial direction,
and its orthogonal direction as e2 (in fact, the eigenvectors are the same as
those used in [37]). When λ1 = λ2, the heat diffusion begets the Euclidean
distance map, and the shortest path is a straight line. As the anisotropy grows,
the direction of heat flow travels more along the tangent direction and the
geodesic lines get closer and closer to a half circle.

In [11], the authors introduced a multi-scale vessel enhancement method
by interpreting geometrically the eigenvalues of the Hessian matrix. Using
the Hessian eigenvectors, the local orientation of the image can be estimated,
allowing to find out where there are tubular structures like vessels. Here we
use a fixed Gaussian kernel and compute the 2D Hessian matrix, then compute
the eigenvalues and eigenvectors. We use the eigenvectors as a tensor field and
control the anisotropy.
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(a) (b) (c)

(d) (e) (f)

Fig. 5 (a) a Gaussian image, (b) tensor field by gradient, (c) to (f) are the shortest paths
between the two user-chosen points, the corresponding anisotropies are 0, 0.5, 0.8 and 0.99

Fig.6 shows the isotropic and anisotropic heat diffusions respectively on
a U-tube image. The U-tube image is given by (a). (b) is the distance map
obtained by using conductivity Eq.(6), n = 3. (c) is the distance map obtained
by using anisotropic diffusion. (d) shows the tensor field that is used in the
anisotropic diffusion, and it is obtained by Hessian matrix. (e) is the geodesic
line obtained by backtracking in (b), we can see that the geodesic line takes a
shortcut. When the heat diffuses by taking the local orientation into account,
this shortcut is avoided. (f) shows geodesic line by backtracking in (c). As
seen, the heat travels along the tensor field, and by backtracking, the line is
exactly located on the tube in the correct direction.

2.3 Heat Diffusion on Meshes

The heat equation on meshes is similar to the one on images though the heat is
transferred from one vertex to another, not from pixel to pixel. We introduce
a numerical method to solve the heat equation on triangle meshes. The mesh
is composed of faces {fm}1≤m≤M and vertices {vn}1≤n≤N where M and N
are the numbers of faces and vertices respectively.

First, we need to compute the cotangent Laplacian W of the mesh. It can
be obtained by using Eq.(15) [25,27]:

Wi,j = cot(αi,j) + cot(βi,j) (15)
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Experiment on a U-tube structure: (a) original image, (d) tensor field, (b) and (c)
are the distance maps obtained by isotropic and anisotropic diffusions respectively, (e) and
(f) are the corresponding geodesic lines.

where αi,j and βi,j are the two angles opposite to the edge (vi, vj), which
connect two vertices. Next, we need to compute the symmetric Laplacian ma-
trix L = D −W , where D = diagi(

∑

j Wi,j). At last, we get the normalized

operators W̃ = D−1W and the Laplace operator is L̃ = D−1L.
The heat diffusion on a mesh solves: ut = −L̃u. Here the conductivity of

the domain is assumed constant. When it comes to enhancing other special
features, for example, the curvature in order to extract the edges on mesh, or
the texture on the surface in order to find characteristic lines on the surface,
we incorporate these features into the heat equation. It yields:

∂u

∂t
= −L̃(u ∗ P ) (16)

where P plays a role similar to heat conductivity α in (6) and determines the
evolution and distribution of heat on the surface.

2.4 The Applicability of Varadhan’s Formula

As explained in the introduction, the main relation between heat diffusion and
distance maps comes from the Varadhan’s formula. In this section, we give a
closer look to this formula and its extensions.

In [6], the authors introduced approximate solutions for the Green function
of uniformly parabolic second-order operators with variables, by using expan-
sions. Let L be the general Laplacian operator which comprises the second
and first order terms:

Lu :=

n
∑

i,j

ai,j(x)
∂2u

∂xi∂xj
+

n
∑

j

bj(x)
∂u

∂xj
+ c(x)u (17)

Our heat equation with the boundary condition becomes:
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{

∂tu− Lu = 0, in(0,∞)× R
N

u(x, 0) = δx0 , onRN
(18)

According to [34,36,6], the operator L can be interpreted as a Laplace-
Beltrami operator on a manifold with lower order terms, thus, we can obtain
the Green function (or fundamental solution, heat kernel) Gt(x, y) of Eq.(18)
represented by an asymptotic expansion of the form:

G(x, y, t) = e−
φ(x,y)2

4t

(4πt)N/2
(
∞
∑

k=0

G(k)(x, y)) (19)

as t → 0+, where φ(x, y) is the geodesic distance induced by a Riemannian
metric derived from the coefficients {ai,j} between points x and y, G(k)(x, y)
are smooth functions.

