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Abstract. This paper proposes an interactive method for tubular struc-
ture segmentation. The method is based on the minimal paths obtained
from the geodesic distance solved by heat equation. This distance can
be based both on isotropic or anisotropic metric by solving the corre-
sponding heat equation. Thanks to the additional dimension added for
the local radius around the centerline, our method can not only detect
the centerline of the structure, but also extracts the boundaries of the
structures. Our algorithm is tested on both synthetic and real images.
The promising results demonstrate the robustness and effectiveness of
the algorithm.

1 Introduction

In computer vision field, it is significant to obtain geodesic distance and geodesic
lines. They play a very important role in road extraction, vessel segmentation,
surface re-meshing and so on [14]. In general, the geodesic distance φ could be
acquired via Dijkstra’s method [5] or solving the Eikonal equation ‖∇φ‖ = P,
where P is a potential cost function computed from the image I. The Fast
Sweeping Method [22] and the Fast Marching Method [16, 3] are quite often
used to solve the Eikonal equation. For the extraction of the geodesic lines γ?

between the initial point ps0 and the endpoint px, it can be achieved by solving
an ordinary differential equation after the computation of φ:

∀s > 0,
dγ?

ds
= − ∇φ
‖∇φ‖

, γ?(0) = px (1)

The heat equation is a partial differential equation (PDE) that describes the
evolution of the distribution of heat on a domain within time T . It has a general
form:

∂u

∂t
= α∆u (2)

where u stands for the heat, and α, a positive constant, represents the thermal
conductivity, ∆ is the Laplace operator.

In 1967, Varadhan [18] proposed a formula to approximate the geodesic dis-
tance φ(p0, px) between two points p0 and px on a Riemannian manifold:

φ(p0, px) = lim
t→0

√
−4t log up0(px, t) (3)
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where up0 the solution of Eq·(2) under the initial condition that up0(0) = δp0
within a small time t→ 0.

Recently, Crane et al ·[4] proposed a heat method to estimate the geodesic
distance. Their approach can be divided into three steps: (1) solve Eq·(2) for
some fixed time t; (2) normalize the vector field: X = −∇u/|∇u|; (3) solve the
Poisson equation to obtain the geodesic distance: ∆φ = ∇ · X. By comparing
the heat method with the state-of-the-art Fast Marching Method [16], Crane et
al ·found that, using the heat method to obtain the geodesic distance is faster
than the Fast Marching Method. This is due to the fact that steps (1) and (3)
can be pre-factorized. Furthermore, the authors used a direct solver to solve the
heat equation. In [15, ?], the authors proves that the sparse systems arising from
the elliptic PDEs can be solved in very close to linear time.

More recently, Yang and Cohen [21] have extended and gone beyond the
work of Crane et al ·. They introduced isotropic and anisotropic heat flows to
approximate the geodesic distance by using Varadhan’s formula Eq·(3). Then
they use an ordinary differential equation (ODE) for backtracking the minimal
path γ?, for the isotopic case, they use Eq·.(1), and for the anisotropic case, they
use:

∀s > 0,
dγ?

ds
= − D−1∇φ
‖D−1∇φ‖

, γ?(0) = px (4)

where D is the metric tensor. It is shown in [21] that using the heat method
to approximate the geodesic distance is not only fast and efficient, but also less
sensitive to noise.

In the past few decades, numerous segmentation method based on minimal
paths have been proposed, such as [3, 10, 1, 2, 21].

In [21], the authors use different heat flows to obtain the geodesic distance
and geodesic lines, they could only extract the centerlines of the structures, but
not able to extract the boundaries at the same time. While in [10], instead of
using the pure spatial traditional minimal path technique [3], Li and Yezzi have
incorporated an additional non-spatial dimension, which can be used to measure
the thickness (radius) of the structures in space. In other words, this additional
dimension can help to extract the boundaries and surfaces of the structures in
2D and 3D spaces. And in the meantime, their method can also detect a precise
centerline of the structures. But the potential P that is used in [10] is isotropic
and depends on the positions. The orientations of the tubular structures are ig-
nored. Later on, Benmansour et al ·[1] have proposed an anisotropic minimal path
model which also takes the additional dimension into account, so the potential
depends both on the positions and the tangent directions. The way they built the
metric was based on the anisotropic Optimally Oriented Flux (OOF) descriptor
proposed by Law and Chung [9]. The OOF descriptor makes the propagation
faster along the tubular structures. The advantage of the anisotropic model lies
in that it can avoid the shortcut issues effectively. Then Benmansour and Cohen
have extended their method into 3D vessel extraction [2].

