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Abstract We present a new interactive method for tubular
structure extraction. The main application and motivation
for this work is vessel tracking in 2D and 3D images. The
basic tools are minimal paths solved using the fast march-
ing algorithm. This allows interactive tools for the physician
by clicking on a small number of points in order to obtain
a minimal path between two points or a set of paths in the
case of a tree structure. Our method is based on a variant of
the minimal path method that models the vessel as a cen-
terline and surface. This is done by adding one dimension
for the local radius around the centerline. The crucial step of
our method is the definition of the local metrics to minimize.
We have chosen to exploit the tubular structure of the vessels
one wants to extract to built an anisotropic metric. The de-
signed metric is well oriented along the direction of the ves-
sel, admits higher velocity on the centerline, and provides a
good estimate of the vessel radius. Based on the optimally
oriented flux this measure is required to be robust against the
disturbance introduced by noise or adjacent structures with
intensity similar to the target vessel. We obtain promising
results on noisy synthetic and real 2D and 3D images and
we present a clinical validation.
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1 Introduction

In this paper we deal with the problem of finding a com-
plete segmentation of tubular structures like vessels. The
main objective is to extract at the same time the centerline
of the tubular structure and its boundary. Such information
is useful to diagnose stenoses (on coronary arteries or on
carotid for example) using non invasive medical modalities
like CT. During the last two decades, the extraction of vas-
cular objects such as the blood vessels, coronary arteries, or
other tube-like structures has attracted the attention of more
and more researchers. Various methods such as vascular im-
age enhancement methods (Sato et al. 1998; Krissian 2002;
Frangi et al. 1998), or others were proposed, see Kirbas
and Quek (2004), Lesage et al. (2009b) for a complete sur-
vey. We will first give a non-exhaustive overview of exist-
ing variational models for vessels boundary segmentation.
Then, some existing methods for boundary and centerline
extraction are presented.

1.1 Variational Models for Vessel Boundary Segmentation

One of the first variational model for tubular structures seg-
mentation has been introduced by Davatzikos and Prince
(1995). They proposed a modified active contour model
called ribbon active contour for finding and mapping the
outer cortex in 2D brain images, which is a tube-like struc-
ture in 2D. Even though this model has been applied only for
2D cortex mapping and suffers from different drawbacks, it
was a precursor for different variational model for tube-like
structure segmentation.

Siddiqi and Vasilevskiy (2001) proposed a boundary ves-
sel segmentation based on flux maximizing flows. The es-
sential idea is to evolve a curve (in 2D) or a surface (3D)

mailto:benmansour@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~feth
mailto:cohen@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~cohen


Int J Comput Vis

so that it clings to the features of interest in an intensity im-
age. Since then, Descoteaux et al. (2008) improved the pre-
vious method by choosing a more appropriate vector field
that drives the shape evolution. Instead of using the gradi-
ent of the image itself, they proposed to use the gradient of
Frangi’s et al. (1998) vesselness measure. Indeed, this vec-
tor field is more appropriate to estimate perpendicular direc-
tions of vessels.

Holtzman-Gazit et al. (2006) presented a segmentation
method for extracting thin structures in 3D medical im-
ages. Their method is based on variational principles. They
demonstrated the importance of the edge alignment and ho-
mogeneity terms in the segmentation of blood vessels and
vascular trees. For that goal, they combined the Chan-Vese
minimal variance method (Chan and Vese 2001) with the
boundary alignment (Kimmel and Bruckstein 2003) and the
geodesic active surface (Caselles et al. 1995, 1997) models.

Gooya et al. (2008a, 2008b, 2008c) have made a signif-
icant improvement of previous edge detection energy for
vessel segmentation. More precisely, authors of Gooya et
al. (2008c) propose to generalize energy edge detector func-
tional on a Riemannian manifold that describes the local in-
trinsic orientation of the vessel, using structure tensor. The
reason is that the edge detector energy has an isotropic be-
havior, meaning that it is equally sensitive to image gra-
dients in all directions. Therefore, in a contour propaga-
tion scenario, those noisy image gradients parallel to the
main orientation prevent further propagation. In fact, sen-
sitivity is mainly needed across the planes normal to the
vessel local orientation. The crucial point here is to define
a well-behaved Riemannian metric that describes the lo-
cal orientation of the vessel. Gooya et al. (2008c) utilized
the structural tensor (Weickert 1999) to define their met-
ric. The most significant improvement done by Gooya et al.
(2008a, 2008b, 2008c) is the inclusion of vessel orientation
in the model by considering a Riemannian edge detector en-
ergy.

Here, we recalled some relevant variational methods for
vessel segmentation. The main drawback of these method
is the time required for fixing parameters and more signifi-
cantly computation time. Obviously, the listing given here
is non exhaustive and it is important to point out recent
relevant works along the same research line, like Law and
Chung (2006, 2007), where they present a vessel segmen-
tation method based on weighted local variance and ac-
tive contour model. Also, other interesting methods have
been presented in Manniesing et al. (2006, 2007), Nemitz
et al. (2007), Krissian et al. (1997), Hernández Hoyos et al.
(2006), Orkisz et al. (2008), Lesage et al. (2009a), Nain et
al. (2004).

1.2 Vessel Boundary and Centerline Extraction

Deschamps and Cohen (2001, 2002, 2007) proposed to use
the minimal path method to segment tubular structures. The
minimal path technique introduced by Cohen and Kimmel
(1997) captures the global minimum curve1 between two
points given by the user. This leads to the global minimum
of an active contour energy. Unfortunately, despite their nu-
merous advantages, classical minimal path techniques ex-
hibit some disadvantages. First, vessel boundary extraction
can be very difficult, even in 2D where the vessel’s bound-
ary can be completely described by two curves. Second, the
path given by the minimal path technique does not always
correspond to the centerline of the vessel. A readjustment
step is required to obtain a central trajectory. Third, the min-
imal path technique provides only a trajectory and does not
give information about the vessel boundary and local width.

In Deschamps and Cohen (2001, 2002), it was demon-
strated that the front propagation could be stopped on the
basis of a distance traveled by the front corresponding to
the known length of the minimal path to the starting point
while the front is propagated. When the propagation speed
is almost constant inside the tubular shape, this length is al-
most the geodesic distance to the starting point inside the
tubular object. However, classical segmentation problems do
not provide an excellent contrast like air-filled colon on CT
scanner, and the front usually flows over the boundaries of
longer and thinner objects when propagating. Therefore, Co-
hen and Deschamps (2007) showed how the Fast Marching
surface segmentation can be specifically optimized for this
target. Indeed, it appears inefficient to use all points of the
propagating front in the computation of the arrival time in
the Eikonal equation. The idea presented in Deschamps and
Cohen (2002), Cohen and Deschamps (2007) is that some
of them located in the tail of the propagating front could be
considered as walls, thus blocking the leakage that occurs.
This Freezing process can be done by setting their speed to
zero. Freezing points during propagation means we consider
the front has reached the object boundaries when it visits
them. Two Freezing criterion have been proposed in cited
papers. The first one is time-based and the second one is
distance-based. Once the contour of a vessel is obtained, au-
thors of Deschamps and Cohen (2001) proposed a method
to extract a centerline inside it.