The fundamental solution of Eq.(19) satisfies the formula introduced by
Varadhan [33]:

lim
t→0

[−4t log ux(y, t)] = φ2(x, y) (20)

where here ux(y, t) = G(x, y, t). For example, this formula is well understood
in the case of the homogeneous heat equation posed on the whole domain
R

2. Then, the Green function is in fact a Gaussian function and the explicit
solution is

ux(y, t) = (2πt)−k/2 exp{− 1

4t
‖x− y‖2} (21)

It can be easily seen that this function satisfies formula Eq.(20).
In this paper, we introduce three kinds of heat flows.

1. The heat equation for the conductivity case is obtained from Eq.(18),
taking ai,j(x) = αpx

δi,j , where αpx
is defined in Eq.(6) and δi,j is the

kronecker symbol, equal to 1 or 0 depending on i equal to or different from
j.
And we have bj(x) ≡ 0, c(x) ≡ 0. Therefore, the distance φ is a weight-
ed distance. The geodesic paths correspond to minimal paths relative to
isotropic potential equal to the conductivity αpx

.
2. For the P-M case, of section 2.1.2, we have ai,j(x) = D(x)δi,j and (bj(x))j =
∇D, c ≡ 0 in Eq.(18).

3. For the anisotropic case, of section 2.2, we can take, by developping div(D∇u)
from Eq.12, ai,j(x) = Di,j(x), bj(x) = div((Di,j(x))i) and c(x) ≡ 0. Since
for the general anisotropic case the distance φ derives from a Riemani-
an metric, the orientation of the geodesic lines have to agree as much as
possible with the eigenvectors of the metric.

In all cases above, Varadhan’s formula means that the corresponding heat
flow allows to find an estimate for the distance map according to the Rieman-
nian metric derived from the coefficients {ai,j}.
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3 Experiments and Analysis of Different Heat Flows

3.1 Experiments Data and Settings

We test the different heat diffusion models on several datasets:

Isotropic diffusion on real images. In the experiment of road extraction
(Fig.7), the data is an optical remote sensing image and is resized to 300×300.
In the experiment of vessel extraction (Fig.8), the image size is 512×512. The
conductivity is given by Eq.(6), and n = 3, the coefficient K in Eq.(8) is 0.03.

Isotropic diffusion on a noisy image. Fig.9 is an example on a noisy image
(a), with a given percentage of corrupted pixels, ξ equals to 0.133.

Anisotropic diffusion on a synthetic images. In the spiral experiment
in Fig.10, we use the Hessian matrix to define the diffusion tensor and the
anisotropy is set to 0.9.

Isotropic diffusion on a mesh. The block of fig.11 has 57184 faces and
25894 vertices. Curvature in the mesh was computed following the method in
[5] and [1].

In addition, it should be guaranteed that the heat has spread all over the
domain (i.e. the image), where the structures to be extracted are all included.
On the other hand, the heat is not supposed to propagate for a long time
because the image will eventually get blurred. In order to achieve that, we
must manage to set an iteration number in accordance with the problem data
(size of the image, position of the source point) while managing control of
the heat flows. Therefore, the diffusion has to take place during a limited and
short period of time. In addition, to make sure that the values are computed
within a reasonable number of time iterations, the time step of each iteration
τ in ∂u

∂t − τ · α∆u = 0 is set to τ = 0.2, which satisfies the CFL condition [7].

3.2 Results and Analysis

To evaluate the performance of the centerline extracted by different methods,
we compute the precision and recall criteria given by the following formula:

{

recall = TP
TP+FN

precision = TP
TP+FP

(22)

where TP is the length of extracted centerline that matches the manually
labeled ground truth, FP represents the length of extracted centerline which
are not on the ground truth, and FN is the length of the ground truth but
that is not extracted.

Isotropic diffusion on real images.

In Fig.7, the source point is set on the top of the very thin white line (which
is a road)with the endpoint at the bottom. The blue curves in (a) to (d) are
the paths extracted by backtracking from the end point to the source point.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Experiment on the image of a road: the top row from left to right displays the
corresponding path extracted by using Fast Marching, the heat method by using respectively
Eq.(6) as conductivity, n = 2 and ǫ = 0 Eq.(11) and Eq.(8) in the P-M model, the bottom
row displays the distance maps by using these methods respectively.

It is based on the distance maps obtained respectively by using isotropic Fast
Marching, by using the heat method with conductivity Eq.(1), by using P-M
diffusion model with Eq.(11) and by using P-M model using Eq.(8) as shown
from (e) to (h). In (a) and (b), we use the same metric for the Fast Marching
Method and heat diffusion.