Despite that in [10, 2], the authors use the Fast Marching Method to get the
numerical solution of the Eikonal equation, in this paper, we are interested in
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the segmentation of tubular structures by using the heat method. Here, we use
the same way to construct metric tensor as the authors do in [1, 2]. This is called
2D + Radius model in heat. To solve the heat equation, we use the backward
scheme.

The contribution of this work is that we add a non-spatial third dimension
in both isotropic and anisotropic heat diffusion to segment tubular structures.
We use the OOF descriptor [9] to build the metric. Therefore, the heat method
can be used to detect the centerlines and boundaries simultaneously.

This paper is organized as follows: in Sect·2, we give some background on
the minimal path, the heat diffusion, and the OOF descriptor; in Sect·3, how
to construct the metric and the way to solve the heat equation are presented;
in Sect·4, we test our method on some synthetic and real data. Sect·5 provides
some concluding remarks and possible directions for future work.

2 Background

2.1 Minimal Paths

Given an image I : Ω → R2 and two points ps0 and px, the geodesic γ is a
curve connecting these two points that globally minimizes the following energy
functional E : Aps0 ,px → R+:

E(y(s)) =

∫
Ω

{P(y(s)) + w}ds, y(s) ∈ Ap0, px (5)

where P is a potential cost function computed from I, w is a positive constant
that imposes regularity on the curve. Aps0 ,px(s) is the set of all the curves linking
ps0 and px, s is the arclength.

To solve this minimalization problem, Cohen and Kimmel [3] proposed a
Hamiltonian approach: Find the minimal action map φ : Ω → R2 that solves
the Eikonal equation:

‖∇φ‖ = P + w (6)

with the boundary condition φ(ps0) = 0. Popular ways to solve the Eikonal
equation such as the Fast Marching [16, 3] and Fast Sweeping [22] are quite
often used. But these methods do not reuse information [4]: once the geodesic
distance φs0 from the initial source point ps0 is obtained, the distance from
another source point ps1 needs to be recomputed from scratch. According to
Eq·(3), φ can be also approximated by the heat kernel. The advantage of using
the heat kernel is that the Laplace operator could be precomputed, so that the
fundamental solution of the heat equation can be acquired in a single step no
matter where the initial point ps0 is. In this way, the approximation of φ can be
obtained once the heat equation is solved. Then the geodesic γ could be obtained
by solving Eq·(1) or Eq·(4) depending on the heat diffusion being isotropic or
anisotropic.
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2.2 Isotropic and Anisotropic Heat Diffusion

Eq·(2) presents a homogeneous form of heat equation. When it comes to isotropic
and anisotropic heat diffusion, the heat equation could be written as:

∂u

∂t
= kdiv · (D∇u) (7)

where k is the diffusivity, it can be a constant (as α in Eq·(2)) or a scalar
function, and D can be a scalar function or a diffusion tensor. According to
[19], when D is a scalar function, the heat diffusion is isotropic. And when D
is a diffusion tensor, it is a tensor field of symmetric positive matrices that can
encode the local orientation and anisotropy of an image [21]. Then the heat
diffusion becomes anisotropic. For the 2D heat diffusion, the tensor field D can
be decomposed as shown in Eq·(8):

D = λ1e1e
T
1 + λ2e2e

T
2 (8)

λ1 and λ2 are the eigenvalues, λ2 ≥ λ1 ≥ 0, e1 and e2 are the the corresponding
orthogonal eigenvectors. A measure of the local anisotropy can be defined as
A = (λ2 − λ1)/(λ2 + λ1). When λ1 = λ2, the heat diffusion becomes isotropic.

The main difference between isotropic and anisotropic diffusion lies in the
fact that isotropic diffusion does not include the local orientation, while using
the anisotropic diffusion, heat could be more concentrated on the directions that
the users design.

2.3 Optimally Oriented Flux

In order to use the relevant anisotropic heat equation, we need to find some
estimates for the local orientation and scale to describe the tube-like structures.
In fact, many classical enhancers like the Hessian-based vesselness mesures have
been proposed [8, 11]. But the Hessian-based enhancers include adjacent features.
While the OOF descriptor [9] avoids this problem.