Li and Yezzi (2006, 2007) proposed a new variant of the
classical, purely spatial, minimal path technique by incorpo-
rating an extra non-spatial dimension into the search space.
Each point of the 4D path (after adding the extra dimension
for the 3D image) consists of three spatial coordinates plus
a fourth coordinate that describes the vessel thickness at the
corresponding 3D point, see Fig. 1 as a 2D example. Thus,

1A minimal path minimizes an energy weighted by an image potential.
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Fig. 1 A tubular shape is presented as the envelope of a family of
spheres or disks with continuously changing center points and radii

each 4D point represents a sphere in 3D space, and the ves-
sel is obtained by taking the envelope of these spheres as
we move along the 3D curve. A crucial step of this method
is to build an adequate potential that drives the propagation.
Li and Yezzi (2006, 2007) proposed different isotropic po-
tentials. Since potentials proposed by Li and Yezzi are very
parameter dependent, an important perspective of their work
was the construction of a more appropriate potential. More-
over, by considering only isotropic metrics, Li and Yezzi did
not take into account the vessel orientation.

Along the same research line, Mohan et al. (2008) used
the 4D minimal path model of Li and Yezzi (2006, 2007)
for segmenting the Cingulum Bundle from DW-MRI. Af-
ter adding the extra non-spatial dimension (the radius di-
mension), they associated to the path an anisotropic po-
tential related to the Finsler metric. Let us denote γ̃ (u) =
(γ (u), r(u)) the 4D path with arc length parameterization
(i.e ‖γ̃ ′‖2 = 1) and S

2 ⊂ R
3 the 2D sphere. The considered

energy is:

E (γ̃ ) =
∫

γ̃

P
(

γ̃ (s),
γ ′(s)

‖γ ′(s)‖
)

ds, (1)

where this time,2 the potential is P : R
4 × S

2 → R
∗+. Au-

thors of Mohan et al. (2008) gave two different choices of
P that are meaningful for extracting the Cingulum Bundle
from DW-MRI, both based on local region statistics. In or-
der to optimize energy functional (1), they used gradient de-
scent method where the gradient direction is computed with
respect to a geometrized Sobolev metric (Sundaramoorthi et
al. 2009) instead of the classical L

2 metric which is very un-
stable according to Melonakos et al. (2008). An important
contribution of Mohan et al. (2008) is that they considered
orientation of the vessel in their energy model, which is rea-
sonable for tubular structures. But the proposed potentials
were defined in an ad hoc manner. Moreover, in the energy
functional given by (1) the derivative of the non spatial di-
mension r ′(s) is not taken into account. That makes their

2In the classical Finsler formulation, the potential is under the form
P : R

n × S
n−1 → R

∗+.

model very insensitive to the radius dimension and inappro-
priate for tubular structures with varying radii, which is not
the case of Cingulum Bundle.

1.3 Contributions

In this paper we propose a vessel segmentation method
based on a minimal path formulation and anisotropic en-
hancement. Both vessel orientation and width are taken into
account. Our contribution is threefold:

• First, inspired from Li and Yezzi (2006, 2007), we intro-
duce a minimal path model, that takes into account the
vessel width, by adding an extra dimension, and the ves-
sel orientation by considering anisotropic metrics.

• Next, we propose a well motivated metric constructor for
the anisotropic metric based on the Optimally Oriented
Flux (OOF), introduced by Law and Chung (2008), by us-
ing its scalar function as well as its orientation (while au-
thors of Law and Chung 2008 used only the scalars, that is
the eigenvalues). That makes the propagation faster along
the vessel’s centerline and for exact associated scale. This
means that the path location, orientation and scale (radius)
have to be coherent with the local geometry of the image
extracted by the OOF.

• Finally, we make a deep analysis of the chosen en-
hancer by establishing a link between the OOF and the
widely used Hessian-based tubular structure enhancers
like Frangi’s et al. (1998), and by demonstrating an inter-
pretation of the OOF in terms of steerable filters (Freeman
and Adelson 1991; Jacob and Unser 2004). Some contri-
butions have been added regarding the conference paper
(Benmansour and Cohen 2009).

1.4 Paper Outline

In Sect. 2, we give some background on the minimal path
method and Anisotropic Fast Marching. In Sect. 3 the Op-
timally Oriented Flux descriptor is presented, a link be-
tween the OOF and the Hessian-based vesselness measures
is established, Oriented Flux filter is interpreted in terms of
steerable filters, and the metric design is shown. In Sect. 4,
first, we show advantages of anisotropy. Second, results
on synthetic and real data are shown. Third, validation re-
sults are given. Finally, conclusions and perspectives follow
in Sect. 5.

2 Background on the Minimal Path Method

2.1 Formalism

A geodesic is a path, linking two points, that globally min-
imizes an energy functional weighted by an image poten-
tial. Hence, a geodesic is also called minimal path. Without
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Fig. 2 Minimal path examples on an isotropic case on the left image. On the middle, visualization by small ellipses of eigenvalues of a metric
constant on each half side of the image. On the right, the minimal action map associated to the source point p1 with the minimal path Cp1,p2

loss of generality and in order to simplify notations, we will
assume hereinafter that a path γ is parametrized along its
length (i.e. ‖γ ′‖ = 1). The energy minimized by a geodesic
is under the form:

E(γ ) =
∫

γ

P
(
γ (s), γ ′(s)

)
ds. (2)

Such formulation was first presented to the computer vision
community by Cohen and Kimmel (1997) in the particular
isotropic case, when P > 0 does not depend on the orienta-
tion of the path.

This energy corresponds to the length of a curve in a
Finsler3 manifold (Melonakos et al. 2008). In this paper, we
are interested only in the particular case of Riemannian man-
ifold, which is a potential under the form P (γ (.), γ ′(.)) =√

γ ′(.)T M(γ (.))γ ′(.) describing an infinitesimal distance
along the pathway γ relative to the metric tensor M (sym-
metric definite positive). Thus, we are considering only the
case of an elliptic4 medium. In the isotropic case M(.) =
P 2(.)I , where I is the identity matrix. A curve connecting a
point p1 to p2 that globally minimizes the above energy (2)
is a minimal path between p1 and p2, noted Cp1,p2 and also
called a geodesic.

The solution of this minimization problem is obtained
through the computation of the minimal action map U :
Ω → R

+ associated to p1 on the domain Ω ⊂ R
d (in this

paper d = 2,3 or 4). The minimal action is the minimal en-
ergy integrated along a path between p1 and any point x of
the domain Ω :

∀x ∈ Ω, U (x) = min
γ∈Ap1,x

{∫
γ

P
(
γ (s), γ ′(s)

)
ds

}
, (3)

where Ap1,x is the set of paths linking x to p1. The values of
U may be regarded as the arrival times of a front propagat-
ing from the source p1 with oriented velocity related to the
metric tensor M−1. U satisfies the Eikonal equation

‖∇U (x)‖M−1(x) = 1 for x ∈ Ω, and U (p1) = 0, (4)

3Finsler geometry is just Riemannian geometry without the quadratic
restriction (Chern 1996).
4A Riemannian metric is described by a symmetric definite positive
tensor field: M. Each such matrix can be represented by an ellipsoid.

where ‖v‖M = √
vT Mv. The map U has only one local min-

imum, the source point p1, and its flow lines satisfy the
Euler-Lagrange equation of functional (2). Thus, the min-
imal path Cp1,p2 can be retrieved with a simple gradient de-
scent on U from p2 to p1 (see Fig. 2), solving the follow-
ing ordinary differential equation with standard numerical
methods like Heun’s or Runge-Kutta’s:

dCp1,p2

ds
(s) ∝ −M−1(Cp1,p2(s))∇U (Cp1,p2(s)),

with Cp1,p2(0) = p2. (5)

Equations (4) and (5) have been presented under their
isotropic version in Cohen and Kimmel (1997). The Eikonal
equation (4) belongs to the class of static Hamilton-Jacobi
equations. The associated unique viscosity solution (Lions
1982) U satisfies the Hopf-Lax formula which is given by
(3) in our case,5 see for example (Bornemann and Rasch
2006; Tavares and Jorge 2009; Benmansour 2009) for more
details. The proof of (4) and (5), in the general case, can be
found in Lions (1982). This general proof requires notions
from calculus of variations (Evans 1998).