From Table 1, the road extracted in (a) and (b) has a similar recall and
precision. But the road extracted in (b) is much smoother than the one from
Fast Marching (a). In addition, the P-M model based on Eq.(11) is good at
extracting thin structures, see (c). Futher, in (d), by using Eq.(8) in the P-M
diffusion model, the more homogeneous parts can be easily distinguished. This
indicates that the heat diffusion by the use of Eq.(8) in the P-M model is likely
to present good results when there is a relatively larger part to be extracted.
Moreover, heat in such a case is easily diffused in places where a few changes
exist.

The experiment of vessels is shown in Fig.8, in which the source point
(marked as red cross) and end points (marked as black) are given by the user.
By using isotropic Fast Marching (a), the extracted lines do not exactly fol-
low the centerline, especially in the center. By using the isotropic linear heat
diffusion Eq.(1) with Eq.(6) as the conductivity, due to directionally indepen-
dent heat scattering, the centerline of the vessels is not completely right. (c) is
the result that combines the P-M model with the conductivity Eq.(10), using
Eq.(8) in P-M model, the heat is more concentrated in a homogeneous area
where the source point stays. From (d), we can see that the centerlines are
well extracted despite the position of the manually set source point, which
means that the point of most concentrated heat moves to the centerline in the
process of diffusion. In this test, compared to the center line ground truth, it
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can be seen in Table.1 that Eq.(10) is effective in extracting the center line of
the vascular-like structure.

Table 1 (the indexes of evaluation%).

data method recall precision

Road Fast Marching 79.59 72.87
Fig.7 Heat Diffusion(6) 76.32 71.00

Heat Diffusion(11) 98.11 91.00

Vessels Fast Marching 84.73 63.68
Fig.8 Heat Diffusion(6) 91.78 67.01

Heat Diffusion(10) 92.26 70.09

Isotropic diffusion on a noisy image

The diffusive nature of the heat equation causes instant smoothing. Even
if there is a temperature discontinuity at initial time t = t0, the tempera-
ture becomes smooth as soon as t > t0. Solutions of the heat equation are
characterized by a gradual smoothing process from the initial temperature
distribution by the flow of heat from warmer to colder areas of an object, and
this can be considered as a blurring process. This is why the heat equation is
used for filtering problems. And also in our case, the geodesic curves that are
extracted are not so affected by noise. Fig.9 is an example on a noisy image
(a), with a percentage 0.133 of corrupted pixels. Given a source point and
an end point on both ends of the black curve, the red lines on (b) and (c)
are obtained by the isotropic Fast Marching Method and heat method using
P-M model respectively. The potential used in Fast Marching and the scalar
used in P-M model are the same. Both are the norm of gradient of the image.
From the result we can see that the heat method gives a better result than
Fast Marching despite the noise, which indicates that the heat method is less
sensitive to noise.

Anisotropic diffusion on a synthetic images

Fig.10 illustrates an experiment using anisotropic heat diffusion. The re-
sults are as follows: (a) is the original spiral image, (d) is its corresponding
tensor field by using the Hessian matrix. (b) is the distance map obtained
via the isotropic heat diffusion (Eq.(1) as the diffusion model, and Eq.(6) as
the conductivity with n = 3) and (c) is the distance map obtained via the
anisotropic heat diffusion, (e) and (f) are the extracted lines. From the result-
s, we can see that in (b) and (e), using isotropic diffusion, the temperature
blurs in the process of diffusion, and the path extracted takes the shortcut
from the end point to the source point, while in (c) and (f), using anisotrop-
ic diffusion, the path backtracks along the spiral line, and the heat diffuses
predominantly along the spiral apparently.
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(a) (b) (c) (d)

Fig. 8 Experiment on real vessel image: the red cross is the manually set source point, the
black spots are the end points provided by the user, and the blue curves are the extracted
geodesics (a) is the result by isotropic Fast Marching (b) is the result by only using the
conductivity (Eq.6), (c) and (d) are the results by using the combination (Eq.10), but with
different source points.

(a) (b) (c)

Fig. 9 Experiment on a noisy image (a), the red line on (b) is obtained by Fast Marching
Method, the red line on (c) is the result of P-M heat method (11).

Isotropic diffusion on a mesh

To illustrate the method of section 2.3, Fig.11 uses the curvature of the
block as diffusivity. Furthermore, the higher the curvature at a point, the
higher the probability that at this point the amount of heat received is larger
than at the neighboring points: (a) is the original block structure; (b) is the
distance map, as shown in (b), the distances on the edges are smaller than
the flat surfaces, which means heat is more concentrated on the edges of the
block, in comparison with the smooth and flat parts. (c) shows the result of
the minimal paths between the ten end points and three source points. It is
very conspicuous that that all paths go along the edges.

