
A MODEL FOR AUTOMATICALLY TRACING OBJECT BOUNDARIES

Fang Yang, Laurent D. Cohen

CEREMADE
Université Paris Dauphine PSL*

Place du Marechal de Lattre de Tassigny
75775 Paris cedex 16, France

Alfred M. Bruckstein

Technion
Computer Science Department

718 Taub Building Technion-IIT
Haifa 32000, Israel

ABSTRACT

In this paper, we propose a novel algorithm for tracing ob-
ject boundaries automatically based on a model called ”point
flow” in image induced vector fields. An ordinary differential
equation describes the movement of points under the action
of an image-induced vector field and generates induced tra-
jectories. The trajectories of the flows allow to find the edges
of the image.

We test our method on real image dataset. Compared
with the other classical edge detection models, our point flow
method is better at providing precise and continuous curves.
The experiment results testify the robustness and effective-
ness.

Index Terms— Automatically Tracing Object Bound-
aries, Induced Vector Field, Point Flow, Differential Equa-
tions, Edge Detection

1. INTRODUCTION

Edge detection focuses on finding the sharp discontinuities
and aims at capturing places where important changes occur
in images. It plays an important role in image processing and
computer vision. Since the early years of image processing,
numerous methods were proposed to detect edges, such as
Sobel operator, Prewitt operator, Canny and the Haralick edge
detector, and so on [1].

In [2], the authors proposed a semi-automatic method to
detect boundaries of objects, using simulation of particle mo-
tion in an image induced vector field. But users should pro-
vide the location of the starting point and the number of time
steps. In addition, users have to adjust the parameters to
achieve a good result. Then Makhervaks et al [3] used a sim-
ilar model to track and detect the most important edges, in
order to produce artistic one-liner renderings of objects ap-
pearing in images. Lu et al.[4] presented a c-evolute model
for the particle motion in [2] to approximate the edge curves.
More recently, Kimmel and Bruckstein [5] proposed to in-
corporate the Haralick/Canny edge detector into a variational
edge integration process.

In this paper, we are interested in providing a model which
can simulate the process of tracking object boundaries auto-
matically. Imagine that the vector field is a magnetic field on
the image. As the input, a number of points which are ar-
ranged randomly in the image can be considered as a series
of small pieces of irons. When the magnetic field starts work-
ing, the iron pieces start moving following the direction of
the magnetic field. Based on this idea, we record the trajec-
tories of these points and use them to obtain the edges on the
images. The movement of the points can be described by an
ordinary differential equation, which is called ”point flow”.

After obtaining the vector field, we initiate the flow from
a number of random points in the image plane. With the help
of the vector field, the trajectories of these points attracted are
towards and along the significant edges in the image. Note
that the flow process will not end until a stopping criteria is
met. An iterative process will allow to refine the trajectories
and make the result more robust.

The contribution of this paper is that we propose a new
way based on point flow for an automatic edge detection mod-
el to detect and integrate edges. Moreover, the edges that are
extracted are continuous and precise.

The paper is organised as follows: Section.2 introduces
the core algorithm of the point flow method, including the
construction of the vector field, the edge detection and inte-
gration algorithms. Section.3 shows the experiments result-
s on BSD500 dataset[6] and comparison with the classical
edge detection methods. Section.4 provides some concluding
remarks and possible directions for future work.

2. POINT FLOW METHOD

The point flow model is an ordinary differential equation
(ODE) which describes the motion trajectory of a moving
point under a vector field V within a period of time. In a
2− dimensional domain, the point flow model is defined as
in Eq.(1):

d(P (t))

dt
= V(P (t)) (1)



where P (t) = (x(t), y(t)) is a point function which describes
the location of a moving point at time t and starting from a
given point p0 at time t = 0. Within time ∆T , the trajectory
of P under the effect of the vector field V will be recorded,
where V is a vector field that controls the speed and direction
of the points.

In this paper, we use the point flow model to trace the
object boundaries. The vector field V is a very crucial factor
for tracing the boundaries. The details of designing the vector
field are in the following section. The processing chain of
point flow method is shown in Fig.1.