In Fig. 2, we show some examples of the minimal path
method on an isotropic case and an anisotropic one. In the
first image of Fig. 2, the metric is isotropic and the potential
P in the grey region is half of the white one. Isolevel sets
of the minimal action map associated to the source point p1

are displayed together with a minimal path Cp1,p2 . The sec-
ond image represents a metric M (M−1 is displayed). We
took two constant metrics in each half side of the image with
different orientations. In the last image, the minimal action
map U associated to the metric M and to the source point p1

is shown. The minimal path Cp1,p2 is found by solving (5).
We can see that the minimal path tries to agree as much as
possible with the orientation of the ellipses.

2.2 Eikonal Solvers

2.2.1 Short Overview

In this section we are interested in solving numerically the
Eikonal equation (4). In the last two decades, considerable

5Indeed, it is easy to show that, in our case, the required conditions for
existence and uniqueness of the viscosity solution are satisfied.
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efforts have been made to develop numerical methods for
solving static Hamilton-Jacobi equation (which includes the
Eikonal equation) on regular or unstructured meshes. The
reader is referred to the literature for rigorous and more pre-
cise statements.

One of the first consistent discretization on a regular grid
of (4), in its isotropic version, has been proposed by Rouy
and Tourin (1992). They proposed an upwind finite differ-
ence discretization of the Eikonal equation ‖∇U ‖ = P on
a regular grid. They showed that the associated discrete so-
lution converges toward the viscosity solution,6 and an iter-
ative algorithm based on a nonlinear variant of the Gauss-
Seidel iteration has been proposed to compute the discrete
values. A few years later, Sethian (1996) proposed a single-
pass algorithm to compute the solution of the upwind dis-
cretization. The algorithm proposed by Sethian, called Fast
Marching is based on Dijkstra’s algorithm for computing
shortest paths on graphs (Dijkstra 1959). Independently,
Tsitsiklis (1995) proposed a similar Dijkstra-like algorithm
to solve numerically the isotropic Eikonal equation. How-
ever, the used discretization is not based on the Eikonal
equation itself but on the Hopf-Lax formula (given in a par-
ticular case by (3)).

Both Sethian’s and Tsitsiklis’s methods (Sethian 1996;
Tsitsiklis 1995) are suitable for isotropic metrics, but they
fail for anisotropic metrics according to Chopp (2001). To
deal with anisotropy, three different improvements of the
classical fast marching method have been proposed:

1. Change the local approximation scheme as done by
Lenglet et al. (2009),

2. Introduce a recursive approach as done by Konukoglu et
al. (2007), they called the proposed method Recursive
Fast Marching,

3. Extend the neighborhoods, depending on the local aniso-
tropy as done by Sethian and Vladimirsky (2000), or in a
fixed manner as done by Lin (2003) and used by Jbabdi
et al. (2008).

Convergence toward the viscosity solution of the anisotropic
Eikonal equation (4) has been proved only for the Ordered
Upwind Method (OUM), using an extended neighborhood,
in Sethian and Vladimirsky (2000). The main drawback
of the OUM is that, for high anisotropy, the neighborhood
needed for the local update is extremely vast.

Other iterative approaches to solve the anisotropic Eikonal
equation have been proposed. Bornemann and Rasch (2006)
presented a linear finite-element discretization for static
Hamilton-Jacobi equations on unstructured triangulations.
Similarly to Tsitsiklis (1995), their discretization is based
on the Hopf-Lax formula. Bornemann and Rasch proposed

6Under some regularity assumptions on P , see Rouy and Tourin (1992)
for more details.

to use a tricky adaptive Gauss-Seidel iteration to solve the
underlying system of non-linear equations. Convergence re-
sults have been shown in Bornemann and Rasch (2006) un-
der some assumptions that are easy to satisfy in our Rie-
mannian case.

In this paper we used Lin’s scheme to approximate the
solution of the anisotropic Eikonal equation, since it is much
faster (than OUM and the iterative algorithm proposed in
Bornemann and Rasch 2006) and, as long as the anisotropy
remains reasonable, the introduced errors do not affect much
the extracted geodesics.

2.2.2 Fast Marching Algorithm

The FMM is a front propagation approach that computes the
values of U in increasing order, and the structure of the al-
gorithm is almost identical to Dijkstra’s algorithm for com-
puting shortest paths on graphs (Dijkstra 1959). The main
difference is the expression of the local contribution to the
weighted distance. In the course of the algorithm, each grid
point is tagged as either Alive (point for which U has been
computed and frozen), Trial (point for which U has been
estimated but not frozen) or Far (point for which U is un-
known). The set of Trial points forms an interface between
the set of grid points for which U has been frozen (the Alive
points) and the set of other grid points (the Far points). This
interface may be regarded as a front expanding from the
source until every grid point has been reached. Let us denote
by NM(x) the set of M neighbors of a grid point x, where
M = 3d − 1 if the dimension of Ω is equal to d . Initially, all
grid points are tagged as Far, except the source point p1 that
is tagged as Trial. At each iteration of the FMM one chooses
the Trial point with the smallest U value, denoted by xmin.
Then, xmin is tagged as Alive and the value of U is updated
for each point of the set NM(xmin) which is either Trial or
Far. In order to satisfy a causality condition, the way U is
updated in the vicinity of xmin requires special care. The it-
eration ends by tagging every Far point of the set NM(xmin)

as Trial. The algorithm automatically stops when all grid
points are Alive. The key to the speed of the FMM is the use
of a priority queue to quickly find the Trial point with the
smallest U value. If Trial points are ordered in a min-heap
data structure, the computational complexity of the FMM is
O(N logN), where N is the total number of grid points.

A crucial step of the Fast Marching algorithm is the com-
putation of the weighted distance between the front and the
neighboring voxels in the Trial set. Here, we present a way
to estimate this weighted distance in the anisotropic case
and only in 3D. It is straightforward to extend it to 4D.
Since the distance is anisotropic, we cannot use the stan-
dard methods, because they rely on the fact that the geodes-
ics are perpendicular to the level sets of U . To take into ac-
count the anisotropy (recall that the proposed solution here
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Fig. 3 On the left position of the optimal point on a simplex such as
to minimize the geodesic distance to x. On the right the considered
simplexes

does not converge toward the viscosity solution of (4)), and
without using a vast neighborhood, Lin (2003) and Jbabdi
et al. (2008) considered a set of simplexes that cover the
whole neighborhood around a voxel of the front. The def-
inition of a simplex neighboring a point x is simply a set
of three points (x1,x2,x3) that are among the 26 neighbors
of x, such that x1 is a 6-connectivity neighbor, x2 is a 18-
connectivity (and not 6-connectivity) neighbor, and x3 is a
26-connectivity (and not 18-connectivity) neighbor. This set
of points defines a triangle that we denote x1x2x3. There
are 48 such triangles around x for the 26 connectivivy, see
Fig. 3.