Given an image I : Ω → R2, the oriented flux is the amount of the image
gradient projected along the axis p flowing out from a 2D circle Sr at point x
with radius r:

f(x; r,p) =

∫
∂Sr

(∇(Gσ ∗ I)(x + rn) · p)(p · n)ds (9)

where Gσ is a Gaussian with some variance σ, and empirically σ is set to 1. n is
the outward unit normal of ∂Sr. ds is the infinitesimal length on ∂Sr. Based on
the divergence theorem, the oriented flux f(x, r; p) = pTQr,xp, where Qr,x is a
symmetric matrix.

In [9], the authors used only the eigenvalues λi of Qx,r for the vessel enhance-
ment. While in this paper, we use both the eigenvalues λi and the eigenvectors
ei to form the diffusion tensor, thus the heat could be more concentrated on the
tube-like structures.
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3 Construction of the Metric and Numerical Solutions of
the Heat Equation

3.1 Construction of the Metric

Now we are considering building a (d + 1)D metric, d is the dimension of the
image, in our case, d = 2, and the 3rd dimension is not spatial but a radius
dimension. We use the same way as described in [2] to construct the metric.

D(x, r) =

[
D̂(x, r) 0

0 Pr(x, r)

]
(10)

where D̂(x, r) is a 2 × 2 symmetric matrix, this entry is used to describe the
spatial anisotropy. In addition, Pr(x, r) is the isotropic radius potential entry. For
a certain scale r, the anisotropic entry D̂ can be constructed by the eigenvalues
λi (i ∈ 1, 2) (λ2 > λ1) and the eigenvectors vi of the OOF descriptor:

D̂(x, r) = η1(exp (β · λ1(x))v1(x)v1(x)T + exp (β · λ2(x))v2(x)v2(x)T ) (11)

The radius potential entry can be described by the eigenvalues of the OOF
descriptor.

Pr(x) = η2 exp(β
λ1(x) + λ2(x)

2
) (12)

Here β is a constant that is controlled by the maximal spatial anisotropic ratio
µ, which is defined as:

µ = max
x,r

√
exp(β · (λ2(x, r)− λ1(x, r))) (13)

By choosing the maximal spatial anisotropy ratio µ, β is then fixed. 0 ≤ η1, η2 ≤
1 are two constants that control the space and radius speed. If we would like
the heat to propagate faster on the radius dimension, we could choose a bigger
η2 > η1. In this paper, η1 and η2 are always set to be 1. Using Eq·(10) as the
diffusion tensor in Eq·(7), the heat equation can be written as:

∂u(x, r, t)

∂t
= div · (D(x, r)∇u(x, r, t)) (14)

For the isotropic diffusion, the metric D becomes:

D(x, r) = Pr(x, r)Id (15)

Id is an 3× 3 identity matrix.

3.2 Solving the Heat Equation

After the construction of the metric, we now solve the heat equation. Generally,
the numerical approximation to the solution of the discrete heat equation could
be achieved by different schemes [13, 6, 20, 7].
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Given the image I : Ω → R2, suppose that the domain of is discretized into
M ×N grids and the scale of the third dimension r ∈ [Rmin, Rmax] is K.

Then the initial heat value u0 = [u01,1,1, u
0
1,2,1, ..., u

0
1,N,1, u

0
2,1,1, u

0
2,2,1, ..., u

0
2,N,1,

..., uN,N,M ], with u0i′,j′,k′ = 1 for all (i′, j′, k′) 6= (i, j, k) is the initial point given
by the users.

Numerical Solution of Isotropic Diffusion For the isotropic diffusion, we
use a backward finite differences scheme, which is also called implicit finite differ-
ences scheme. Take the 3D heat equation Eq·(2) into consideration, the backward
finite difference scheme would be:

(Id− τα∆)ut = u0 (16)

Id is the identity matrix, τ is the diffusion time, ut is the heat value after time τ .
The Laplace operator ∆ can be easily discretized as an N2×M ×N2×M block
penta-diagonal sparse matrix. After the discretization of the Laplace operator
∆, the heat distribution ut can be acquired by setting an appropriate time step
τ .

Numerical Solution of Anisotropic Diffusion For the anisotropic diffusion,
we use a backward discretization scheme designed by Fehrenbach and Mirebeau
[7]. The scheme is called Anisotropic Diffusion using Lattice Basis Reduction
(AD-LBR). The advantages of this scheme are its non-negativity and sparsity,
thus making the solution robust and fast.