As is introduced above, the heat flows are not strongly affected by noise. For
the different heat flows, there are other advantages and disadvantages which
we list in Table.2, where IHF and AHF are abbreviations for the isotropic heat
flow and anisotropic heat flow.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Experiment on a spiral: (a) original spiral image; (d) tensor field; (b) distance map
by isotropic heat diffusion; (e) geodesic line extracted corresponding to (b); (c) distance map
by anisotropic heat diffusion; (f) geodesic line extracted corresponding to (c).

(a) (b) (c)

Fig. 11 Experiment on the wedge-like block, three points on the edges are chosen to be
the source points, and 10 points are randomly chosen as the end point. (a) is the data, (b)
the distance map, (c) the paths extracted along the edges of the block.

4 Automatic Segmentation Based on Heat Diffusion

In the previous sections, we introduced how to obtain the geodesic distance
and curves by using different heat diffusion equations. However, in all of these
methods, the user has to provide at least one source point and several end
points to extract the curves. This extensive manual intervention makes it very
tedious to extract complex curves. To address this issue, we propose two al-
gorithms for extracting the geodesic lines automatically without having to
provide the end points.
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Table 2 (Comparison of different flows).

Metrics Advantages Disadvantages

Conductivity
√

Convenient Intuitive × Complicated scenes
IHF P-M Eq.(8)

√
Homogeneous regions × For edges

P-M Eq.(11)
√

Edges Boundaries × For regions

AHF
√

Specified directions × Time Consumption

The first algorithm is realized by the extension of the method of geodesic
voting, which was proposed in [29]. The authors first use the Fast Marching
Method to get the distance map, and subsequently use the boundary of the
image domain, or randomly selected points, as the end points. Backtracking
from these end points to the source point, there will be numerous paths. At
each point of the image domain, the geodesic density is defined as the number
of paths that go through that point. By thresholding the density, an automatic
segmentation of the desired structures can be obtained. The general idea of
our voting method is that we set some time ∆T > 0 for the diffusion, which
depends on the size of the image. After time ∆T , heat can pervade a certain
region surrounding the source point p0. The pixels on the front (boundary)
of this region are then used as the end points for backtracking to p0. Then,
setting a cutoff-threshold ǫ on the geodesic density, we retain only those pixels,
which have geodesic densities above this threshold.

The second method is inspired by the key point method described in [2]. In
this method, a set of contour curves or thin structures are obtained as a set of
minimal geodesic paths connecting successive keypoints. These keypoints are
defined in an iterative way by selecting the first point on the Fast Marching
front for which the minimal path reaches a given curve length. We refer to
[2] for the rationale and details on the method. Here, in our own method, we
first let the heat diffuse for some time ∆T1 and use the current source point
as the center and r as radius to form a circle. We identify the points on the
circle with the largest temperature values (note that there might be more than
one large value, and we are looking for the peaks of the heat density larger
than a prescribed threshold). The new source points are located at these peak
points. After obtaining the new source points from the peak points, we let
them begin to diffuse one after the other until a stopping criterion is met.
This is a particular topic of discussion in the keypoint section of the paper.

4.1 Voting Method

In [29], the authors present a novel method for automatic segmentation of tree
structures, named geodesic voting. First, the authors obtained the distance
map by using the Fast Marching Method, then they use some endpoints chosen
automatically to backtrack to the source point. Thus there will be a series of
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paths extracted. The points located on these paths can be used to define the
geodesic density:

µ(p) =

N
∑

n=1

δp(ln) (23)

where δp(l) = 1 if pixel p is crossed by path l, N being the number of paths. A
threshold-cutoff for the geodesic density is also set. We retain only the pixels
with a number of paths above the prescribed threshold in the final result.

In this section, we introduce three voting methods. They will be detailed
in the ensuing subsections. One method is to vote from the front of heat dis-
tribution directly. As stated above, the paths are extracted from the boundary
of the heat distribution after time ∆T . They consist in joining each end point
to the source point by backtracking. Fig.12 shows how the time ∆T affects the
results. In the first row, we choose a smaller time ∆T ′, which is half of the ∆T
in the second row. (a) and (d) show the heat distribution after ∆T ′ and ∆T
and the blue curve surrounding the regions are the fronts which are considered
as the end points. (b) and (e) are the paths obtained by backtracking from the
front points to the source point. (c) and (f) give the structure extracted by
voting. Clearly we can see that in Row2, the method gives a more thorough
result compared to Row1, which emphasizes the importance of how we choose
∆T .