If the geodesic passing by xm comes from a triangle
x1x2x3 then the time of arrival is given by:

U (xm) = min
x∈x1x2x3

{
U (x) +

∫ xm

x
P(γ, γ ′)

}
, (6)

where point x can be interpreted as a virtual source7 on the
triangle. To estimate U (xm), where xm is a neighbor of the
last trial point xmin, we make two approximations on the
term one wants to minimize. First, we assume the path be-
tween x and xm to be a segment and the metric to be constant
along this segment, equal to its value at point xm. Hence, we
want to minimize:

F(x) = U (x) + ‖x − xm‖M(xm) . (7)

Then, since the point x is in the triangle x1x2x3, we can re-
place x by its barycentric expression x =∑3

i=1 αixi , where
α = (α1, α2, α3) with

∑
i αi = 1 and αi ≥ 0, and make a lin-

ear approximation of its U -value. We then have to minimize:

f (α) =
3∑

i=1

αi U (xi ) +
∥∥∥∥∥xm −

3∑
i=1

αixi

∥∥∥∥∥
M(xm)

. (8)

7This formulation is based on Huygens-Fresnel principle from geomet-
ric optics and problems of wave propagation.

This equation follows Tsitsiklis’s approximation (Tsitsiklis
1995). The function f is convex and the constraints on α,
i.e
∑3

i=1 αi = 1 and αi ≥ 0, define a convex subset. Thus
the minimization of f can be done using classical optimiza-
tion tools. See Appendix B of Jbabdi et al. (2008) for more
details.

Solving this minimization for each triangle, we get a
value Ux1x2x3 . Finally, we choose the triangle giving the
smallest value. Note that in order to approximate ∇U , com-
puting the derivatives of U in the triangle using the estimate
U (xm) gives a consistent approximation of ∇U (xm) by the
following:

∇U (xm) = (U (xm) − U (x�))
xm − x�

‖xm − x�‖ , (9)

where x� is the minimizer of function f (see Fig. 3 left) and
‖.‖ is the Euclidean norm. The computation of the gradient
is very useful since it is used to solve the gradient descent
described by (5).

2.3 Comparison and Discussion

In this section, we are going to compare numerical results
and computation time of Lin’s algorithm and the iterative
algorithm of Bornemann and Rasch on a relevant example.
For this purpose, we designed an anisotropic metric from the
left image of Fig. 4.

The designed metric has high anisotropy along the spiral
and is isotropic almost every where else with low propaga-
tion velocity. Such metric is constructed using methods pre-
sented later (Sect. 3.4), namely (19) at the associated fixed
scale (r = 3 pixels) of the spiral. Indeed we took a maximal
anisotropy ratio equal to 100. Geometrically the maximal
anisotropy ratio corresponds to the maximal ratio between
the major and minor axis of ellipsoids displaying the met-
ric (see Fig. 2 middle for example). On the second image
of Fig. 4, the computed minimal action map U , using the
Fast Marching algorithm presented in Sect. 2.2.2, from the
source point p1 and the minimal path Cp2,p1 are displayed.

One can see that a shortcut occurs. Actually this is due
not to the metric but to the introduced errors by the chosen
Eikonal solver (Lin’s Fast Marching algorithm). Indeed, we
implemented Bornemann and Rasch algorithm (Bornemann
and Rasch 2006) to solve the same problem, and obtained
the result shown in the third image of Fig. 4. It has been
shown in Bornemann and Rasch (2006), and numerically
verified by our care, that the proposed iterative algorithm
converges to the viscosity solution. However, the main draw-
back of Bornemann and Rasch algorithm is the computation
time. On the right image of Fig. 4, one can see the num-
ber of iterations needed in order to mend the minimal ac-
tion map values. Some points need to be updated up to 500
times. The computation time of the iterative algorithm for
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Fig. 4 From image on the left, an anisotropic metric with high
anisotropy ratio (μ = 100) along the spiral is constructed. Second im-
age, geodesic distance from source point p1 computed using Lin’s al-
gorithm and a geodesic Cp1,p2 . On third image, the geodesic distance

is computed using Bornemann and Rasch algorithm. The last image
displays the number of iterations for Bornemann and Rasch algorithm
at each point in the image domain, until the convergence criterion is
satisfied

this spiral image of size 548 × 600 is about 2 minutes, while
the computation time of the Fast Marching algorithm is less
than a second. For higher dimensions, one can imagine that
the computation time of the iterative algorithm (Bornemann
and Rasch 2006) is heavily long.

As a matter of fact, there is a tradeoff between efficiency
and accuracy. On the one hand, using the Fast Marching al-
gorithm provides reasonable results as long as the anisotropy
ratio remains small, disabling us for taking complete advan-
tage of the Tubular Anisotropy method presented in this pa-
per. On the other hand, one can increase the anisotropy ratio
and use Bornemann and Rasch iterative algorithm, but this
choice considerably penalizes the efficiency8 of the whole
algorithm.

Unlike the Fast Marching algorithm, the iterative algo-
rithm is parallelizable. In Weber et al. (2008), authors pro-
pose an efficient implementation on parallel architectures to
compute geodesic distances on geometry images. An impor-
tant perspective is to make a similar parallelized implemen-
tation of Bornemann and Rasch’ algorithm in order to gen-
uinely take advantage of the Tubular Anisotropy method.

3 Optimally Oriented Flux: An Anisotropy Descriptor

We are interested in the construction of a metric that ex-
tracts from the image the geometric information leading to
reconstruction of vessels. This means that we wish to find
an estimate for the local orientation and scale and a criterion
on the local geometry to distinguish the presence of ves-
sels from the background. First, we tried some existing ves-
sel enhancers like the Hessian-based vesselness measures

8The complexity of the algorithm proposed in Bornemann and Rasch
(2006) is O(CμN1+1/d ), where d is the dimension of the image and
N the total number of grid points, compared to O(N log(N)) for Lin’s
(2003). It has been shown empirically (by our care) that Cμ is an in-
creasing function on μ. Actually, Cμ depends also on the topology of
the features in the image.

(Frangi et al. 1998; Sato et al. 1998; Lorenz et al. 1997;
Lindeberg 1998). The main drawback of these enhancers
is that they include adjacent features. The anisotropy de-
scriptor presented here is inspired from the optimally ori-
ented flux (OOF) recently introduced by Law and Chung
(2008). Its main advantage is that adjacent objects are not
taken into account. Moreover, this descriptor provides in-
tuitively a good estimate of vessel direction enabling us to
design a suited anisotropic metric for the oriented minimal
path model presented in the previous section. Also, we es-
tablish a link between the OOF and the Hessian-based en-
hancers that justifies our choice.

