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ABSTRACT
In this paper we present a new interactive method for tubu-
lar structure extraction. The main application and motivation
for this work is vessel tracking in 3D medical images. The
basic tools are minimal paths solved using the fast marching
algorithm. This leads to interactive tools for the physician
by clicking on a small number of points in order to obtain
a minimal path between two points or a set of paths in the
case of a tree structure. Our method is based on a variant of
the minimal path method that models the vessel as a center-
line and surface by adding one dimension for the local radius
around the centerline. The crucial step of our method is the
definition of the local metrics to minimize (based on the lo-
cal orientation using a Riemannian Metric). This approach
is made available for the physician using an Object Oriented
Language (OOL) interface. We show results on two CT car-
diac images for coronary arteries segmentation.

Index Terms— Image segmentation, Image enhance-
ment, Medical diagnosis

1. INTRODUCTION
Coronary artery disease (CD) is the leading cause of death
in the United States. In symptomatic patients, diagnosis of
the presence and severity of coronary artery disease is criti-
cal for determining appropriate clinical management. Indirect
evaluation of coronary stenosis, such as through stress testing,
has limited diagnostic ability as compared with direct conven-
tional coronary angiography. Conventional coronary angiog-
raphy reveals the extent, location, and severity of coronary
obstructive lesions, which are potent predictors of outcome,
and identifies high-risk patients who may benefit from revas-
cularization. Thus, invasive coronary angiography, despite
the associated risks, remains the standard for the diagnosis of
obstructive coronary artery disease. Multidetector computed
tomographic (MDCT) angiography has been proposed as a
noninvasive test to determine the presence of CD. Although
MDCT angiographic data acquisition is straightforward, ef-
fective visualization and communication of the complex mul-
tifocal manifestations of CD remain a major challenge. For
accurate image interpretation, precise, fast and semiautomatic
image processing tools are mandatory.

This need has attracted the attention of the computer vi-
sion community yielding to multidisciplinary collaborations.
Moreover, segmentation of tubular structures like blood ves-
sels or coronary arteries is a very active research domain since
the early 90’s. Indeed, various methods such as vascular im-
age enhancement methods [1–3], or others were proposed,
see [4] for a complete survey.

Siddiqi and Vasilevskiy proposed in [5] a vessel segmen-
tation method based on flux maximizing flows. On the same
research line, Bouix et al proposed in [6] a method for auto-
matic centerline extraction once the boundaries of the vessel
are found. Nonetheless, their approach suffers from huge time
consuming due to the used level set formulation and to the
used iterative algorithm. Moreover, the inward flux they max-
imize is not concave at all with respect to the evolving shape
and may be stuck on local maxima yielding to bad result. Co-
hen and Kimmel introduced in [7] the minimal path method
that captures the global minimum curve between two points
given by the user. This leads to the global minimum of an
active contour energy. Using the Fast Marching method [8],
the minimal path problem can be solved efficiently. The main
drawback of the minimal path method when it is applied to
vessel segmentation is that it provides only a trajectory (or a
set of trajectories), and does not give any information about
the vessel boundary and local width. In [9], Deschamps and
Cohen used the image itself as a propagation potential while
they applied the Fast Marching method to an excellent con-
trast air-filled colon on CT scanner and considered the propa-
gating front as an estimate of the vessel boundary. However,
classical segmentation problems do not provide such an ex-
cellent contrast yielding the propagating front to flow over
the boundaries of longer and thinner objects. Again, in [9],
authors proposed to extract the centerline using the estimated
vessel boundaries.

Our method is based on a variant of the classical, purely
spatial, minimal path technique by incorporating an extra
non-spatial dimension into the search space. This approach
was first proposed by Li et al [10]. Each point of the 4D path
(after adding the extra dimension for the 3D image) consists
of three spatial coordinates plus a fourth coordinate which de-



scribes the vessel thickness at that corresponding point. Thus
each 4D point represents a sphere in 3D space, and the ves-
sel is obtained by taking the envelope of these spheres as we
move along the 4D curve. The main drawback of their method
is that they considered only isotropic media that does not take
into account the orientation of the vessels. Our first contribu-
tion is to take into account the vessel orientation by defining
a suited anisotropic metric that makes the propagation faster
along the center lines and for the adequate radius. The second
contribution is to build an anisotropic metric based on the
Optimally Oriented Flux (OOF) descriptor. The OOF was
first presented by Law et al in [11] for vessel enhancement.
Its main advantage is that the disturbance introduced by the
closely located nearby structures is avoided. But they did not
exploit the orientations given by the OOF. We propose to do
so by using the OOF’s scalar functions and its orientation.
That makes the propagation faster along the vessel’s center
line and for exact associated scale. This means that the path
location, orientation and scale have to be coherent with the
local geometry of the image extracted by the OOF.