Another voting method is to add new voting points within a smaller period
time ∆T1. We then track back from the front to the source point and vote for
the first result. Next, we let the heat continue to diffuse for another time ∆T1
to track back and vote again, adding the new result to the first result. This
process of letting the heat diffuse within a period of time ∆T1 is reiterated as
many times as need be until the stopping criterion is fulfilled.

The third voting method is realized by resetting the source point. After
time ∆T1, the first result can still be obtained by voting. Then, we use these
points as the new source points, and let the heat diffuse for another ∆T1. The
new results then add-up as the collection of source points for the following
diffusion. This process is repeated until the stopping criterion is met. Experi-
ments of these three voting methods are compared in the following section ??

dedicated to the experiments.

4.1.1 Voting from the Front

First of all, we set a source point p0 at the location of interest. After ∆T > 0,
the distance map D is obtained by Eq.(3). The positions on the boundary
of the region covered by heat are considered as end points. By backtracking
from these end points back to the source point, we get many geodesic lines.
Setting up an appropriate threshold ǫ for the geodesic density β can be useful
for getting the right path. Generally, we choose ǫ = max(β)/M , where M is a
constant. For example, in Fig.12(f), M equals 30 in this case, but M can be
different in different cases.
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Experiment on a tree structure by voting from front, from left to right: the first
column shows the distance maps, the second one shows the paths obtained by backtracking
from the heat front to the source point, and the third one presents the result by voting.

Voting directly from the heat front is easy to implement. When we compare
the use of heat front to get end points with the use of boundary points of the
image or randomly chosen end points as the end points, we find that the
heat front is more suited to get the centerline. This is because the way heat
diffuses depends a lot on the geometry of the shapes of the structure. Yet,
as heat propagates, the heat front does not provide the exact shape of the
structure to be extracted. This makes it easy to mix-up two paths that make
a small angle between each other like in the case of tree structures, making
it more difficult to recover all the paths. As shown in Fig.12(f), there are two
segments inside the tree structure that are missing, whereas in (c), these same
segments are extracted. For this reason, we propose two other methods for
more complicated scenes.

4.1.2 Multiple Voting Method

As mentioned above, given a more complicated scene, such as a tree structure,
there will be branches missing even if we use the boundary of the region of heat
diffusion. Besides, the diffusion time ∆T should be re-selected when the image
size is different. For these reasons we propose the idea of the multi-voting
method.

First, a source point p0 is given. Within a smaller period of time ∆T1,
we see a reduction in the magnitude of the region pervaded by the heat as
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Experiment on the tree structure by multiple voting method, the top row is ob-
tained by the first step of Sect.4.1.2, the bottom row is the second step, from left to right are
the distance map, the paths obtained by backtracking from the front to the source points
and the result after voting.

shown in Fig.13(a). Using the boundary of this region as the end points and
backtracking to p0, as shown in (b), we vote and set a threshold ǫ of the voting
score Eq.(23). Here we choose ǫ = max(β)/7 in the experiments. Note that we
use 7 rather than 30 here because it is different from voting directly: there are
fewer paths extracted at each iteration. The points {ps1} with a higher density
value than ǫ are retained, as shown in (c). Then, we let the heat continue to
diffuse for the same period of time ∆T1 and get the distance map (d). We vote
again from the points on the new front of the region of heat and the newly
obtained points {ps2} are saved again as shown in (f). Heat diffuses in this way
and we keep all the points {ps1} to {psn} together until the stopping criterion
is met (see section 4.1.4). We show the two first steps here and the final result
is shown in the experiment section.

4.1.3 Accumulation of Source Points

Resetting source points method is based on a procedure similar to that of
adding voting points of the previous subsection. Both of them need a multi-
voting process. The resetting source points method takes advantage of diffusion
and makes the process more exact because each time there will be more source
points that cover the structure.

The first step of voting is the same as the one in Sect.4.1.2. After time
∆T1 of diffusion from source point p0, we get the points {pv1} by thresholding
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Experiment on the tree structure by accumulation of source points, the above row
is obtained by the first step of Sect.4.1.3, the below row is the second step, from left to
right are the distance map, the paths obtained by backtracking from the front to the source
points and the result after voting.

the geodesic density with ǫ and save the points {pv1}. We then reset the
temperature to zero everywhere on the image and set all points of pv1 as
the source points that have the same temperature. Next, we let these source
points diffuse for the same time ∆T1 and we vote again and get points {pv2}.
Add {pv2} to {pv1} and repeat resetting the temperature to zero on the whole
domain and adding new points to {pv1} as the source points, until the stopping
criterion is met. The stopping criterion here is the same as in 4.1.2 and will
be detailed in sect.4.1.4.

