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Abstract

In this paper we present two interactive methods for tubular structure fast ex-
traction. The main application and motivation for this work is vessel tracking in
2D and 3D medical images. The basic tools are minimal paths solved using the fast
marching algorithm. This allows interactive tools for the physician by clicking on a
small number of points in order to obtain a minimal path between two points or a
set of paths in the case of a tree structure. Visualization tools are very important
in order to choose points and show paths and vessels in the case of 3D images. We
show variants of the minimal path method that differ both on the model used (path
on the image domain or centerline and surface by adding one dimension for the local
radius around the centerline), the way the endpoints are chosen by the user (two
points or automatic detection of key points from a single click) and the definition
of the local metrics to minimize (based on gray level or also on the local orientation
using a Riemannian metrics). The algorithms were made available for the physician
by use of a new programming framework called CreaTools. This software suite was
used to build a Graphical User Interface (GUI) and to connect the different pro-
cessing methods. The GUI provides the necessary visualization and interaction for
parameter tuning, source point definition and analysis of the outcome. We show
results on various CT images.

1 Introduction

Coronary artery disease (CD) is the leading cause of death in the United States. In
symptomatic patients, diagnosis of the presence and severity of coronary artery disease
is critical for determining appropriate clinical management. Indirect evaluation of coro-
nary stenosis, such as through stress testing, has limited diagnostic ability as compared
with direct conventional coronary angiography. Conventional coronary angiography re-
veals the extent, location, and severity of coronary obstructive lesions, which are potent



predictors of outcome, and identifies high-risk patients who may benefit from revascular-
ization. Thus, invasive coronary angiography, despite the associated risks, remains the
standard for the diagnosis of obstructive coronary artery disease. Multidetector computed
tomographic (MDCT) angiography has been proposed as a noninvasive test to determine
the presence of CD. Although MDCT angiographic data acquisition is straightforward,
effective visualization and communication of the complex multifocal manifestations of CD
remain a major challenge. For accurate image interpretation, precise, fast and semiauto-
matic image processing tools are mandatory.

During the last two decades, the extraction of vascular objects (in 2D or 3D images)
such as the blood vessels, coronary arteries, or other tube-like structures has attracted
the attention of more and more researchers. Various methods such as vascular image en-
hancement methods [19, 21, 14, 10, 17], vessel-tracking [1, 23, 20] or others were proposed,
see [8, 13] for wider surveys. Despite the existence of more or less interactive tools on
clinical consoles, fast and accurate vessel segmentation remains a challenge, particularly
when dealing with thin vascular tree structures such as the coronary arteries [18].

Some of the existing methods extract the vessel boundary directly, and then use thin-
ning methods or a generalized cylindrical model (e.g. [9]) to find its center line. Other
methods (e.g. [11]) first extract the center line and then extract its boundary as a stacking
of cross-sectional contours. Deschamps and Cohen [7] proposed to use the minimal paths
method to find the center line. The minimal path technique introduced by Cohen and
Kimmel [6] captures the global minimum curve between two points given by the user.
This leads to the global minimum of an active contour energy. Since then, the minimal
paths method has been improved by many researchers, and adapted to anisotropic media
as done by Jbabdi et al. for tractography [12]. Unfortunately, despite their numerous
advantages, classical minimal path techniques exhibit some disadvantages. First, vessel
boundary extraction can be very difficult, especially for coronary arteries. This is true
even in 2D where the vessel boundary can be completely described by two curves. Second,
the path given by the minimal path technique does not always yield the precise center
line of the vessel. A readjustment is required to obtain a central trajectory. Third, the
minimal paths technique provides only a trajectory and does not give information about
the vessel boundary.

The methods we propose here are generic and can be used for extracting tubular
structures in various applications, although we are motivated by the segmentation of
coronary and pulmonary arteries. The first method builds on a variant of the minimal
path approach. First, an initial point on the object is chosen by the user. Next, new key
points are detected automatically using a front propagation approach. These points are
automatically detected using a criterion based on the Fuclidean length of minimal paths
and are almost equi-distributed along the structure of interest. Two different stopping
criteria are proposed. The first one needs more interaction by specifying an endpoint to
reach. The second one is based on an approximation of the total length: the propagation
and key point detection are stopped as soon as a maximal total path length given by the
user is reached.

The second method we propose is based on a variant of the classical, purely spatial,
minimal paths technique by incorporating an extra non-spatial dimension into the search
space. This approach was first proposed by Li and Yezzi [16]. Each point of the 4D path
(after adding the extra dimension for the 3D image) consists of three spatial coordinates
plus a fourth coordinate which describes the vessel thickness at that corresponding 3D
point. Thus each 4D point represents a sphere in 3D space, and the vessel is obtained by



taking the envelope of these spheres as we move along the 4D curve. The main drawback
of the cited method is that only isotropic media were considered, which does not take
into account the orientation of the vessels. Our first contribution for this method is
to take into account the vessel orientation by defining a suited anisotropic metric that
makes the propagation faster along the center lines and for the adequate radius. The
second contribution is to build an anisotropic metric based on the Optimally Oriented
Fluz (OOF) descriptor. The OOF was first presented by Law and Chung in [15]. Its main
advantage is that the disturbance introduced by the closely located nearby structures is
avoided. But they did not exploit the orientations given by the OOF. We propose to do
so by using the OOF’s scalar functions as well as its orientation. This contributes to make
the propagation faster along the vessel’s center line and at exact associated scale, i.e.: the
path location, orientation and scale (radius) have to be coherent with the local geometry
of the image extracted by the OOF.