3.1 Definitions

At the position x in an image I , the oriented flux is the
amount of the image gradient projected along the axis v
flowing out from a 3D local sphere9 (or a 2D circle) Sr . It is
measured as in Law and Chung (2008),

f (x,v; r) =
∫

∂Sr

((∇(G ∗ I )(x + h) · v)v) · nda, (10)

where G is a Gaussian function with a scale factor of 1 pixel,
r is the radius of the sphere (or circle), h = rn is the rela-
tive position vector along ∂Sr , with n the outward unit nor-
mal of ∂Sr , and da is the infinitesimal area (or length) on
∂Sr . Function f is the flux of the smoothed image gradi-
ent ∇(G ∗ I ) projected along direction v toward the sphere
∂Sr . To detect vessels having higher intensity than the back-
ground region, one would be interested in finding the vessel
direction which minimizes f (x,v; r), i.e. we are looking for
arg minv f (x,v; r). Using the divergence theorem, it can be
shown that f (x,v; r) is a quadratic form on v and its as-
sociated matrix can be calculated using a simple convolu-

9Centered at point x.
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Fig. 5 The plots of the values
of f (x,v; r) obtained from the
synthetic image shown in the
top, at four different positions
with various radii and projection
axes. (a) Four interesting
positions, denoted as x1, x2, x3
and x4 are shown along with the
original synthetic image. (b) An
illustration regarding the polar
coordinate system used in
(c)–(f). (c)–(f) The plots of the
values of f (·) and the
corresponding eigenvectors,
computed at the four different
positions shown in (a), using
various values of r and different
projection axes (cos θ sin θ)T

tion,

f (x,v; r) = vT {I ∗ (∂i,jG) ∗ 1Sr (x)}v := vT {I ∗ Fr (x)}v,

(11)

where (∂i,jG) is the Hessian matrix of function G and
1Sr is the indicator function inside the sphere (or cir-
cle) Sr . Fr is called the oriented flux filter. By differen-
tiating the above equation with respect to v, minimiza-
tion of function f is in turn acquired as solving a gen-
eralized eigenvalue decomposition problem. Solving the
aforementioned generalized eigen decomposition prob-
lem gives d eigenvalues (where d = 2 or 3 is the dimen-
sion of the image), λ1(·) ≤ · · · ≤ λd(·) and d eigenvec-
tors vi (·), i.e. λi(x; r) = f (x,vi (x; r); r) for i = 1, . . . , d .
To handle the vessels having various radii, a multi-scale
approach should be used along with the OOF method.
Law and Chung (2008) have proposed to normalize the
OOF’s eigenvalues by the sphere surface area when the
OOF method is incorporated in a multi-scale approach
for 3D image volumes. In the 2D case the eigenvalues
are normalized by the circle perimeter 2πr . In the 3D
case the eigenvalues are normalized by the sphere area
4πr2.

In the 2D case (see Fig. 5), for a point on the centerline
and if r is equal to the radius of the vessel, the first eigen-
vector v1 represents the direction orthogonal to the vessel.
v2 is the estimated direction of the vessel. If the point is in-
side the vessel but not on the centerline (for example, point
x2 in Fig. 5(a)), the OOF response provides two local min-
ima, when v is parallel to the vessel centerline and for the
two possible scales, see Fig. 5(d). Finally, if the point is out-
side the vessel and near its boundary, the estimated vessel

direction, i.e. v2, which is the eigenvector associated to the
largest eigenvalue is perpendicular to the vessel direction.

In the 3D case, if the point is on the centerline, the two
eigenvectors associated to the first eigenvalues (λ1, λ2) rep-
resent the directions orthogonal to the vessel direction. v3

goes along the vessel, see Fig. 6. On the same figure, one
can see that if the point x is on the centerline, the minimal
response of the function f is obtained when the radius r is
equal to the exact radius of the tube. If the point is inside the
tube but not on the centerline, v3 is parallel to the tube ori-
entation, and the other eigenvectors depend on the scale r .
If the point is outside the tube (last line), then the vector v3,
corresponding to the red area, is oriented toward the center-
line.

3.2 OOF as a Steerable Filter

In this section, we will demonstrate that the Optimally Ori-
ented Flux function f can be interpreted in terms of steer-
able filters (Freeman and Adelson 1991). Steerable filters
are useful to detect edges or ridges (vessel-like structures)
at any orientation. Steerable filters are filters for which the
response at different orientations can be synthesized from
linear combination of rotated versions of itself (this is called
steerability relation). More precisly a filter F : R

2 → R is
said to be steerable if

F (Rθx) =
M∑
i=1

ki(θ)F (Rθi
x) (12)

where Rθ is the rotation matrix:

Rθ =
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)
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Fig. 6 Plot of f (x,v; r)
superimposed on the original
3D synthetic image for three
different points (on each line)
and different values of the
radius: r = 4, . . . ,7 from left to
right. The radius of the tube on
the top half side image is equal
to 4, and equal to 6 on the
bottom half side. Similarly to
Fig. 5, the visualization of the
normalized flux function is done
using a spherical coordinate
system (instead of the polar one
used in 2D). The first point is on
the centerline of the tube. The
second point is inside the tube
but not on the centerline. The
third point is outside the tube.
The reader should zoom on each
image. Notice that the
colormaps are different for each
point

and x = (x, y) is a point in R
2. Inspired by the steerability

property of the Hessian filter presented in Jacob and Unser
(2004), we will show that the oriented flux filter is steerable
as well. We will compare the associated template features of
the Hessian and the oriented flux in order to justify qualita-
tively our choice.

Jacob and Unser (2004) showed that the popular ridge
filter based on the Hessian matrix (Frangi et al. 1998;
Sato et al. 1998; Lorenz et al. 1997; Lindeberg 1998) can be
interpreted as a steerable filter and that this filter can be syn-
thesized by a template which is ∂xxgr (the second derivative
along x direction of a Gaussian gr at scale r). The steerabil-
ity relation can be expressed in a matrix form as follows:

∂xxgr(Rθ x) = uT
θ

(
∂xxgr(x) ∂xygr(x)

∂yxgr(x) ∂yygr(x)

)
uθ

= cos2(θ)∂xxgr(x) + sin(2θ)∂xygr(x)

+ sin2(θ)∂yygr(x), (13)

where uθ = (cos(θ), sin(θ))T . Hence three representative
directions of the Hessian filter are (θ1 = 0, θ1 = π

4 , θ2 =
π
2 ) associated to the function basis: (∂xxgr , ∂xygr , ∂yygr)

(see (12)).
It has been shown by Law and Chung (2008), and rewrit-

ten by (11) that the response given by the optimally oriented
flux can be expressed as a convolution of the image I with
vT Frv, called here oriented flux filter. At a given orientation

Fig. 7 (Color online) Feature templates associated to the Hessian (on
the left) and to the oriented flux (on the right) at the same scale r . The
yellow dotted line simulates the vessel direction. σ is the variance of G

v = uθ , the oriented flux filter can be synthesized as follows:

uT
θ Fr (x)uθ = {∂xxG ∗ 1r} (Rθ x). (14)

We conclude that the oriented flux filter is a steerable filter
and that an associated template is ∂xxG ∗ 1r . This result is
straightforwardly extensible to higher dimensions.

In Fig. 7, the templates associated to both the Hessian
filter and the oriented flux filter are shown. Hence, we can
qualitatively justify that the OOF is more suited for vessel
enhancement and orientation detection. Indeed, unlike the
Hessian template, the oriented flux template profile is more
localized around the vessel boundaries. Thus, adjacent fea-
tures to the vessel, like heart chambers or other organs, will
most likely not be included by the OOF. In the next section,
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we will highlight a link between the OOF and the Hessian-
based filters in order to justify again the choice of the OOF
for our medical application.