Resetting source points method is different from Sect.4.1.2 because the
source points keep changing every time there is a vote. It is better at controlling
the direction of the heat flow because increasing the number of source points
leads to higher accuracy. As is shown in Fig.14, these are two first intermediate
steps of this algorithm. After time ∆T1, the distance map (a) is obtained,
by voting we can get (c). In the second step, we use the points in (c) as
the source points, and let the heat diffuse from scratch. After the same time
∆T1, we get the result in (f). In the next steps, we use the points obtained
from its previous step as new source points until the stopping criterion is met.
Compared to Fig.12, by using resetting the source points method, the segments
on the tree structure are almost all extracted, and heat is more concentrated
on the boundary of the region that it covers. The final result is shown in the
experiment part.
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4.1.4 Stopping Criterion

We define two criteria for the heat to stop diffusing. Once at least one of
them is satisfied, the heat diffusion stops, see Algorithm 1. Take Fig.14 as an
example.

1. At the beginning, one point p0 is chosen as the source point in an image
(with a size M ×N). Save p0 into a list L, which is initialized as empty. After
one step of voting, we get the points {pv1}, as shown in Fig.14 (c), save them
into L. Denote the number of pixels in L by NL. If NL/(M ×N) > η, the heat
diffusion is terminated. Otherwise, it continues to diffuse. In our experiments,
according to our experience, there is a rule of thumb and this magnitude η is
set to 1/30.

2. After the ith step of diffusion, new points {pvi} should be added into list
L, if NL/(NL +N{pvi}) > 95%, where N{pvi} is the number of the set {pvi},
the heat diffusion can also be stopped.

Algorithm 1 Stopping Criteria

Initialization: p0 chosen as the source point, L← p0
repeat

L← pvn , pvn : the n-th voting;
until NL/(M ×N) > η or NL/(NL +N{pvi

}) > 95%

4.2 Key Points from Heat

In [2], the authors introduced a method for segmentation using Fast Marching
Method by growing minimal path and detecting key points on the curves of
interest recursively. First, the user provides an initial point on the desired
object. Then, starting from the initial point, a front is propagated and the key
points are detected iteratively. These key points are almost equi-distributed
along the curve of interest, and thus are detected based on the Euclidean
lengths of the minimal paths. The whole process can be described as follows.
First, start from at least one single point p0 to initiate the Fast Marching
Method. Every time we compute the geodesic distance Up0(px) from a point
p0 to px on the image, we also need to compute the Euclidean length Lp0(px)
of the geodesic path from p0 to px. When a point p1 satisfies that Lp1 ≥ γ,
where γ is a threshold given by the user, p1 is considered as the first so-
called key point. As soon as p1 is detected, it is considered as a new source
of propagation. The same process is used to define the successive key points
{pk}. Front propagation is let to continue until a stopping criterion is met.
Refer [2] for details.

Since the key point method is efficient and robust in [2], we adapt it to heat
diffusion. However, using the heat diffusion, it is not as easy to compute the
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(a) (b) (c) (d)

Fig. 15 Flowchart of how to choose the new source points in the first ∆t. From left to
right, (a) is the original image with a source point p0, (b) is the distance map D1 of the
dashed box in (a) after time t, the red circle is Cp0 , (c) plots the heat density on the points
of Cp0 and there are two peaks which represent the new source points p1 and p2 in (d).

Euclidean distance together with geodesic distance as it is in the case of Fast
Marching in [2,16]. This is because when using Fast Marching, the geodesic
and Euclidean distances are updated simultaneously at every iteration when
the status of a pixel is updated, by propagation, while in heat diffusion, we do
not compute the distances by the same kind of front propagation. Therefore,
we propose a new method to detect key points using heat diffusion without
computing the Euclidean length of each minimal path during every detection.

First, we set a source point p0 on the curve of interest, and p0 can be
considered as the first key point. For every key point, there are two states,
s(px) = 0 and s(px) = 1, where s(·) is the state function. As will be made
clear below, points with state 0 are used to compute the geodesic distance and
lines, as well as finding the next key point, while points with state 1 are points
that have already been used for computing its neighbor key points. Now let
the heat diffuse from p0, where s(p0) = 0. We stop the heat from diffusing
after a certain time ∆t. The distance map dp0 can be obtained by Eq.(3). In
the region Rp0 of heat diffusion, we make a circle Cp0 where p0 is the center
and r is the radius. It should be guaranteed that the circle is located within
this region Rp0 . Then we find the peaks among heat density uCp0

on the circle
Cp0 and set a threshold ǫ1, save the positions {ps1} of the peaks whose values
are larger than ǫ1, and define {ps1} as the new source points. Fig.15 depicts
the flowchart of choosing the new source point in the first ∆t. We try to find
the position of the peaks of the heat density. Two points p1 and p2 are found
here, {ps1} = {p1, p2}, and they are considered as the key points which are
found at the first diffusion.