Fig. 1. The flowchart of the point flow algorithm. The left
column presents a 2D Gaussian image and the magnitude of
its gradient. A linear combination of their gradients are used
to form the vector field V. 10 random points are used as the s-
tarting points, moving under the effect of the vector field. The
top-right dashed-box shows the movement of a single point,
the blue curve is the trajectory and the red point is the end
point. The flow terminates when it hits its own trajectory.
Then, we re-initiate the flow from the end (red) point to ob-
tain a complete and precise contour of the Gaussian image.
The other points move in the same way. Right below shows
the result.

2.1. Construction of Vector Field
Given an image I : Ω → R2, based on Eq.(1), for a starting
point p0 = P (t0), under the action of the vector field V for a
time of ∆T , we can get a trajectory lp0

. To make lp0
march

to/on the object boundaries or edges as much as possible, we
need to construct a vector field which not only directs the flow
towards the image edge, but also keeps the flow on the edges.
In other words, there should be two kinds of local forces V1

and V2 which form the vector field: V1 pushes the points
towards the high gradient places, and once near an edge, V2

makes the points move along the edge. So V combines both:
V = ζ · V1 + ξ · V2.

Since the gradient vector is usually orthogonal to the edge
orientation, V2 can be perfectly fitted by the orthogonal of the
gradient of the image I , because it has a direction along the
edges, so V2 = ∇I⊥. For V1, the second-order derivative

of I can be used, namely, V1 = ∇(‖∇I‖). The advantage of
the second-order derivative lies in that it generates a force that
drives the points to the edges from both sides of the edge. Any
lower- or higher-order derivative can not provide such precise
information. This term is similar to one of the terms in the
snake model evolution equation [7]. This term in the snake
model is called ”image force” that pushes the given curve to
the significant lines which correspond to the desired features.
The combination of these two terms can form exactly the vec-
tor field desired. And V can be written as follows:

V = ζ · ∇‖∇I‖ ± ξ · ∇I⊥ (2)

where ζ and ξ are two constants: 0 ≤ (ζ, ξ) ≤ 1. They
control the proportion between the two terms V1 and V2

which can be used to balance these two components thus
makes V appropriate and suitable for detecting edges. Empir-
ically we choose ζ = ξ = 0.5, which fit for most of the cases.
V = 1

2 (V1 ± V2), here ± is used to change the direction
of V by 180◦, which is an important step for edge integra-
tion. It means that a line can be followed in both directions.
Here we use V to represent 1

2 (V1 + V2) and V′ to represent
1
2 (V1 − V2).

2.2. Edge Integration

As stated above, after the construction of the vector field, a set
of random points are chosen to flow as the starting points in
the image plane. At the beginning, all starting points move in
accordance with speed V. The trajectories of the movement
of these points are recorded in P (·). And they will not stop
moving until a stopping criteria is met.

Here we define three stopping criterions for the flow:

1. When the flow hits itself. This kind of end points is the
first type of end points, labelled as ”E1”.

2. When the flow hits the boundary of the image. This
kind of end points is the second type of end points, la-
belled as ”E2”.

3. When the flow hits a pixel where the gradient is zero.
If it is at the source point where the gradient is zero, we
will remove this source point. For the other cases, we
will not consider the flow unless it merges with other
flows. This case is detailed in the next section.

Endpoints labelled as ”E1”
For a trajectory lps , it starts from ps and ends at pe. If pe

is labelled as ”E1”, we re-initiate the movement from pe1 in
the same vector field V. In this situation, lpe

will surely hit
itself and according to the stopping criteria 1, it will stop and
form a closed curve. This closed curve is the boundary of a
shape. Fig.2 illustrates the integration process of the first kind
of end points.
Endpoints labelled as ”E2”



(a) (b) (c) (d)

Fig. 2. From left to right are: the original image; the vector
field V; a trajectory from the green point to the red point; the
final result.

Let us call the boundary of the image ∂I . When a trajec-
tory lps moves to a point pe and pe ∈ ∂I , the motion stops. In
order to extract a complete edge, we propose to reflow from
pe, while in an opposite direction, namely, V′.