In section 2, we give some background on minimal path
method and Anisotropic Fast Marching. In section 3 the Op-
timally Oriented Flux descriptor is presented as well as the
metric construction. In section 4, we will show segmented
coronary arteries using our method. Finally, conclusions and
perspectives follow in section 5.

2. BACKGROUND ON MINIMAL PATH METHOD
A minimal path, first introduced in the isotropic (P does not
depend on the orientation of the path) case [7], is a pathway
minimizing the energy functional :

E(γ) =
∫

γ

P
(
γ(s), γ′(s)

)
ds (1)

where, P(γ, γ′) =
√

γ′TM(γ)γ′ describes an infinitesimal
distance along a pathway γ relative to a metric tensor M
(symmetric definite positive). M is defined from some fea-
tures extraction in the image. A curve connecting p1 to p2

that globally minimizes the above energy (1) is a minimal path
between p1 and p2, noted Cp1,p2 . The solution of this mini-
mization problem is obtained through the computation of the
minimal action map U : Ω → R+ associated to p1 on the do-
main Ω which can be a 2D, 3D or 4D domain (in the case of
3D tubular structures, Ω is a 4D domain). The minimal action
is the minimal energy integrated along a path between p1 and
any point x of the domain Ω:

∀ x ∈ Ω, U1(x) = min
γ∈Ap1,x

{∫
γ

P
(
γ(s), γ′(s)

)
ds

}
, (2)

where Ap1,x is the set of smooth paths linking x to p1. The
values of U1 may be regarded as the arrival times of a front
propagating from the source p1 with oriented velocity related
to the metric tensor M−1. U1 satisfies the Eikonal equation

‖∇U1(x)‖M−1(x) = 1 for x ∈ Ω, and U1(p1) = 0, (3)

where ‖v‖M =
√

vT Mv. The flow lines of U1 satisfy the
Euler-Lagrange equation of functional (1). Thus, the minimal
path Cp1,p2 can be retrieved with a simple gradient descent
on U1 from p2 to p1 (see Fig. 1). Proof of (3) can be found
in [8].
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Fig. 1. Minimal path examples on an isotropic case on the
left image. On the middle, visualization by small ellipses
of eigenvalues of a metric constant on each half side of the
image, and the minimal action map associated to the source
point p1 with the minimal path Cp1,p2 on the right.

On figure 1, we show some examples of the minimal path
method on an isotropic case and an anisotropic one. On the
first image of figure 1 the metric is isotropic and the potential
in the grey region is twice as low as the white one. Isolevel
sets of the minimal action map associated to the source point
p1 and the minimal path Cp1,p2 are displayed. The second
image represents a metric M. We took two constant metrics
in each half side of the image with different orientations. On
the last image, the minimal action map U1 associated to the
metric M and to the source point p1 is shown. The minimal
path Cp1,p2 is found through a simple gradient descent. The
anisotropic Eikonal equation is solved using an adapted ver-
sion of the Fast Marching algorithm. Descriptions and details
on the isotropic and anisotropic Fast Marching can be found
in [7, 8].

3. OPTIMALLY ORIENTED FLUX : AN
ANISOTROPY DESCRIPTOR

We are interested in the construction of a metric that extracts
from the image the geometric information leading to recon-
struction of vessels. This means that we wish to find an esti-
mate for the local orientation and scale and a criterion on the
local geometry to distinguish the presence of vessels from the
background.

At the position x on an image I , the amount of the image
gradient projected along the axis v flowing out from a 3D
sphere Sr of radius r is measured as in [11],

f(x,v; r) =
∫

∂Sr

((∇(G ∗ I)(x + h) · v)v) · h
|h|

da, (4)

where G is a Gaussian function with a scale factor equal to
the size of the image voxel, h is the position vector along ∂Sr

and da is the infinitesimal area on ∂Sr. To detect vessels hav-
ing higher intensity than the background region, one would
be interested in finding the vessel direction which minimizes
f(x,v; r),

arg min
v

f(x,v; r). (5)



Using the divergence theorem, it can be shown that
f(x,v; r) can be calculated using a simple convolution,

f(x,v; r) = vT
{
(∂i,jG) ∗ I ∗ 1Sr

}
v, (6)

where (∂i,jG) is the Hessian matrix of function G and 1Sr
is

the indicator function inside the sphere Sr. By differentiating
the above equation with respect to v, the solution of equa-
tion (5) is in turn acquired as solving a generalized eigen-
value decomposition problem. Solving the aforementioned
generalized eigen decomposition problem gives three eigen-
values, λ1(·) ≤ λ2(·) ≤ λ3(·) and three eigenvectors vi(·),
i.e. λi(x; r) = f(x,vi(x; r); r) for i = 1, 2, 3. The two
eigenvectors associated to the first eigenvalues (λ1, λ2) rep-
resent directions that are orthogonal to the vessel. v3 repre-
sents the direction along the vessel. To handle the vessels hav-
ing various radii, a multi-scale approach should be employed
along with the OOF method. In [11], Law and Chung have
proposed to normalize the OOF’s eigenvalues by the sphere
surface area (4πr2) when the OOF method is incorporated in
a multi-scale approach for 3D image volumes.