After the first time of diffusion ∆t, we get {ps1} which denotes the new
collection of source points. Since p0 has been already computed for finding its
neighbor key points, its state is changed to 1, and we use a list L to save p0.
Now it is turn for p1 to diffuse and get its neighboring key points. We empty
the heat density everywhere on the image and let heat diffuse from p1, and
use the same technique as shown in Fig.15. We get a distance map dp2 . Yet,
note that here we only use the subpart where Cp1 ⊂ Rp1\Rp0 . After finding
its neighboring key point p3, the state of p1 is changed to 1, and p1 is saved
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in the collection L. Point p2 goes the same way until we get to pn, where
the maximal value of heat of Cpn

⊂ Rpn
\{Rp0 , ..., Rpn−1} is less than the

threshold ε1 we set. Algorithm.2 is the key point algorithm using the isotropic
heat diffusion, where ǫ1, ǫ2 and ε1 are three parameters. Once we stop the
process, we have a set of key points and we obtain a set of paths, where each
keypoint is linked by a geodesic path to a previously obtained key point. This
is made by backtracking from a keypoint to the previous key point from which
it takes its origin. Each path is obtained in the algorithm at the time the key
point is added in the list.

Algorithm 2 Keypoint Algorithm

Initialization:

s(p0) = 0, L← p0, u = 0, φ = 0, Γ = {0}; % Γ is the set of geodesic paths
repeat:

pcurr = SearchState(L), % find the first point whose state is 0;
u(pcurr) = 1; % initialize the heat of current point
[u, φ] = HeatDiff(u);
{pm} = GetPeaks(Cpcurr

(r)); % Cpcurr
⊂ Rpcurr

,
s(pcurr) = 1;
if max{l(pm)} < ǫ1

break;
end if

for i = 1:m; % m is number of peak points;
if α(pi) > ǫ2; % α is the conductivity in Eq.(6).

L(end+ 1) = pi;
Γ (end+ 1) = γ(pi, pi−1);
s(L(end)) = 0;

end if

end for

until: max(Cpn
⊂ Rpn

\{Rp0 , ..., Rpn−1}) < ε1

5 Experiments and Analysis on Automatic Segmentation of

Geodesic Curves

5.1 Experiment Data and Settings

We test on three images: 1) a synthetic tree structure image in Fig.16 and
Fig.20; 2) a real vessel image with many branches in Fig.17, it is obtained by
maximum intensity projection of a real 3D vessel data and 3) a real medical
image with a catheter which is highly curved in Fig.19 (a), the size of all
three images is 300×300. In Fig.16(b), (c), (d), we use isotropic heat equation
Eq.(1) with the conductivity in all the three methods, Eq.(6), n = 3 here. In
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16 Voting experiment on the tree structure, (a) is the original image, (e) is the result
by [29] by using randomly chosen end points, from the second column to the fourth, the
above row shows the voting map by using respectively voting from the front, multi-voting by
adding voting points and multi-voting by accumulating of source points. And on the bottom
row are the corresponding results extracted by the three automatic methods.

Fig.17 , Fig.18 and Fig.19, we use Eq.(10), the combination of P-M model and
conductivity for the heat diffusion. In the process of voting directly from the
front, the time ∆T is controlled by the iteration times of heat diffusion, we
set the iteration times to 2N , where N is the length of image, here N = 300.
In the process of multiple voting methods, including Sect.4.1.2 and Sect.4.1.3,
the smaller time ∆T1 is controlled by the iteration time of each step, which is
set to 100 here. In detecting key points, for each step, the iteration time is 50,
and the radius r is 30, the threshold ǫ1 we set here is 80% of the highest heat
density on Cp0 during the first iteration.

5.2 Results and Analysis

The above results in Sect.3 show the semi-automatic extraction of geodesic
lines by setting the source and end points manually. Here we extract the cen-
terlines by voting method or using the key point method.

In Fig.16, (e) is the result obtained by [29] and 500 end points are ran-
domly chosen on the image. (b), (c) and (d) are the voting maps obtained by
using directly voting from the front, multi-voting by adding voting points and
multi-voting by accumulating of source points. (f), (g) and (h) show the cor-
responding structures that are extracted by different methods, and the black
part are mis-extracted part. In (e), there are some parts missing in the termi-
nals in the tree branches, the same phenomenon takes place in (f) and (g). (h)
has the best result because all branches and details, as well, are extracted.