For Eq·.(14), the backward scheme is:

ut − u0

τ
= div · (D∇ut) (17)

To acquire the fundamental solution of Eq·(17) within a small time τ , we have:

(Id− τdiv · (D∇))ut = u0 (18)

The symmetric operator A = div · (D∇), with Neumann boundary conditions,
can also be defined through the identity∫

Ω

u(x)Au(x) dx =

∫
Ω

∇u(x)TD(x)∇u(x) dx, (19)

for all u ∈ H1(Ω). In order to discretize A, the AD-LBR approximates the
contribution of each grid point x ∈ Ω to the r.h.s. of (19) using a sum of squared
finite differences

∇u(x)TD(x)∇u(x) ≈
∑

v∈V (x)

ωx(v)

(
u(x+ hv)− u(x)

h

)2

, (20)

where h > 0 is the grid scale, V (x) is a set of vectors referred to as the stencil
of the point x, and ωx(v) is the weight of the vector v at x. From these stencils
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and weights, the sparse symmetric matrix of A is then easily assembled. The
specificity of the AD-LBR numerical scheme is that the stencils are sparse, with
at most 12 elements in 3D, which limits the numerical cost of the method, and
that the weights are non-negative, which guarantees discrete maximum principle
as well as the robustness of the method.

Their computation involves the construction at each grid point x ∈ Ω of an
obtuse superbase with respect to the matrix D(x), which is a family (ei)

d
i=0 of

vectors with integer coordinates such that |det(e1, · · · , ed)| = 1 and eTi D(x)ej ≤
0 for all 0 ≤ i < j ≤ d. The stencil is then V (x) = {ei × ej ; i 6= j} and the
corresponding non-negative weights are ωx(ei × ej) = − 1

2e
T
kD(x)el whenever

(i, j, k, l) are pairwise distinct, i, j, k, l ∈ {0, 1, 2, 3}. The stencil construction is
cheap and efficient thanks to arithmetic techniques, thus computation time is
dominated by solving the linear systems. See [7] for details.

4 Experiments and Results

4.1 Experiment Data and Settings

We have tested our method both on synthetic and real images:
Fig·1 is an example on a noisy synthetic image (a) of size 100 × 100. This

image is obtained by corrupting the original image with 35% pepper & salt noise.
The ground truth in (d) is the original image without adding the noise. The blue
curve stands for the center line and the red contour represents the boundary of
the tubular structure. Fig·2a is a 300×300vessel image and Fig·2d is a 200×160
road image.

In Fig·3, to illustrate the advantage of anisotropic diffusion, we use a 100×100
image with a tube-like structure which has sharp corners.

Fig·4a demonstrates a medical image with a catheter. And before diffusion,
to preprocess the image I, we first build a potential P based on the image
Laplacian, then we use a sigmoid function Eq·(21) on P.

Im(x) = 1− 1

1 + eλ(P(x)−k)
(21)

Im is the result after preprocessing. Here we set λ = 10 and k = 0.5.

For all the experiment results, the red points and blue points represent the
initial points and endpoints respectively. We use the red curves to segment the
structures boundary. And the blue curves stand for the centerlines. For the first
three experiments, the same diffusion time τ = 0.01 is employed.

To evaluate the performance of our method, we make some comparisons
with the state-of-the-art Fast Marching Method. In addition, we compute the
precision and recall : {

recall = TP
TP+FN

precision = TP
TP+FP

(22)

Here TP represents the segmentation part which matches the ground truth (GT),
FP is the part that do not coincide the GT, FN stands for the part that are
missing extracted.
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4.2 Results and Analysis