3.3 Unifying Flux Based and Hessian Based Vessel
Enhancement

Let us recall the optimally oriented flux, and the Hessian
formulations. It has been shown that the flux of the image
gradient projected along a direction v through a sphere of
radius r can be written as follows,

f (x,v; r) =
∫

∂Sr

((∇(G ∗ I )(x + h) · v)v) · h
|h|da

= vT Q(x; r)v

where

Q(x; r) = ((∂i,jG)i,j ∗ 1Sr ∗ I )(x) (15)

where (∂i,jG) is the Hessian matrix of function G and 1Sr

is the indicator function inside the sphere (or circle) Sr , and
G is a Gaussian with a scale σ equal to the size of a voxel
(or a pixel). The vesselness measure proposed by Law and
Chung (2008) is based on the eigenvalues of Q.

The Hessian-based vesselness measures proposed in
Frangi et al. (1998), Sato et al. (1998), Lorenz et al. (1997),
Lindeberg (1998) are based on the eigenvalues of the scaled
Hessian of the image:

H(x; r) = ((∂i,jGr)i,j ∗ I )(x),

where (∂i,jGr)i,j is the Hessian of the Gaussian function Gr

with scale r . Finding the eigenvalues of H is similar to find
optimal directions of the associated quadratic form. For a
vector v, the quadratic form associated to the Hessian matrix
is:

h(x,v; r) = vT H(x; r)v
= vT {((∂i,jGr)i,j ∗ I )(x)}v

= vT

{∫
Rd

∂i,jGr(h)I (x + h)dh
}

i,j

v.

Using integration by parts, one can show that:
∫

Rd

∂i,jGr(h)I (x + h)dh = −
∫

Rd

∂Gr

∂xj

(h)
∂I

∂xi

(x + h)dh.

Hence,

h(x,v; r) = vT H(x; r)v
= −

∫
Rd

((∇I (x + h).v)v).∇Gr(h)dh.

Fig. 8 Profile of the normalized flux weighting function g′
r (R)

g′
r (r)

=
Rgr (R)
rgr (r)

associated to the Hessian

Recall that the Gaussian function is spherically symmet-
ric. Thus, one can write Gr(h) = gr(‖h‖) = gr(R) =

1
(r

√
2π)d

exp(− R2

2r2 ), leading to ∇Gr(h) = g′
r (‖h‖)n, where

n is the outward normal to the sphere of radius R. Therefore,
using reduction formulae, one can show that:

h(x,v; r) = −
∫ +∞

0
g′

r (R)

×
(∫

∂SR

((∇I (x + Rn).v)v) .nda

)

︸ ︷︷ ︸
(I)

dR, (16)

where da in term (I) is the infinitesimal area (or length)
on the surface sphere ∂SR . One can recognize the term
(I) of (16) as the oriented flux introduced by Law and
Chung (2008) (without the smoothing term). As a matter
of fact, one can interpret function h as a pondered flux
of the projected image gradient along direction v toward
spheres. In Fig. 8 the normalized weight function associ-
ated to the Hessian is presented. One can see that contrary
to the Hessian, the OOF weight function (which is the indi-
cator function for Sr ) takes into account only the values of
the image gradient on the circle of the desired scale. That
explains the behavior of the Hessian based vesselness mea-
sure, as shown in Fig. 4 of Law and Chung (2008), which
misses vessels of weak intensity especially when they are
adjacent to other structures (arrows 5 and 6). Indeed, if one
considers that the influence of adjacent objects is significant
until some threshold T of the weight function (for exam-
ple the red line in Fig. 8 corresponds to T = 0.5), then all
objects in the vicinity of the desired point with distance to
the desired point in [βr,αr] are taken into consideration.
This is the weak point of the Hessian based vesselness mea-
sures, that is, adjacent structures are taken into consider-
ation, and hence distort the measure. As an example, for
T = 0.5, we have α ≈ 0.32 and β ≈ 1.9. One can conclude
that the Hessian based vesselness measure is not an appro-
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priate choice when the desired vessels are adjacent to other
features in the image, which usually happens in nature.

We showed here, that the Hessian based vesselness mea-
sures may include adjacent structures yielding to bad re-
sults. The point is that the flux weighting function (see
Fig. 8) associated to the Hessian matrix is too much ex-
tended around the desired scale, i.e. when R/r = 1. Mean-
while, the weighting function associated to the optimally
oriented flux is the indicator of R = r , hence it assumes that
vessels response on the image is perfectly contrasted and
with uniform intensity. On natural images, this assumption
is obviously not satisfied.

In order to improve the vesselness measure response, one
has to choose a flux weighting function that is in between
the very discontinuous indicator function and the very ex-
tended profile given by the derivative of the Gaussian (see
Fig. 8). Obviously, flux weighting function has to depend
on the response of tubular structures on the image which
depends on many parameters like image modality, type of
vessels (coronary, pulmonary or other arteries), and the used
contrast agents. An important question to raise here is the
following: Is there an optimal way to define a weighting
function for some desired arteries on a given image? And
therefore, what are these meaningful optimality conditions
one can impose on the weighting function? These questions
remain open. One perspective of this work is to define a set
of meaningful optimality conditions and to find the optimal
weighting function associated to them as a learning step.

3.4 How to Design the Metric

Our main contribution is to impove Li and Yezzi method (Li
and Yezzi 2006, 2007) (see Sect. 1.2 above) by adding to
it an anisotropic formulation, and the anisotropic metric is
constructed by extension of the OOF descriptor presented
by Law and Chung (2008).

We consider (d + 1)D minimal path that minimizes the
following energy:

∫
γ

{√
γ ′(s)T M(γ (s))γ ′(s)

}
ds, (17)

where M is the (d + 1)D anisotropic metric we want to
construct. It is not natural to consider orientations on the
(d +1)th dimension, i.e. the radius dimension. Thus we pro-
pose to decompose by blocks the matrix M as follows:

M(x, r) =
(

M̃(x, r) 0
0 Pradius(x, r)

)
(18)

where M̃(x, r) is a d ×d symmetric definite positive matrix
giving the spatial anisotropy and Pradius(x, r) is the radius
potential (also strictly positive).

Since the result given by the anisotropic minimal path
method is very dependent on the metric, results inherit ad-
vantages and drawbacks of the constructed metric, and we
should be very careful with its construction. First, let us fix
conditions on the desired metric. The spatial metric M̃ has
to be well oriented along the vessel centerline. And the ra-
dius potential Pradius has to be small for the adequate scale
for any point of the image.

√
Pradius corresponds to the in-

verse velocity along the radius dimension. Since M̃ is sym-
metric definite positive, one can decompose it as follows:
M̃(.) =∑d

i=1 mi(.)ui (.)ui (.)
T , where 0 < m1 ≤ · · · ≤ md

are the eigenvalues and ui are the associated eigenvectors.
The velocity of the propagating front along direction ui is
equal to 1/

√
mi . In order to design the metric, let us re-

call that the oriented flux matrix is symmetric (but not nec-
essarily positive), and it can be decomposed as follows:
Q(.) =∑d

i=1 λi(.)vi (.)vi (.)
T . The metric M has to be def-

inite positive, and we want to make the propagation faster
along the estimated vessel direction, i.e. vd . Therefore, we
combined the OOF’s eigenvalues and eigenvectors to con-
struct the metric as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M̃(.) =
d∑

i=1

exp

(
α

∑
j �=i λj (.)

d − 1

)
vi (.)vi (.)

T ,

Pradius(.) = β exp

(
α

∑d
i=1 λi(.)

d

)
.