Fig.17 shows the results of Fast Marching (a) and the three automatic
voting methods (b) (c) (d) with heat on real medical images. From the results,
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(a) (b) (c) (d)

Fig. 17 Voting experiment on the real vessel image, (a) is the original image with classical
voting from Fast Marching, (b) (c) (d) are the results by using directly voting from the front,
multi-voting by adding voting points and multi-voting by accumulating of source points.

(a) (b) (c) (d)

Fig. 18 Voting experiment on the real medical image with catheter, from left to right: the
results of [29] are displayed by using randomly chosen end points; using directly voting from
the front; multi-voting by adding voting points and multi-voting by accumulating of source
points.

we can see that the blue lines in (b) (c) (d) go along the centerline of the
vessels, but (a) fails to follow the centerline. And for all of (a), (b) and (c),
there are segments missing. However, by using resetting source point method
nearly all vessels are extracted in (d).

In Fig.18, the terminals of the catheter are hard to extract. Results are
shown superimposed on the potential image built from the Laplacian. Fig.18(a)
is the result by [29] and the end points are randomly selected, and from (b)
through (d) are the results from using directly voting from the front, multi-
voting by adding voting points, and multi-voting by accumulation of source
points. All of the four results give the contour of the curve-of-interest.

The automatic method in Sect.4.2 is tested in Fig.19 and Fig.20. Fig.19(a)
is the original medical image, where there is a curve with some high curvature;
(b) is the potential built according to the Laplacian; (c) is the first step through
detecting key points, and we can see that there are two points (yellow) that
are detected; (d) is the step following (c), and it can be found that there is
another key point detected; (e) is the next step and it is also the third step in
the whole process of detection; (f) is the result after several steps and (g) is the
final result in the case where the blue paths that are extracted by backtracking
from each key point one after the other, and they cover exactly the curve; (h)
is the traveling map of the key points, which means the set of the geodesic
distance map of each key point of the whole process of heat diffusion.

The key point from heat method does better than voting methods for this
example. Computationally, comparing the heat density becomes much easier
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19 Keypoint experiment: (a) is the original image; (b) is the Laplacian of the original
image; (c) the red point is the source point given by user, and the two yellow points are the
first key points detected; (d) is the second step of detecting key point from heat; (e) is the
next step, and (f) the result after several steps in search for key points; (g) shows the final
result of all the key points and paths detected and (h) is the traveling map of key points.

and less time-consuming than computing the Euclidean length of the geodesic
curves each time in [2]. Furthermore, it also provides satisfactory results.

Another important issue in using key points from heat is how to choose an
appropriate radius r for defining the circles every time. Fig.20 are experiments
on the tree structure using the key points from heat. From (a) through (d),
the radius are 45, 30, 15, 10 respectively. And from the extracted paths, we
can see that (d) gives the most complete structure among the four results.
In this case, it can be seen that when a smaller radius r is used, the result
is better. But this does not prove that it is better using a smaller r in every
situation. In fact, how to choose an appropriate radius depends on the size of
the feature that we want to extract. Here in the tree structure, the width of
the branches of the tree have no more than 10 pixels, so a smaller radius is
more effective in key points detection in this particular case. However, as in
the classical key point method [2], using a larger radius makes the method less
sensitive to noise, and this is why the radius should not be chosen too small.
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(a) (b) (c) (d)

Fig. 20 Keypoint experiment on tree structure by using key point method from heat, the
red point is the source point given by the user, and the yellow points are the key points
detected. From left to right are displayed the results when using different radii r in defining
the circles, they are 45, 30, 15 and 10 pixels respectively from (a) to (d).

6 Conclusion

We proposed new methods using the isotropic and anisotropic heat diffusions
to get the geodesic distance and geodesic lines for image segmentation purpos-
es. Using different kinds of diffusivity, models and tensors, the methods work
well for different types of images and features of interest. For example, the
P-M model can either try to hold the heat within the boundary of a region
or make the heat flow along the edges. By using different diffusion tensors,
the anisotropic heat diffusion will flow along the direction that we design. The
biggest advantage of using heat flow is that it is very fast and robust as well,
and also easy to implement. Furthermore, heat diffusion is not very sensitive
to noise, a little noise will not affect its performance.

In addition, this paper introduces two new automatic methods, based on
extension to heat method of geodesic voting and detecting key points for the
extraction of geodesic centerlines. Experiments show that using the proposed
automatic methods, the results are satisfactory and robust as well as time-
saving.

In future, we will try to find more appropriate forms of conductivity and
tensors for heat diffusion to get the centerlines as well as the boundary of
the vessels. We will also extend heat methods for automatic segmentation of
vessels in 3D medical images.
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