Isotropic Diffusion on a Noisy Synthetic Image Fig·1 is an example on a
noisy synthetic image (a), with a percentage 0.35 of corrupted pixels. (d) is the
ground-truth obtained by using the Fast Marching Method on the image without
adding noise. From the two results (e) and (f), compared with the ground-truth
(d), we can see that the heat method outperforms the Fast Marching Method,
because not only the centerline but also the boundaries extracted by heat method
are smoother than the ones extracted by the Fast Marching Method. Table·1
presents the precision and recall and the corresponding time consumption of
these two methods. It turns out that the heat method does better than the Fast
Marching Method. Additionally, the distance map obtained by Fast Marching
(b) is more noisy then the one by heat diffusion (c). The distance maps (b)
and (c) illustrate that the heat method is very robust in noisy circumstances.
This is due to the fact that the heat equation can get fast smoothing by nature.
With the initial condition u(x0, y0, t0) = δx0,y0(t0), the heat becomes smooth as
soon as t > t0. Additionally, in the sense of mathematics, the solutions of the
heat equation are characterized by a Gaussian kernel, this can be regarded as
a blurring process. This is also the reason that heat method can be used for
filtering issues.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Experiment on a noisy image: (a) original noisy image; (b) and (c) are the
distance maps φ and the 3D minimal path between the seed point and endpoint (trans-
parent visualization) by using the isotropic Fast Marching Method and isotropic Heat
Method. (d) is the ground-truth; (e) and (f) are the results by the Fast Marching
Method and Heat Method.

Isotropic Diffusion on a Vessel Image and a Road Image Fig·2 demon-
strates the experiments on a vessel image and a road image. We are using the
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Table 1. time consumption and the indexes of evaluation%.

data heat method fast marching method

precompute solve precision recall time precision recall

noisy curve 0.06s 0.06s 94.24 97.58 0.16s 92.97 93.54

vessel 0.745s 1.05s 89.54 90.31 1.846s 91.26 88.62

road 0.2s 0.32s 93.40 99.82 0.63s 92.51 97.91

same isotropic metric for the Fast Marching Method and the heat method. For
the vessel image (a), one initial points and several endpoints are selected manu-
ally. From Table·1, we can see the result by the heat method is comparable with
the Fast Marching Method. For the road image (d), there are many abandoned
cars on both sides of the road, which may cause much influence in boundary
detection. From the results (e) and (f), we can see that the accuracy of the
boundaries (highlighted in the green rectangles) that extracted by our method
is higher than Fast Marching. In other words, our result is less influenced by the
cars than Fast Marching. In addition, our method gives a smoother result than
Fast Marching.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example on a medical image with several endpoints (row above) and on a
road image (row below), from left to right, they are the original images, the result by
the Fast Marching Method and the result by the heat method. The green rectangles
illustrate the places that the heat method surpasses the Fast Marching Method.

Isotropic and Anisotropic Diffusion on a Tube-like Structure In Fig·3,
there is a tube-like structure with several sharp corners. Here we test the dif-
ference between isotropic and anisotropic methods. From (b), it is obvious that
there is a short-cut on the way back to the initial points, while in (c), the
backtracking process is totally along the structure without any short-cut. This
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indicates that by using the anisotropic heat diffusion, the heat can be more
concentrated on the direction that the users design.

(a) (b) (c)

Fig. 3. Example on a tube-like structure image, (a) the original image, (b) the result
by the isotropic heat method, (c) the result by the anisotropic heat method. There
is a short-cut of (b) while in (c), the detection result is along the structure without
short-cut.

Diffusion on a Medical Image within different time step The time step
τ is an important factor for the heat method. It decides the time for diffusion.
According to Eq·(3), the distance map φ could be approximated only when the
diffusion time t is as small as possible. Fig.4 demonstrates the effect of diffusion
time τ . Different τ are applied. From (b) to (d), τ equals to 0.1, 0.01 and 0.001
respectively. From the results, it can be seen clearly that the longer the diffusion
time is, the more the distance map gets blurred, thus leading to the shortcut on
the way when backtracking to the initial point.

(a) (b) (c) (d)

Fig. 4. Experiment on a real medical image: (a) original image; (b) (c) (d) are the
results generated by isotropic heat diffusion with different time step τ .

5 Conclusion and Prospects

We have proposed a 2D + Radius model in heat diffusion to extract the center-
lines as well as the boundaries of the tubular structures in 2D images. This model
integrate the OOF descriptor and diffusion tensor. From the results, we can see
that the 2D + Radius model in heat is very robust and efficient. Compared with
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the Fast Marching Method, it has a strong anti-noise performance. In addition,
the anisotropic diffusion does better in controlling the direction than isotropic
diffusion. It is fit for detecting the very curved lines and structures.

In future, we are interested in extending this model to higher dimension. We
also would like to propose some automatic methods based on this model, in this
way, we no longer need to provide the end points, which could save a lot of
human interventions.
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