(19)

The choice of the spatial metric M̃ is motivated by the fact
that the propagation velocity along direction vi is given by

νi := exp(−α
2

∑
j �=i λj (.)

d−1 ) and therefore10 νd ≥ · · · ≥ ν1. The
radius potential Pradius is based on the OOF vesselness, pro-
posed in the original paper Law and Chung (2008), which
is the trace of the oriented flux matrix: Tr(Q) =∑i λi . We
proposed a formula coherent with the spatial metric M̃ and
we added parameter β > 0 in order to control the radius
propagation velocity, i.e. νradius := 1/

√
Pradius, according to

the spatial velocities νi .
Here, we introduced two parameters: α and β . α is con-

trolled by an intuitive parameter, which is the maximal spa-
tial anisotropy ratio, noted μ. It corresponds to the maximal
spatial speed ratio one wants to impose. In the 2D case,

μ = max
x,r

√
exp(αλ2(x, r))

exp(αλ1(x, r))

= exp

(
1

2
α
{

max
x,r

(λ2(·) − λ1(·))
})

,

10This can be easily verified using the fact that λ1 ≤ λ2 ≤ · · · ≤ λd .



Int J Comput Vis

Fig. 9 The constructed metric
for different scales r = 5,10,15
from left to right. The original
image is shown in Fig. 5(a), the
radius of the structure is equal
to 10. We used the same color
range for all images, so one can
see that the optimal anisotropy
is obtained along the centerline
of the tubular structure when the
scale r is equal to the exact
radius of the tube. On the top,
we show a display of
M̃(x, r)−1. On the bottom,
responses of Pradius are shown

and in 3D,

μ = max
x,r

√√√√exp(α
λ2(x,r)+λ3(x,r)

2 )

exp(α
λ1(x,r)+λ2(x,r)

2 )

= exp

(
1

4
α
{

max
x,r

(λ3(·) − λ1(·))
})

.

Geometrically, μ corresponds to the maximal ratio between
the major and minor axis of ellipsoids displaying M̃ as
in Fig. 9.

By choosing the maximal spatial anisotropy ratio μ, the
constant α is fixed. And by doing so, the anisotropy descrip-
tor M becomes affine contrast invariant because the OOF
is linear on the image. The parameter β controls the radius
speed. If νradius ≥ νd then the Fast Marching propagation is
faster along the radius direction than the spatial directions.
If νradius ≤ ν1 then the propagation is slower. One can tune
parameter β depending on the tubular structure one wants to
extract. If its radius changes a lot then β should be chosen
such that the propagation on the radius dimension is faster.
Otherwise, β is chosen such that the propagation is less sen-
sitive on the radius dimension.

In Fig. 9, the constructed metric of Fig. 5 is shown at dif-
ferent scales. Since we chose the same color range for the vi-
sualization, we can see that the directions are well detected,
and that the optimal values are obtained along the centerline
of the tube when the scale is equal to the tube radius. For
our experiments, we took μ = 5 and β such that the radius
speed is at least twice as high as the best spatial propagation
speed. We did so, because we wanted our algorithm to be
sensitive to the radius dimension.

4 Experimental Results

4.1 Advantages of Anisotropy

First, let us compare the results obtained by the anisotropic
model we propose and the original isotropic model pro-
posed by Li and Yezzi (2006, 2007). Again, the choice of
the isotropic potential is crucial. As shown in the previous
section, the proposed radius potential Pradius given by (19)
has the good property of taking its smallest values along the
centerline of a tubular shape when the scale r is equal to
its radius. Therefore, a reasonable choice of a potential that
drives the propagation along the centerline for the right ra-
dius is Pradius itself. Nevertheless, in order to make a fair
comparison between the isotropic and anisotropic model
the potential P should be P = √

Pradius. Indeed, accord-
ing to notations of Sect. 2, the metric associated to the
isotropic case is M = P 2Id , where Id is the identity ma-
trix.

For the example in Fig. 10, we took μ = 6. As expected,
the anisotropy model is more robust than the isotropic one
by avoiding the shortcut. We also tried the isotropic method
using the two other components of the anisotropic met-
ric M, namely exp(αλ1) and exp(αλ2), and we obtained
a similar shortcut.

4.2 Results on Synthetic Data

Our method is minimally interactive. First, the user has to
decide if the desired vessels are darker or brighter than the
background. So, we can consider different criteria on the
signs of the eigenvalues. Then the scale range [rmin, rmax],
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Fig. 10 Comparing
segmentation results, on a
synthetic “U” shape, when using
isotropic and anisotropic
models. Here, we took μ = 6

Fig. 11 (Color online) The red
cross points are source points
given by the user, and the blue
ones are endpoints. On each
case the segmented centerlines
are displayed as well as the
envelope of the moving discs.
The associated minimal action
map U as well as the 3D
minimal path between the two
selected points are shown
(transparent visualization)

Fig. 12 On the left, original
synthetic tube with changing
radii. We added 10% of salt and
pepper noise. On the middle,
selected source and destination
are well centered. On the right,
decentered initialization

which corresponds to the range of radii of the vessel one
wants to extract, is given by the user. In practice, the user has
to provide only the minimal radius value rmin and the max-
imal one rmax. Using the spatial image spacing, i.e. hx , hy

and hz, we chose a radius spacing equal to 1
2 min(hx,hy,hz)

in order to respect the Nyquist sampling rate. Finally, few
points are required as source points or end points of the Fast
Marching algorithm. We used the metric described in the
previous section to find the minimal anisotropic path (as de-
scribed in Sect. 2) between two or more selected points (see
Fig. 11). For any selected point, the associated initial radius
is equal to the minimal radius rmin given by the user.

In Fig. 11, segmentation results on synthetic 2D images

are shown. In the first synthetic image, the source point and

destination are selected on the centerline. The obtained tube

is perfectly detected as well as the centerline. In the second

image, the initial points are not centered. But the centerline

obtained by our algorithm goes back fast to the real center-

line. This makes our algorithm robust to initialization. The

third synthetic image shows that our approach is robust to

scale changing.

In Fig. 12, we defined a cylinder in a 3D volume, with

two different radii (4 and 6 voxels) on each half side of
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Fig. 13 Evolution of the radius along the obtained minimal path of
Fig. 12 middle, when the points are well centered along the desired
tube

Fig. 14 Influence of the maximal anisotropy ratio μ on the obtained
minimal tube. For μ = 3 a shortcut occurs

the volume. First, we tried our method with a reasonable
anisotropy ratio, μ = 3, and by choosing the source and des-
tination on the centerline of the desired tube. One can see
that the desired tube is well segmented. Moreover, in Fig. 13
the evolution of the radius along the obtained minimal path
shows that the radii are well detected. Also, we gave a bad
initialization of the source and the destination for the second
example of Fig. 12, and obtained a reasonable result.

In order to challenge our method, we initialized the
source and destination far from the desired tubular shape, in
a situation for which a shortcut likely occurs, see Fig. 14.
The original image used here is the synthetic volume of
Fig. 12. One can see that for a reasonably small maxi-
mal anisotropy ratio μ, a shortcut occurs. While choosing
a slightly higher value of μ allows us to overcome this prob-
lem.