Let us take Fig.3 as an example. We initiate the point flow
from 50 random points under the vector field Fig.3(c), shown
in Fig.3(e), many points end immediately when they start to
move, because they satisfy the third stopping criteria. These
points are removed in Fig.3(f) and they will no longer play a
role in the next steps.

For the two numbers (or shapes) ”1” and ”2” in the im-
age, obviously, the boundaries are closed curves. The way to
detect and integrate the edges on these two shapes are in the
same situation as ”E1”.

For the slash which separates the black and white region,
the two terminals of this slash lie at the top and bottom bound-
ary of the image, we call this slash the ”split line”. From
Fig.3(f) we can see that there is a short curve starting from
nearby the ”split line” and ends at the top boundary of the
image. The flow restarts from this end point under V′ (Fig.3)
until it meets the bottom boundary of the image, the endpoint
pe′ ∈ ∂I . Thus, all the edges on the image are extracted.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. from left to right, above to below, these figures are:
(a) the original image; (b) image filtered by a 2D Gaussian;
(c) vector field V; (d) vector field V′; (e) primary flow result
from 50 random points (green points are the starting points
and red ones the end points); (f) result after removing the non-
edge points; (g) final result. (the black arrows on (c) and (d)
illustrate the direction of the vector field of the corresponding
boundary)
An Additional Step

This part is designed for the situation when two or more
different streams converge and flow to the same endpoint pe.

Obviously, for closed curves, this case can be excluded.
Fig.4 serves as an example for this case. For the start-

ing (green) points in Fig.4(e), they flow under the action of
V (Fig.4(c)). After removing the third type of endpoints, for
which the source and end points are at the same location, all
flows merge into one stream and come to the same end point
pe, shown in Fig.4(f). According to the integration method
mentioned in the part above, we need to re-initiate the flow
from the endpoint on the vector field V′ (Fig.4(d)). On its
way back, it will meet the intersection, and here comes the
dilemma – which way should it choose. Normally, the flow
lpe

goes into the part where there is stronger vector field, as
shown in Fig.4(g). However, this will lead to a loss of impor-
tant information. Therefore, we propose a way to complete
the detection result.

In Fig.4(f), there are five starting points, which gener-
ate five trajectories. When any two trajectories intersect, we
record the first point where they meet, as the cyan points in
Fig.4(f). These points are recorded in {pci,j}, where i and j s-
tand for the ith or jth trajectory, (i, j) ∈ {1, ..., N} and i 6= j
(N = 5 in this case). If a point pci,j is on or very close to lpe

,
we will not consider it. Only those points which are far away
from lpe

will be taken into account. So the intersection points
that are on or close to the trajectory on Fig.4(g) will be re-
moved. The two points on the lower edge are regarded as two
new starting points for another flow process. This time, it will
flow on both vector field V and V′ until a stopping criteria is
met. In addition, in order to avoid repetition, if one new start-
ing point is covered by the trajectories of the previous ones,
it will be removed from the set of new starting points, and so
forth. Fig.4(h) shows the final complete integration result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. from left to right, above to below, these figures are:
(a) the original image; (b) image filtered by a 2D Gaussian;
(c) vector field V; (d) vector field V′; (e) primary flow result
from 50 random points (green points are the starting points
and red ones the end points); (f) result after removing the
non-edge points; the cyan points are the intersections between
any two flows; (g) result by simply flowing back from a ”E2”
endpoint; (h) final result. (the black arrows on (c) and (d) il-
lustrate the direction of the vector field of the corresponding
boundary)



3. EXPERIMENTS

3.1. Data Settings

We test our point flow method on the images from the famous
Berkeley Segmentation Dataset[6]. And we have also evalu-
ated our method by using the 100 validation images from the
same dataset. The number of random source points is set to
be N = 2000 for each image. For most of the images, we use
the grayscale to compute the vector field. For color images,
we use the highest gradient at each pixel from the three chan-
nels RGB as the gradient of that pixel. For certain images, we
use the HSV color space to compute the vector field. Before
flowing, we use a Gaussian filter to smooth the images, the
standard deviation of the filter is σ = 2, and the size is 4× 4.