In section 2, we give some background on minimal paths method and Anisotropic Fast
Marching. In section 3 the recursive key points detection method is presented and some
results are shown on pulmonary arteries. In section 4 the tubular anisotropy method is
presented as well as some results on coronary arteries. The CreaTools software suite,
used to implement the algorithms within a Graphical User Interface (GUI) is presented
in section 5. Finally, conclusions and perspectives follow in section 6.

2 Background on minimal paths method

A minimal path is a pathway minimizing the energy functional:

E(y) = / P(3(s).7/(s))ds, 1)

where P(v,7) = /7TM(7)y" describes an infinitesimal distance along a pathway ~y
relative to a metric tensor M (symmetric definite positive). It was first introduced in the
isotropic case [6], i.e. with P that does not depend on its second variable. M is defined
from some features extraction in the image. A curve connecting p; to ps that globally
minimizes the above energy (1) is a minimal path between p; and ps, noted Cp, p,. The
solution of this minimization problem is obtained through the computation of the minimal
action map U, : Q — R7T associated to p;. The minimal action is the minimal energy
integrated along a path between p; and any point x of the domain €2 :

VxeQ U(x)= min {/P(y(s),v'(s))ds} . (2)

YEAp, x 5

The values of U; may be regarded as the arrival times of a front propagating from the
source p; with oriented velocity related to the metric tensor M ™1, U satisfies the Eikonal
equation

VU (%) | m-1x) = 1 for x € Q, and Uy(p1) =0, (3)

where ||v|[yy = VvTMv. The flow lines of U; satisfy the Euler-Lagrange equation of
functional (1). Thus, the minimal path Cp, p, can be retrieved with a simple gradient
descent on U from py to p; (see Fig. 1). Proof of (3) can be found in [22, 12]. On
figure 1, we show some examples of the minimal paths method on an isotropic case and
an anisotropic one. On the first image of figure 1 the metric is isotropic and the potential
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Figure 1: Minimal paths examples. Left: an isotropic case on the left image. Middle:
anisotropic metric, constant on each half side of the image, displayed by equivalent ellipses,
i.e. the axes-ratio of which is equal to the ratio of the eigenvalues. Right: minimal action
map associated to the source point p;, with the minimal path Cp, p, superimposed.

in the gray region is twice as low as the white one. Iso-level sets of the minimal action
map associated to the source point p; and the minimal path Cp, ,, are displayed. The
second image represents a metric M. We took two constant metrics in each half side of
the image. On the last image, the minimal action map U associated to the metric M and
to the source point p; is shown. The minimal path Cp, p, is found by a simple gradient
descent. The anisotropic Eikonal equation is solved using the Fast Marching algorithm.
Descriptions and details on the isotropic and anisotropic Fast Marching can be found in
6, 22, 12].

3 Recursive key points detection

The idea is to recursively detect new source points (called key points) along the object
of interest starting from a single point (or more if desired). This is done by use of front
propagation approach and the final domain visited by the front yields a segmentation of
the object of interest. The key points are automatically detected using a criterion based
on the Fuclidean length of minimal paths and are almost equi-distributed along the curve.
In [7] it was proposed to use the length of the minimal path in order to find the second
extremity of a path. Here we iterate this idea many times in order to obtain intermediate
points along the object. At each iteration, we consider the set of key points as source
points. Since the front is expected to propagate faster on the features, the first point for
which a given length \ is reached, is located in this area (of small values of the potential)
and is a valuable choice as a key point. A good choice of A\ enables the front to propagate
further in the direction of the thin tubular structures without propagating in all directions
and thus to reduce considerably the visited domain on the image.

We implemented several stopping criteria, see [3, 2] for more details. The simplest
one is the maximal number of key points to add. However, this criterion is not intuitive
enough to tune and is very dependent on the desired object and on the Euclidean length
parameter A. Another stopping criterion is based on the total path length. This criterion
makes use of prior medical knowledge of the typical length of the vessel of interest. Here
we also assume that only one single point is provided by the user, i.e. p;, and the idea
is to detect automatically the key points until a fixed total length of the minimal path is
reached. The third criterion requires that the user provide a destination point, in addition
to the source point. Then the algorithm can stop as soon as the destination is reached.

In high-contrast vessels, e.g. pulmonary arteries (fig. 2), the method can provide
a good segmentation even when using potentials P directly based on image intensities.



However, despite the use of the contrast agent, the intensities of the arteries in CT images
may be similar to other neighboring structures, e.g. the coronary arteries can hardly be
separated from blood-filled heart cavities. Hence, vessel enhancement filters [21, 10] were
evaluated to construct a potential map for coronary arteries segmentation. The best
experimental results were obtained by use of a modified version of the Frangi’s multiscale
filter. This version only includes the elongation and cross-sectional circularity terms, while
the Frobenius norm term was removed.