Finally, in the example of Fig. 15 we designed a syn-
thetic helix with linearly increasing radius (from 3 to 5
voxels). Similarly to the example of Fig. 14, we increased
the value of the maximal anisotropy ratio μ to 5, in order
to overcome the shortcut issue. The chosen radii range is
[1,6]. One can point out that the obtained centerline (the
blue one) is slightly different than the theoretic one specif-
ically near the source and the destination points. This is
due to a boundary effect. Indeed, the source and destina-
tion are on the boundary of the volume and the compu-
tation of the OOF (on spatial or even on the Fourier do-
main) requires a special care for points near the boundary.
For the spatial implementation of the OOF, when an image
value for a point outside the domain is needed, we choose
the nearest value on the domain. This choice has no ef-
fect on the orientation given by the OOF in the image of
Fig. 12, while it can change considerably the estimation of
the vessel orientation for points in the vicinity of the do-
main boundary in general and particularly for the example
given in Fig. 15. Also, in the same figure one can see the

Fig. 15 (Color online) On the left, original synthetic helix with lin-
early changing radii. We added 10% of salt/pepper noise. On the
middle, obtained segmentation. The blue line is the obtained centerline

and the red one is the theoretic centerline. On the right, evolution of
the radius along the obtained minimal path
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Fig. 16 (Color online) On the
left, original images. On the
right, the red cross points are
source points given by the user,
and the blue ones are endpoints.
On each case the segmented
centerlines are displayed as well
as the envelope of the moving
discs
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Fig. 17 First line: RCA
segmentation using the tubular
anisotropy approach shown on
the whole image and on the
selected sub-volume. Second
line: LAD segmentation shown
on the whole image and on the
selected sub-volume. Only few
points are required (the
extremities of the paths). The
tubular anisotropy method
provides the centerline as well
as vessels boundaries

evolution of the radius along the obtained minimal path.
Due to the voxelization, the radius evolution behaves almost
like a piecewise constant function rather than a linear func-
tion.

4.3 Results on Real Images

In this section we are going to show some segmentation re-
sults on real images obtained by our method. For 2D images,
see Fig. 16, we took a maximal anisotropy ratio μ = 5, and
as said before, β is chosen such that the propagation speed
along the radius dimension is at least twice the best propaga-
tion spatial speed. One can claim that our algorithm is robust
to highly curved tubular structures, noise and bifurcations.

In Fig. 17, segmentation results are shown on real med-
ical images. First, right coronary arteries (RCA) are seg-
mented. Second, left anterior descending (LAD) arteries are
segmented. One can see that the obtained radius on the prin-
cipal coronary branches are larger than those of the sec-
ondary. Thus, our approach is robust to scale changing and
bifurcations. The results presented here are encouraging but
obviously not sufficient. A clinical validation is presented in
the next section.

4.4 Clinical Validation

In order to make a genuine validation, we participated
to “The Carotid Bifurcation Algorithm Evaluation Frame-

work”11 which took place during a workshop of the MIC-
CAI’09 conference (Hameeteman et al. 2009). The goal
of this framework is to evaluate and compare different al-
gorithms for carotid bifurcation, lumen segmentation and
stenosis grading from CTA data.

The tubular anisotropy method proposed in this paper,
represents vessels with circular cross sections. This may
yield various inaccuracies in the provided datasets, which
contain vessels exhibiting non circular lumen and strong lu-
men occlusions. Therefore, we proposed to refine the seg-
mentation using a region based level set model, see Mille et
al. (2009) for more details.

The competition data consists of CT angiography im-
ages acquired at the Erasmus MC, University Medical Cen-
ter Rotterdam, The Netherlands (36 datasets), Hôpital Louis
Pradel, Bron, France (10 datasets) and the Hadassah Hebrew
University Medical Centre, Jerusalem, Israel (10 datasets).
The datasets have been selected such that they contain a
large range of stenoses, from fully open to severe stenotic.
Each hospital provided three points on the main branches of
the carotid, for the whole data sets, and a manually drawn
lumen segmentation for the training data sets, see Hameete-
man et al. (2009) for more details.

Organizers of the competition proposed four perfor-
mance measures:

11http://cls2009.bigr.nl/

http://cls2009.bigr.nl/
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Table 1 Summary lumen
(Mille et al. 2009) Measure %/mm rank

min. max. avg. min. max. avg.

L_dice 43.3% 93.6% 83.6% 3 4 3.97

L_msd 0.20 mm 3.98 mm 0.80 mm 3 4 3.97

L_rmssd 0.29 mm 6.50 mm 1.57 mm 3 4 3.97

L_max 1.11 mm 17.50 mm 6.47 mm 4 4 4.00

Total (lumen) 3 4 3.98

Table 2 Averages lumen (Mille et al. 2009)

Team Total dice msd rmssd max Total

name success % rank mm rank mm rank mm rank rank

TubularAnisotropy 31 83.6 4.0 0.80 4.0 1.57 4.0 6.47 4.0 4.0

ObserverA 31 95.4 1.5 0.10 1.5 0.13 1.6 0.56 1.9 1.6

ObserverB 31 94.8 2.4 0.11 2.4 0.15 2.3 0.59 1.8 2.2

ObserverC 31 94.7 2.2 0.11 2.2 0.15 2.1 0.71 2.3 2.2

1. The Dice similarity index Dsi

Dsi = 2 × |pvr ∩ pvp|
|pvr | + |pvp| ,

where pvr and pvp are the reference and a participants
partial volumes, the intersection operation is the voxel-
wise minimum operation, and |.| is the volume, i.e. the
integration of the voxel values over the complete image.

2. The mean surface distance Dmsd,

Dmsd = 1

2
×
(∫

Sr
|sdmp|ds

|Sr | +
∫
Sp

|sdmr |ds

|Sp|

)
,

where sdmr and sdmp are the signed distance maps of
the reference and a participants segmentation, and Sr and
Sp are the lumen boundary surfaces (isosurfaces of the
signed distance map at the value 0), and |Si | is the surface
area of surface Si , i.e. |Si | =

∫
Si

ds.
3. The root mean squared surface distance Drmssd,

Drmssd = 1

2
×
⎛
⎜⎝
√∫

Sr
|sdmp|2ds

|Sr | +
√√√√
∫
Sp

|sdmr |2ds

|Sp|

⎞
⎟⎠ .

4. Maximum surface distance Dmax

Dmax = 1

2
×
(

max
x∈Sr

|sdmp(x)| + max
x∈Sp

|sdmr(x)|
)

.

All distance measures are symmetric, and all these measures
are only evaluated in the region of interest, see Hameeteman
et al. (2009) for more details.

A summary of lumen segmentation scores is presented in
Table 1. Averages lumen scores are presented in Table 2. The
average processing time for a single data set was approxi-
mately 2 minutes. Our dice mean score is 83.6%, showing
that our method is relatively robust. Over nine teams that
have participated to the contest, our method is the fourth. As
said previously, this might be explained by the fact that the
Tubular Anisotropy method proposed in this paper detects
vessels with circular cross sections yielding to inaccuracies
on strong lumen occlusions. Moreover, for numerical rea-
sons, we did not take advantage of the tubular anisotropy
method by increasing as much as possible the anisotropy ra-
tio μ. This point has been discussed in Sect. 2.3.

5 Conclusion

In this paper we have proposed a new general method
for tubular structure extraction in 2D and 3D images. Our
method exploits the orientation of the vessels by using
the optimally oriented flux to construct a multi-resolution
anisotropic metric that extracts from the image the local
geometry and describes the vessels orientation and scales.
Combining this metric with anisotropic minimal path tech-
nique, we were able to find a complete description of the
tubular structure, i.e. the centerline as well as the boundary.
To summarize, our method is minimally interactive, robust
to initialization, scale variations, and bifurcations. More-
over, obtained clinical validation results are encouraging.
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