In addition, there are numerous ways to approximate nu-
merically the solution to the first-order ODE Eq.(1), such as
the Euler method, backward Euler method, first-order expo-
nential integrator method and so on [8]. To make the solutions
smoother and with less oscillations, we use the Runge-Kutta
algorithm, also known as RK4, to solve Eq.(1).

Our detection provides a ”hard” boundary result, not a
probability map. So on the precision-recall curve map, what
we present is a single point. We compare our method with the
classical canny detector [9], the state-of-the-art pb detector
[10], and the graph-based segmentation method untangling
cycle [11].

Last but not least, our method presents a sub-pixel level
detection result. While during the evaluation process, we have
to assign each point on the trajectory a precise pixel location.
This will lead to a loss of sub-pixel information.

3.2. Experiments Results and Discussions

We have tested our method on the widely known BSD dataset.
Fig.5 shows some detection results using our proposed
method, and the results are very inspiring. In terms of the
evaluation, shown in Fig.6, our method nearly performs the
best among the non-learning methods. The method is based
on an implicit model and therefore, it exploits the model to
generate the best segmentations possible for images comply-
ing with this model. Clearly, the BSD dataset are images
selected from a wide range of images, they do not necessarily
comply with our model.

Moreover, our method provides a precise sub-pixel level
result. However, this advantage could not be reflected by the
metric in the Berkeley benchmark.

4. CONCLUSION AND FUTURE WORK

This paper proposes a method for automatically modeling the
process of tracking object boundaries in images. In this paper,
we are just using the color (or graylevel) feature to construc-
t the vector field. On this stage, our method is comparable
among the numerous edge detection methods. In future, we

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. some results on the BSD Dataset. (a), (c) and (e) are
tests on gray images; (b), (d) and (f) are tests on color images;
(g) and (h) are tests on the first and second channel of HSV
space seperately.

Fig. 6. Precision recall curve on the Berkeley benchmark,
compared to Pb detector, untangling cycles and Canny detec-
tor.



hope to combine the other features such as the texture feature
to construct vector fields for complicated scenes.

5. REFERENCES

[1] D. Ziou and S. Tabbone, “Edge detection techniques - an
overview,” International Journal of Pattern Recognition
and Image Analysis, vol. 8, pp. 537–559, 1998.

[2] N. Eua-Anant and L. Udpa, “Boundary detection using
simulation of particle motion in a vector image field,”
Image Processing, IEEE Transactions on, vol. 8, no. 11,
pp. 1560–1571, 1999.

[3] V. Makhervaks, G. Barequet, and A. Bruckstein, “Im-
age flows and one-liner graphical image representation,”
Annals of the New York Academy of Sciences, vol. 972,
no. 1, pp. 10–18, 2002.

[4] C. Lu, Z. Chi, G. Chen, and D. Feng, “Geometric anal-
ysis of particle motion in a vector image field,” Journal
of Mathematical Imaging and Vision, vol. 26, no. 3, pp.
301–307, 2006.

[5] R. Kimmel and A. M. Bruckstein, “Regularized lapla-
cian zero crossings as optimal edge integrators,” Inter-
national Journal of Computer Vision, vol. 53, no. 3, pp.
225–243, 2003.

[6] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring e-
cological statistics,” in Proc. 8th Int’l Conf. Computer
Vision, vol. 2, July 2001, pp. 416–423.

[7] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Ac-
tive contour models,” International journal of computer
vision, vol. 1, no. 4, pp. 321–331, 1988.

[8] J. C. Butcher, “Numerical methods for ordinary differ-
ential equations in the 20th century,” Journal of Compu-
tational and Applied Mathematics, vol. 125, no. 1, pp.
1–29, 2000.

[9] J. Canny, “A computational approach to edge detection,”
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, no. 6, pp. 679–698, 1986.

[10] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to
detect natural image boundaries using local brightness,
color, and texture cues,” IEEE transactions on pattern
analysis and machine intelligence, vol. 26, no. 5, pp.
530–549, 2004.

[11] Q. Zhu, G. Song, and J. Shi, “Untangling cycles for con-
tour grouping,” in Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. IEEE, 2007,
pp. 1–8.