4 Tubular anisotropy

This method is also minimally interactive. First, the user has to specify if the desired
vessels are darker or brighter than the background. Then the scale range [rmin, "max),
which corresponds to the range of radii of the vessels one wants to extract, is given by the
user. Finally, few points are required as source points or end points of the Fast Marching
algorithm.

As presented in section 2, the Fast Marching algorithm is a front propagation algo-
rithm. The propagating front is guided by the metric M. Therefore, the result given by
the anisotropic minimal paths method is very dependent on the metric, results inherit ad-
vantages and drawbacks of the constructed metric, thus we should be very careful with its
construction. Since the OOF descriptor avoids the disturbance introduced by the closely
located nearby structures and gives an estimate of the orientation of the vessels, we chose
to combine the scalar functions and the orientations given by the OOF to construct the
4D metric M, see [5, 4] for more details. The constructed metric makes the propagation
faster along the center line of the vessel and when the radius is equal to the thickness of
the vessel and thus the minimal path follows the estimated orientation.

On figure 3, left anterior descending (LAD) coronary artery as well as right coronary
artery (RCA) are segmented using the tubular anisotropy method. One can see that the
obtained radii of the principal coronary branches are larger than those of the secondary
ones. Thus, our approach is robust to scale changing and bifurcations. Nevertheless, our
current implementation requires huge memory allocations due to the 4D and anisotropic
aspects.

5 Implementation using CreaTools

Although the methods presented are semi-automatic, interactive user interface is required
both for initialization (selection of 3D points, adjustment of parameter value involved in
the stopping criterion) and for the visual inspection of the results. Such a GUI is to be
very user-friendly, built-up with high-level widgets, so as to be available for physicians.
Furthermore, the algorithm-refining phase requires additional ad hoc interactive tools for
internal parameter tuning, volume-of-interest selection, etc. These usually very complex
development issues were made much easier by use of the CreaTools software suite.

This suite (http://www.creatis.insa-lyon.fr/creatools/) includes software and
development tools (libraries, utilities...) for medical image processing and visualization.
The CreaTools are open-source and cross-platform (Windows, Linux, MacOSX). One
of the main characteristics of the suite is that it manages within a single framework
heterogeneous third party libraries (itk, vtk, wxWidgets, KWWidgets ...), as well as



custom components. Thus, various processing methods and interactive widgets from
different libraries can be interconnected to form pipelines, and properly executed.

One of the most interesting components of the CreaTools is the Black Box Toolkit
(bbtk). It is a complete framework for prototyping, testing and creating demonstrators
of new medical-image or mesh processing methods. According to its name, bbtk is based
on the black box concept, i.e. any C/C++ processing algorithm or interactive widget is
wrapped into a generic symbolic interface usable both in C++ programming and via a very
simple scripting language called bbs. Numerous useful black boxes are already available in
standard packages, and new packages can easily be added via a plug-in mechanism. The
framework includes a script interpreter called bbi. The scripts can be edited and tested
within a graphical development environment called bbStudio, which also provides detailed
help on the black boxes, packages and the scripting language. The help on the black boxes
and packages exploits an auto-documentation mechanism. The use of bbStudio permits
to design very quickly small applications including nevertheless high-level components:
GUI, data readers/writers, image/mesh viewers, interactors, etc. Amongst them, let us
quote:

e the Gimmick! widget that handles many image formats, including DICOM, and
allows the user to preview the images and organize them into DICOM tree-structure
(Patient / Study / Series / Images) that are stored in databases and thus can
be retrieved very quickly; this black box is provided as part of the bbtk package
crealmagelO;

e the creaMaracasVisu package that provides advanced 3D image visualization and
interaction widgets particularly well suited for vascular applications.

6 Conclusions

In this paper we have proposed two different methods for 3D tubular structure extraction.
Both are semi-automatic, i.e. user interaction is only required at the initialization stage
involving the selection of one or several points and of the parameter value used in the
stopping criterion. The first method is very fast and allows to obtain a coherent segmen-
tation of tubular structures when the desired vessels are well contrasted in the image. If
not, an enhancement pre-processing step is required. The second method is more precise
and more adequate for challenging vessels segmentation like coronary arteries. It is how-
ever much more time-consuming. We are currently working on its new implementation,
in order to both reduce the computational time and save on memory allocations. Both
methods were made available for the physicians via an appropriate GUI. The applications
were developed by use of a new software suite CreaTools. We obtain promising results on
medical data. In the future, we will work on medical validation of the methods.
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Figure 2: Original 3D image (transparent visualization of a part of a pulmonary arterial
tree) and different steps of the Recursive Keypoints Detection approach from a single
source point pi: segmentation obtained using marching cubes on the visited domain.



Figure 3: Coronary artery segmentation using the Tubular Anisotropy Method. Left:
LAD and its branches. Right: RCA and its branches. The upper raw represents the
selected sub-volumes of interest, while the lower row shows the segmented arteries within
the whole image. Only few source points were required (the extremities of the paths).
The method provides the center line as well as vessels boundaries.