Li and Yezzi [10] proposed a new variant of the classi-
cal, purely spatial, minimal path technique by incorporating
an extra non-spatial dimension into the search space. The
crucial step of this method is to build an adequate metric that
drives the propagation. Li and Yezzi [10] proposed different
isotropic potentials. The main drawback, as they mention, is
that these potentials are very parameter dependent and they
do not exploit the vessel orientation. Our main contribution is
to improve Li and Yezzi method by adding to it an anisotropic
formulation, and the anisotropic metric is constructed by ex-
tension of the OOF descriptor presented by Law et al [11].

The 4D minimal path is found by minimizing the follow-
ing energy: ∫

γ

{√
γ′(s)TM(γ(s))γ′(s)

}
ds,

where M is the 4D anisotropic metric we want to construct.
It not natural to consider anisotropy on the fourth dimension,
i.e the radii dimension. Thus one can decompose by block the
metric M as follows :

M(x, r) =
(
M̃(x, r) 0

0 Pradii(x, r)

)
(7)

where M̃(x, r) is a 3 × 3 symmetric definite positive matrix
giving the spatial anisotropy and Pradii(x, r) is the radii po-
tential (also strictly positive).

Since the result given by the anisotropic minimal path
method is very dependent on the metric, results inherit ad-
vantages and drawbacks of the constructed metric, thus we
should be very carful with its construction. First, let us fix
conditions on the desired metric. The spatial metric M̃ has
to be well oriented along the vessel centerline. And the radii
potential Pradii has to be small for the adequate scale for any

point of the image. Pradii corresponds to the inverse speed for
the radii dimension. Since M̃ is symmetric definite positive,
we can decompose it as follows:

M̃(.) =
3∑

i=1

mi(.)ui(.)ui(.)T ,

where 0 < m1 ≤ m2 ≤ m3 are the eigenvalues and ui are
the associated eigenvectors. The velocity of the propagating
front along direction ui is equal to 1/

√
mi. We used the OOF

descriptor to construct the metric as follows:


M̃(.) =

3∑
i=1

exp
(

α

∑
j 6=i λj(.)

2

)
vi(.)vi(.)T ,

Pradii(.) = β exp
(
α

P3
i=1 λi(.)

3

)
.

(8)
The constants α and β are controlled by two intuitive pa-

rameters, which are the maximal spatial anisotropy ratio and
radii speed ratio respectivelly.

4. RESULTS
Our method is minimally interactive. First, the user has to
decide if the desired vessels are darker or brighter than the
background. So, we can consider different criteria on signs
of the eigenvalues. Then the scale range [rmin, rmax], which
corresponds to the range of radii of the vessel one wants to
extract, is given by the user. Finally few points are required
as source points or end points of the Fast Marching algorithm.
We used the metric described in the previous section to find
the minimal anisotropic path (as described in section 2) be-
tween two or more selected points (see figure 2). For any
selected point, the associated radius is equal to the minimal
radius rmin given by the user. One figure 2, left anterior de-
scending (LAD) arteries and right coronary arteries (RCA)
are segmented.

One can see that the obtained radii on the principal coro-
nary branches are larger than those of the secondary. Thus,
our approach is robust to scale changing and bifurcations.
Nevertheless, our current implementation requires huge mem-
ory allocations due to the 4D and anisotropic aspects. To over-
come this issue, we added a pre-processing interactive tool to
select a subvolume containing the desired vessels (see figure
2). Moreover, we are working on a new implementation of
the tubular anisotropy approach to make the memory alloca-
tion dynamic and hence to benefit from the front propagation
aspect of the fast marching algorithm. Besides the reduction
of the computation time (which has been actually achieved),
we will save on memory allocation and will have a new ver-
sion of our algorithm that extract the whole coronary arteries
using a regular PC.

5. CONCLUSIONS
In this paper we have proposed a new method for 3D tubu-
lar structure extraction. Our method exploit the orientations



Fig. 2. First two images : RCA segmentation using the tubu-
lar anisotropy approach shown on the whole image and on
the selected sub-volume. Second two images : LAD segmen-
tation shown on the whole image and on the selected sub-
volume. Only few points are required (the extremities of the
paths). The tubular anisotropy method provides the centerline
as well as vessels boundaries.

of the vessels by using the optimally oriented flux to con-
struct a multi-resolution anisotropic metric that describes the
vessels orientation and scales. Combining this metric with
anisotropic minimal path technique, we are able to find a com-
plete description of the tubular structure, i.e the center line
and the boundary. To summarize, our method is minimally
interactive, robust to scale variations and to bifurcations. We
developed a user friendly interface for coronary arteries seg-
mentation and we are working on its medical validation.
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